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PROBABILITY OF THE MODERATE DEVIATIONS FOR THE
SUM-FUNCTIONS OF SPACINGS

SHERZOD MIRA,ZAM MIRAKHMEDOV, SYED IKRAM ABBAS TIRMIZI

Abstract. Let 0 = U0,n ≤ U1,n ≤, ... ≤ Un−1,n ≤ Un,n = 1 be an or-
dered sample from uniform [0,1] distribution,Din = Ui,n − Ui−1,n, i =
1, 2, ...n; n = 1, 2, ..., be their spacings,and let f1n, ..., fnnbe a set of mea-
surable functions. In this paper theorems on the probabilities of deviations
in the moderate zones for Rn(D) = f1n(nD1n, +... + fnn(nDnn are pre-
sented. Application of these results to study an intermediate efficiencies of
the tests based on statistic Rn(D) are also considered.

Key words : Spacings, uniform distribution, large deviations,goodness-of-
fit,asymptotic efficiencies
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1. Introduction

Let U1, U2, ... be a sequence of independent uniform (0,1) random variables
(r.v.), 0 = U0n ≤ U1n ≤ ... ≤ Un−1,n ≤ Unn = 1 the ordered of U1, U2, ..., Un−1;
Din = Uin − Ui−1,n, i = 1, 2, ..., n; n = 1, 2, ... their spacings and let D =
(D1n, ..., Dnn). Let fm(y) = fmn(y),m = 1, 2, ..., n be measurable functions
of nonnegative argument y. We consider the statistics of the type

Rn(D) =
n∑

m=1

fm(nDmn), n = 1, 2, ... (1.1)

Statistics of this form are used for several tasks, e.g. for goodness of fit tests, test-
ing the dispersive ordering, for estimation of unknown parameters, in the prob-
lems of random coverage of the circle. An extensive survey on the distribution
theory of these statistics and their applications are given in Pyke (1965,1972) and
Deheuvels (1985). We also refer to Beirlant, Janssen and Veraverbeke (1991),
Does, R.J.M.M., klaassen, C.A.J. (1984), Does, Helmers, Klaassen (1987). In
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218 Probability of the moderate deviations for the sum-functions of spacings

these papers the asymptotic normality, estimation and Edgeworth,s type asymp-
totical expansion of the remainder term in the central limit theorem (C L T)
for symmetric statistic (1.1) (i.e. whenfm(u) = f(u) does not depend on m) are
proved. The Lindeberg,s type condition for CLT and lower estimation of the
remainder term in CLT for Rn(D) has been obtained by Mirakhmedov (2005).
Many other authors have studied the Pitman asymptotic efficiency of test based
on statistic of type (1.1), e.g. Del Pino (1979), Holst and Rao (1981), Jammala-
madaka, Zhou and Tiwari(1989). For special types of statistic (1.1) Bahadur,s
exact asymptotic efficiency has been studied by Xian Zhou and Jammalamadaka
(1989) and Bahadur,s approximate efficiency have been studied by Rao (1972),
Bartoszewicz (1995). Although a large number of authors have studied statistic
of type (1.1) but still there is a lot of interest in it, see, for example Dehevels
and Derzka (2003), Jammalamadaka and Goria (2004). The literature about the
topic of our interest in this work is not readily available. Here we will prove the
probability of deviation theorems on the moderate zones. We also consider the
application of these theorems to the study of asymptotic intermediate efficiencies
(Kallenberg (1983)) of the tests based on statistics of type (1.1). These results
complements the results of the authors mentioned above. In what follows C, Ck

are positive constants, ε is arbitrary positive small constants,
∑

m is summation
over m from 1 to n. All asymptotic relations are considered as n →∞.

2. Results

Let Y2, Y2, ... be a sequence of independent exp{1} r.v,s and Y = (Y1, ..., Yn),
Sn = Y1 + ...+Yn, Rn(Y ) =

∑
m fm(Ym), ρ=corr(Rn(Y ), Sn), gm(u) = fm(u)−

Efm(Ym)−(u−1)ρ
√

DRn(Y )/n, Tn(D) =
∑

m gm(nDm), Tn(Y ) =
∑

m gm(Ym).
Note that

∑
m Egm(Ym) = 0 and σ2

n ≡ DTn(Y ) = (1− ρ2)DRn(Y ). Also, obvi-
ously, that Tn(D) = Rn(D) − ERn(Y ). We note that fm(y) can random func-
tions. In such cases we suppose that f1(y1), ..., fn(yn) is sequence of independent
random variables not depending on D and Y. Put Pn(x) = P (Tn(D) < xσn) and
Φ(x) stand for standard normal distribution function.
Theorem 2.1 Let

lim
1
n

σ2
n > 0 (2.1)

lim
1
n

∑
m

E|gm(Ym)|2+δ < ∞ (2.2)

for some δ > 0. Then for all x such that 0 ≤ x ≤
√

δ ln n we have

1− Pn(x) = (1− Φ(x))(1 + o(1)), Pn(−x)(1 + o(1)) (2.3)

Theorem 2.2. Put χm = Eexp(H|gm(Ym)|). Let condition (2.1) is fulfilled



Sherzod Mira,zam Mirakhmedov, Syed Ikram Abbas Tirmizi 219

and for some H > 0

lim
1
n

∑
m

χm < ∞, χ = o(n2/3)m = 1, 2, ..., n (2.4)

Then for x ≥ 0 and x = o(n1/6) relations (2.3) hold true.
Remarks
1. Theorem 2.1 and 2.2 complete analog of the well known results on the prob-
ability of the moderate deviations of sum of independent variables.
2. From Beirlant, Janssen and Veravarbake (1991), Does and Klaassen (1984),
and Mirakhmedov (2005) it follows that the normal approximation of the Pn(x)
under conditions (2.1) and (2.2) is valid for fixed x. Theorem 2.1 and 2.2 shows
that such approximation is still true for x = O(

√
ln n) under (2.1) and (2.2) and

for x = o(n1/6) under (2.1) and (2.4).

3. Proof of Theorems

The method which we shall use here is based on the Cramer,s transformation
(see below) and on the following well known property of the vector spacings
D : =(nD) = =(Y/Sn = n), where =(X) denote distribution of a random vec-
tor X. Therefore, for arbitrary measurable function L(x1, ..., xn) of nonnegative
arguments such that

∫∞
−∞ |EL(Y1, ..., Yn) exp(iτSn)|dτ < ∞, we have

EL(nD1n, ..., nDnn) =
1

2πPn(n)

∫ ∞

−∞
E(L(Y1, ..., Yn)) exp{iτ(Sn − n)}dτ

(3.1)

Where Pn(z) isis the density function of r.v. Sn

The Cramer,s transform: Given r.v. Y such that EeH|Y | < ∞,for some H > 0
r.v. X with distribution function P{X < 0} = E(exp{hY }1{Y < u})/E exp{hY }
is called Cramer,s transform with parameter h of r.v. Y, where |h| < H. We
have

P{Y > u} = EehY E(exp{−hX}1{X > u}) (3.2)

Proof of Theorem 2.1.We will prove first relation from (2.3).Second relation
can be obtained from first one by substitution −gm(u) instead of gm(u),m =
1, 2, .... From corollary 3 of Mirakhmedov (2005) it follows that Theorem 2.1
holds true for 0 ≤ x ≤

√
0.5δ′ ln n,where δ′ = min(1, δ). Therefore, now on we

suppose that
√

0.5δ′ ln n ≤ x ≤
√

δ ln n.
Let g̃m = gm(u)1{|gm(u)| ≤ εxσn} be truncated function, where 1{A} is the
indicator of event A,and ε > o will be chosen sufficiently small. Putting
T̃m(D) =

∑
m g̃m(nD), P̃n(x) = P (T̃n(D) < xσn) we have

|1− Pn(x)− (1− Φ(x))| ≤ |(1− ˜Pn(x))− (1− Φ(x))|+ |Pn(x)− ˜Pn(x)| ≡ ∇1 +∇2

(3.3)

(i) Estimation of∇1. For a complex variable z we denote ϕ̃n(z) = E exp{zT̃n(D)}.
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Let G̃n be the Cramer,s transform with parameter h = x/σn of the r.v. T̃n(D).
Then from (3.2) we have

P (T̃n(D) > xσn) = ϕ̃n(h)E[exp{−hG̃n}1{G̃n > xσn}]
= exp{ln ϕ̃n(h)− x2}E[exp{−xG̃∗n}1{G̃∗n > 0}]
= exp{ln ϕ̃n(h)− x2}[∫∞

0
exp{−xu}dΦ(u)

+
∫∞
0

exp{−xu}d(P{G̃∗n < u} − Φ(u))] (3.4)

Where G̃∗n = (G̃n−xσn)/σn,since ϕ̃n(h) ≥ 1/2 for sufficiently large n. We denote
first and second summand inside the square bracket by A1 and A2 respectively.
It can be readily shown that A1 = Φ(−x) exp{x2/2}. The estimation of A2 rest
on the following.
Lemma 1. Under conditions Theorem 2.1 we have
1. sup |P{G̃∗n < u} − Φ(u)| = O(n−δ′/3(2+δ′))
2.ϕ̃n(h) = exp{x2/2}(1 + O(n−δ′/3(2+δ′))) δ′ = min(1, δ).
Proof (see Appendix)
Integration part and using Lemma 1 (1) we get A2 = O(n−δ′/3(2+δ′)). By Lemma
1(2) we have exp{ln ϕ̃n(h) − x2} = exp{−x2/2}(1 + O(n−δ′/3(2+δ′))). These
jointly with (3.4) and

1− Φ(x) =
(√

2πx exp{x2/2}
)−1

(1 + O(x−1)) (3.5)

yields
P (T̃n(D) > xσn) = exp{x2/2}(1+O(n−δ′/3(2+δ′)))[Φ(−x) exp{x2/2}+O(n−δ′/3(2+δ′))] =
(1− Φ(x))O(xnδ′/3(2+δ′)) i.e. ∇1 = (1− Φ(x))O(nδ′/3(2+δ′)).
ii) Estimation of ∇2. Note that pn(n) = nn(n!)−1en, hence using Stirling ,s
formula we obtain √

2πnpn(n) = 1 + O(n−1) (3.6)

We have
{T̃n(D) > u} = {Tn(D) > u,

⋂n
m=1{|gm(nDmn)| ≤ εcσn}} ⊆ {Tn(D) > u}.

{Tn(D) > u} = {Tn(D) > u,
⋂n

m=1{|gm(nDmn)| ≤ εcσn}
⋃{Tn(D) > u,⋃n

m=1{|gm(nDmn)| > εxσn}} ⊆ {T̃n(D) > u}⋃n
m=1{|gm(nDmn)| > εxσn}.

Hence putting Xm(u) = 1{|gm(u) > εxσn|} and using formula (3.1) we get

∇2 ≤
∑

m P{|gm(nDmn)| > εxσn}
=

∑
m EXm(nDmn)

≤ ∑
m

1
2πpn(n)

∫∞
−∞ |E(Xm(Ym) exp{iτ(Sn − n)})|dτ

≤ ∑n
m=1

EXm(Ym)
2πpn(n)

∫∞
−∞ |E exp{iτ(Sn − Ym)}|dτ

(3.7)
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Note that

|E exp{iτYk}| = (1 + τ2)−1/2. (3.8)

Therefore quite clear calculations show that the integral on the right hand side
of (3.7) does not exceed π. Thus taking into account (3.6) we get
∇2 ≤ C

∑
m EXm(Ym).

Using Chebishev,s inequality, relation (3.5) and condition (2.2) we obtain

∇2 ≤ C
(εxσn)2+δ

∑
m |gm(Ym)|2+δ

= O(n−δ/2x−(2+δ))

= (1− Φ(x))O(n−δ/2x−(1+δ) exp{x2/2})
= (1− Φ(x))O(x−(1+δ))O((ln n)−(1+δ)/2)

The estimates of ∇1 and∇2 jointly with (3.3) complete the proof of the Theorem
2.1.
Proof of the Theorem 2.2. Due to condition (2.4) in this case we need not
to truncate the functions gm(u). Put ϕn(z) = E exp{zTn(D)}. Let Gn be
the Cramer,s transformation of the r.v. Tn(D) with parameter h = x/σn and
G∗n = (Gn − xσn)/σn. We have from (3.2)

P{Tn(D) > xσn} = ϕn(h)E[exp{−hGn}1{Gn > xσn}]
= exp{ln ϕn(h)− x2}E[exp{−xG∗n}1{G∗n > 0}]

Since ϕn(h) > 1/2 for sufficiently large n. Therefore Theorem 2.2 can be proved
by same way as estimation of ∇1 applying following Lemma 2 instead of Lemma
1.
Lemma 2. If x ≥ 0 and x = O(n1/6), then under conditions of the Theorem
2.2 we have
1. sup |P{G∗n < u} − Φ(u)| = O( x2√

n
),

2. ϕn(h) = exp{x2

2 + x3

6σ3
n

∑
m Eg3

m}{1 + O( x2√
n
)} = exp{x2

2 }{1 + O( x3√
n
)}.

Proof (see Appendix).

4. Application

Let X1n, X2n, ..., X(n−1)n be the ordered statistics of sample from population
having distribution function F, and Tkn = Xkn −X(k−1)nk = 1, 2, ..., n be their
spacings, with notation X0n = 0 and Xnn = 1. If sample is from uniform
distribution on [0,1] (i.e. under Ho), then Tnk = Dnk (see above). We wish to
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test null hypothesis Ho : F (x) = x, 0 ≤ x ≤ 1, versus the sequence of alternatives
H1n.

Fn(x) = x + L(x)δ(n), 0 ≤ x ≤ 1, (4.1)

Where δ(n) → 0 as n →∞ and L(x) satisfy some smoothness conditions.
There are several approaches to the definition of asymptotically properties of
statistical tests, which differ by the conditions imposed on the asymptotic be-
havior of the size wn, powerβn and sequence of alternatives H1n. The most
common is the Pitman,s approach where the alternatives converge to H0 at a
rate necessary to keep ωn → ω, βn → β, 0 < ω < β1. This is one of extreme
alternatives, because more fast rate of closeness of the hypothesis H1n and H0

indistinguishable, since βn → ω. Another extreme case is Bahadur,s approach
under which the asymptotically power β < 1 and the alternatives H1n = H0

are fixed (more precisely, H1 does not approach H0 ), and test is characterized
by the rate of decrease of the size ωn. Similarly one can fix ω and H1n and
measure the performance of the test by the rate of convergence βn to 1. This is
Hodges-Lehman approach. Finally, one can consider two intermediate settings:
first is βn → β, 0 < β < 1 while ωn → 0 and H1 → H0 ”not too fast”, and
second ωn → ω, 0 < ω < 1, while βn → 1 and H1 → H0 ”not too fast”. These
situation give rise to the concept of intermediate asymptotic efficiency (IAE) due
to Kallenberg (1983) (see also Ivchenco and Mirakhmedov (1995)) viz. ω -IAE
in the first case (intermediate between Pitman,s and Bahadur,s settings) and
β-IAE in the second case (intermediate between Pitman,s and Hodges-Lehman
settings).
We shall study intermediate efficiency of the tests statistics of type Rn(T ), where
function fkn(u) is of form f(u,rkn), where rkn=(k-0.5)/n, function f(u,y) is de-
fined on [0,∞] × [0,1]. Statistics Rn(T ) is called symmetric if function f(y, u) =
f(y) not depends on u, in other cases statistics Rn(T ) is non-symmetric. A
test based on statistics Rn(T ) with kernel function f(u,y) is called f-test. It
was shown by Holst and Rao (1981) that non-symmetric f-test may discrimi-
nate alternatives (4.1) with δ(n) = n−1/2, and linear test i.e. test based on
Ln =

∑n
k=1 l(rkn)Tkn,where L′(x) = l(x), is most efficient in Pitman sense.

Application of the Theorem 2.1 and 2.2 shows that linear test is still most ef-
ficient in the intermediate sense due to Kallenberg (1983),i.e. for alternatives
(4.1) with δ(n) = o(n−1/6), δ(n)

√
n →∞. Symmetric f-test can distinguish the

alternatives that far from H0 on distance δ(n) = n−1/4 only, and asymptotical
efficiency in Pitman sense characterized through c(f) = corr(g(Y ), Y 2),where
g(Y ) = f(Y )− (Y − 1)cov(f(Y ), Y ). Hence asymptotical most effective tests in
this case are well known Greenwood test based on Rn(T ) with kernel function
f(u) = u2. From Theorem2.1 and 2.2 it follows that the same conclusion is
still true for middle intermediate alternatives (hence for weak intermediate also)
and (due to Kallenberg (1983) and Ivchenko and Mirakhmedove (1995)),i.e. for
alternatives (4.1) with δ(n) = o(n−1/12), δ(n) 4

√
n →∞.
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5. Appendix

In this section we give the schematic proofs of Lemma 1 and 2. We will use
the notations from section 3. Thereto we put u = σ−1

n it + h, where h = x/σn,
and for notational convenience we will use gm and g̃m instead of gm(Ym) and
g̃m(Ym) correspondingly.
Let F and V be the distribution functions and f and v their characteristic func-
tions correspondingly. We have
|f(t)− v(t)| ≤ | ∫ t

0
Ds(f(s)− v(s))ds| =≤ |t| sup|s|≤|t| |Ds(f(s)− v(s))|.

Apply this in the well known Essseen,s inequality to get

|F (x)− V (x)| ≤ 1
π

[
∫

1≤|t|≤T

|f(t)− v(t)|dt + sup
|t|≤1

|Ds(f(t)− v(t))|+ 24
T

maxx|DxV (x)|].
(A.1)

Proof of Lemma 1. We denote
˜ψmn(u, τ) = E exp{ug̃m + iτ(Ym − 1)n−1/2}, Ψ̃n(u, τ) =

∏
m

˜ψmn(u, τ),
Q̃(t, τ, x) = itx + x2

2 − t2

2 − τ2

2 we have
eiτ ˜ψmn(u, τ

√
n) = E exp{ug̃m + iτYm} =

∫∞
0

eiτye−yE exp{ug̃m(y)}dy

=
∫∞
−∞ eiτy[e−yE exp{ug̃m(y)}1{y ≥ 0}]

That is eiτ ˜ψmn(u, τ
√

n) is the Fourier transformation of the function k(y) =
[e−yE exp{Ug̃m(y)}1{y ≥ 0}] and k(y) and |k(y)|2 are integrable functions.
Therefore by Plancheral,s identity the function |eiτ ˜ψmn(u, τ

√
n)| is integrable

and moreover

∫ ∞

−∞
|eiτ ˜ψmn(u, τ

√
n)|2dτ = 2π

∫ ∞

−∞
|k(y)|2dy ≤ 2πn2εδ (A.2)

recalling definition of g̃m and that 0 ≤ x
√

δ ln n we have
|E exp{ug̃m}| ≤ E exp{hg̃m} ≤ nεδ.From this and Holder,s inequality we see∫∞
−∞ |Ψ̃n(t, τ)|dτ ≤ 2πn2εδ+0.5

Therefore from (3.1) we have

ϕ̃n =
1

2π
√

npn(n)

∫ ∞

−∞
Ψ̃n(u, τ)dτ (A.3)

Denoting ˜ϕn(t, h) ≡ E exp{itG̃∗n} we obtain

ϕ̃n =
exp{−itx}ϕ̃n(u)

ϕ̃n(h)
(A.4)
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Putting an = C1n
δ′/3(2+δ′), bn = C2n

1
2− εδ

δ′ from (A.3) we get

exp{−itx}ϕ̃n(u) = 1
2π
√

npn(n)
[
∫∞
−∞ exp{−itx + Q̃(t, τ, x)}dτ

+
∫
|τ |≤an

e−itx{Ψ̃n(u, τ)− eQ̃(t,τ,x)}dτ

+
∫

an≤|τ |≤bn
e−itxΨ̃n(u, τ)dτ

+
∫

bn≤|τ | e
−itxΨ̃n(u, τ)dτ

− ∫
an≤|τ | e

−itx+Q̃(t,τ,x)dτ ]

≡ 1
2π
√

npn(n)
[
∑5

j=1 Bj ]

(A.5)

Where Bj denote j-th integral inside the square brackets. It is obvious that

B1 =
√

2π exp{x2

2
− t2

2
} (A.6)

For estimates of B2 and B3 we will use
Lemma A.1. Under conditions of the Lemma 1 there constants C1, C2 such
C1 < C2 and for j = 0, 1 the following assertions are true :
1) if |t| ≤ an, |τ | ≤ a′n then
Dj

t Ψ̃n(t, τ) = (−t + ix)j exp{Q̃(t, τ, x)}(1 + O((x + |t|+ |τ |)2+δ′n−
δ′
2 +εδ))

where a′n = C2an/C1

2) if |t| ≤ an, a′n ≤ |τ | ≤ bn then
|Dj

t Ψ̃n(u, τ)| ≤ C exp{x2

2 − t2

2 − τ2

4 }(|t|+ |τ |+ hnεδ)j .
The proof of the Lemma A.1 is like the proof of Lemma 2 from Mirakhme-
dov(1992), and we omit it. Using Lemma A.1 and taking ε < δ′/4δ after simple
and quite clear calculations we obtain

B2 + B3 = exp{x2 − t2

2
}

(
1 + O((x + t2+δ′)n−

δ′
4 )

)
(A.7)

Let |t| ≤ an, |τ | > bn. Using inequalities x < ex−1 and x− 1 ≤ 1
2 (x2 − 1) we

have

| ˜ψmn(u, τ)| ≤ |E exp{iτYm}(exp{iug̃n} − 1) + E exp{iτYm}|
≤ |ψ̃m(0, τ)|+ |u|E|g̃m|
≤ exp{−(1− |ψ̃m(0, τ)|)}
≤ exp{− 1

2 (1− |ψ̃m(0, τ)|2) + (|t|σ−1
n + h)E|g̃m|}

(A.8)

since u = tσ−1
n + h. By (3.8) for |τ | > bn and n ≥ C

δ′/εδ
2 we get

1− |ψ̃m(0, τ)|2 ≥ 0.5C2n
− 2εδ

δ′ (A.9)
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Using Holder,s inequality we see that
∑

m E|g̃m| ≤ σn
√

n. Therefore for
|t| ≤ an

|t|
σ n

∑
m

E|g̃m| ≤ C1n
1
2+ δ′

3(2+δ′) , h
∑
m

E|g̃m| ≤
√

δn ln n (A.10)

From (A.8),(A.9),(A.10) it follows that for any integer k and s such that

1 ≤ k,s ≤ n and n ≥ C
δ′
εδ
2 we have

∏(k,s)
m | ˜ψmn(u, τ)| ≤ exp{−C2

2 (n − 2)n−2εδ/δ′ + C1n
1
2+ δ′

3(2+δ′) +
√

δn ln n} here∏(k,s,...)
m is the product over m = 1, ..., n such that m 6= k, s, ... we choose

ε < δ′/6δ, and C2 > 2C1 then we get
(k,s)∏

m

| ˜ψmn(u, τ)| ≤ C3 exp{−C4n
2/3} (A.11)

Using Holder,s inequality and (A.2) we have∫ ∞

−∞
|ψ̃sn(u, τ) ˜ψkn(u, τ)|dτ ≤ Cnεδ+0.5. (A.12)

From this and (A.11) for B4 we obtain

|B4| ≤ C exp{−cn2/3} (A.13)

It is easy looking that

|B5| ≤ C exp{x2

2
− t2

2
−a2

n

2
} (A.14)

Substituting (A.6),(A.7),(A.13),(A.14) into (A.5) we get : if |t| ≤ C1n
δ′/3(2+δ′),

then

exp{−itx}ϕ̃n(u) =
exp{(x2 − t2)/2}(1 + O(n−δ′/4))√

2πnpn(n)
(A.15)

Particularly, at t = 0 from (A.15) and (3.8) we have

ϕ̃n(h) =
exp{(x2/2)}(1 + O(n−δ′/4))√

2πnpn(n)
= exp{x2/2}(1+O(n−δ′/4)). (A.16)

This proved the second assertion of Lemma 1.
Since (A.4) from (A.15) and (A.16) we obtain

ϕ̃n(t, h) = exp{−t2/2}(1+O(n−δ′/4)) (A.17)

From (A.3),(A.15),(A.16) it follows that

Dtϕ̃n(u, h) = exp{−itx}[Dtϕ̃n(u)− itϕ̃n(u)]/ϕ̃n(h)

= 1√
2π

exp{−itx− x2

2 }(1 + O(n−δ′/4))
∫∞
−∞[DtΨ̃n(u, τ)− ixΨ̃n(u, τ)]dτ

= 1√
2π

exp{−itx− x2

2 }(1 + O(n−δ′/4))[J1 + J2]

(A.18)
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where J1 =
∫
|τ |≤an

[DtΨ̃n(u, τ)− ixΨ̃n(u, τ)]dτ ,

J2 =
∫
|τ |>an

[DtΨ̃n(u, τ)− ixΨ̃n(u, τ)]dτ

We have
J1 =

∫
|τ |≤an

Dt(Ψ̃n(u, τ)−exp{Q̃(t, τ, x)}dτ)−ix
∫
|τ |≤an

(Ψ̃n(u, τ)−exp{Q̃(t, τ, x)}dτ)+∫
|τ |≤an

(Dt exp{Q̃(t, τ, x)} − ix exp{Q̃(t, τ, x)})dτ .
Hence using first assertion of Lemma A.1 we obtain

1√
2π

exp{−itx−x2

2
}J1 = −t exp{− t2

2
}+exp{− t2

2
}(1+O((x+|t|)2+δ′n−

δ′
2 +εδ)) (A.19)

since
1√
2π

exp{−itx− x2

2 }
∫
|τ |≤an

(Dt exp{Q̃(t, τ, x)} − ix exp{Q̃(t, τ, x)})dτ

= −t exp{− t2

2 }(1 + 1√
2π

∫
|τ |>an

e−
τ2
2 dτ)

since n > 2 there are integer k,s such that 1 ≤ k, s ≤ n, k 6= j, s 6= j∫

|τ |>an

|DtΨ̃n(u, t)|dτ ≤ ∑n
j=1

∫
|τ |>an

|Dtψ̃j(u, τ)|∏(j)
m |ψ̃m(u, τ)|dτ

≤ 1
σn

∑n
j=1 E|g̃j |[

∫
an<|τ |<bn

∏(j)
m |ψ̃m(u, τ)|dτ

+
∫
|τ |>bn

|ψ̃k(u, τ)ψ̃s(u, τ)|∏(j,k,s)
m |ψ̃m(u, τ)|dτ ]

Therefore,using second assertion of Lemma A.1 for first integral inside of bracket,
and (A.11) and (A.12) for second integral, and that∑

m E|g̃m| ≤ σn
√

n we get∫
|τ |>an

|DtΨ̃n(u, t)|dτ ≤ Cn1+εδ exp{−cn2/3}.
Analogous using second assertion of Lemma A.1, and (A.11) and (A.12) we get∫
|τ |>an

|Ψ̃n(u, t)|dτ ≤ Cn0.5+εδ.
Thus

|J2| ≤ Ce−cn
1
3 . (A.20)

Now, from (A.18), (A.19) and (A.20) it follows that

Dtϕ̃n(u, h) = −t exp{− t2

2
}+exp{− t2

2
}(1+O((x+|t|)2+δ′n−

δ′
2 +εδ))+Cθ exp{−cn

1
3 }. (A.21)

Putting in (A.1) F (x) = P (G̃∗n < x), V (x) = Φ(x), f(t) = ϕ̃n(t, h),
v(t) = exp{−t2/2}, and T = nδ′/3(2+δ′), and using (A.17) and (A.21) we com-
plete the proof of Lemma 1.
Proof of Lemma 2. Let ψmn(u, τ) = E exp{ugm + iτ(Ym−1)n−1/2}, Ψn(u, τ)
=

∏
m ψmn(u, τ), Q(t, τ, x) = x2

2 + x3

6σ3
n

∑
m Eg3

m − t2

2 − τ2

2 .

Lemma A.2 Under conditions of the Theorem 2.2 there are C1 and C2 such
that
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i) if |t| ≤ C1n
1/6, |τ | ≤ C2n

1/6 then
|eitxΨn(u, τ)− eQ(t,τ,x)| ≤ C x2+|t|3+|τ |3√

n
exp

(
Q(t, τ, x) + t2+τ2

4

)

ii) if |t| ≤ C1
√

n, |τ | ≤ C2
√

n then
|Ψn(u, τ)| ≤ C exp

(
x2

2 − t2

2 − τ2

2

)
,

iii) if |t| ≤ C1
√

n and |τ | ≥ C2
√

n, then for any integer k,s: 1 ≤ k, s ≤ n,∏(k,s)
m |ψmn(t, τ)| ≤ C11 exp{−C12n}.

Proof. From condition (2.4) for k ≥ 0 and |h| ≤ H/2 we have

E|gm|kehgm ≤ 2k+1k!H−kχm. (A.22)

From this and (2.1) we get σ−1
n

∑
m E|gm|3 ≤ C1(H)n−1/2 and

|ψmn(u, τ)−1| ≤ 0.5|u|2Eg2
mehgm+0.5n−1τ2E(Ym−1)2ehgm ≤ 16n−1χm

(
H−2(x2 + t2) + τ2

)
. (A.23)

Therefore under conditions of Lemma 2 for sufficiently large n we have |ψmn(u, τ)−
1| ≤ 0.5, i.e. |ψmn(u, τ)| ≥ 0.5, since χm = o(n2/3). Using Taylor,s expansion
idea it is easy to see that

ψmn(u, τ)−1 = 0.5u2Eg2
m+in−1/2uτEgm(Ym−1)−0.5τ2n−1+6−1h3Eg3

m+rm(x, t, τ). (A.24)

where |rm(x, t, τ)| ≤ C2(H)n−3/2((x + |t|+ |τ |)3 − x3)χm =def αm(x, t, τ, n)
and Holder,s inequality and (A.22) are used. Apply Holder,s inequality to get(
E(Ym − 1)2ehgm

)2 ≤ 4!χm and
(
Eg2

mehgm
)2 ≤ 344!χm, for |h| ≤ H/3. Using

these inequalities and first inequality in (A.23) we get
|ψmn(t, τ)− 1|2 ≤ |u|4(Eg2

mehgm)2 + n−2τ4(E(Ym − 1)2ehgm)2

≤ 344!H−4χmn−2(x4 + t4 + τ4) = O(αm(x, t, τ, n)).
Therefore taking into account (A.24) we have
ln ψmn(u, τ) = ψmn(u, τ)−1+O(|ψmn(u, τ)−1|2) = 0.5x2σ−2

n Eg2
m+itxσ−2

n Eg2
m−

0.5t2σ−2
n Eg2

m+iτn−1/2uEgm(Ym−1)−0.5τ2n−1+6−1h3Eg3
m+O(αm(x, t, τ, n))

Thus taking into account that
∑

m E(Ym−1)gm = 0 under conditions of Lemma
A.2 we have

|e−itxΨn(u, τ)− exp{Q(x, t, τ)}| ≤ C3

∑
m |αm(x, t, τ, n) exp[Q(x, t, τ)

+ O(
∑

m αm(x, t, τ, n))]|
≤ C4n

−1/2((x + |t|+ |τ |)3 − x3) exp{Q(x, t, τ)}

since
∑

m αm(x, t, τ, n) = O(1).
Part (i) of Lemma A.2 follows.
ii) Let |t| ≤ C1

√
n, |τ | ≤ C2

√
n. Given r.v. X we let X and X’ be mutually

independent r.v. having common distribution. We have
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|ψm(u, τ)|2 = E exp{h(gm + g′m) + itσ−2
n (gm − g′m) + iτ(Ym − Y ′

m)}
≤ 1 + (x2 − t2)σ−2

n Eg2
m − τ2n−16(σ−3

n (x3

+ |t|3))E|gm|3 exp{2h|gm|}+ n−3/2|τ |3E|Ym|3 exp{2h|gm|}
≤ exp{(x2 − t2)σ−2

n Eg2
m − τ2n−1

+ 6.33.3!H−3(σ−3
n (x3 + |t|3) + n−3/2|τ3|)χm}

since Egm = 0 and (A.22). Hence for sufficiently large n there exist C5 such
that for |t| ≤ C5

√
n and |τ | ≤ C5

√
n we have

(k,j)∏
m

|ψm(u, τ)| ≤ C6 exp{0.5(x2−t2−τ2)+C7n
−1/2(x3+|t|3+|τ |3)} ≤ C8 exp{0.5x2−0.25(t2+τ2)}. (A.25)

Part (ii) follows.
Let |t| ≤ C5

√
n and |τ | > C5

√
n. From (3.8) we have 1 − |ψm(0, τ)2| ≥ C9.

Also |t|σ−1
n

∑
E|gm| ≤ C5σn

√
n and h

∑
m E|gm| ≤ n2/3. Like (A.8) we have

|ψm(u, τ)| ≤ exp{− 1
2 (1− ‖ψm(0, τ)|2) + (|t|σ−1 + h)E|gm|}. Use these relations

choosing C5 sufficiently small to get

(k,s)∏
m

|ψmn(u, τ)| ≤ C10 exp{−0.5C9n+C5σn

√
n+n2/3}C11 exp{−C12n}. (A.26)

Part (iii) follows this complete the proof of Lemma A.2.
Note that like (A.2) it is easy to find that
∫ ∞

−∞
|ψm(u, τ)|2dτ ≤ 2πχm

√
n ≤ cn7/6,

∫
|ψj(u, τ)ψk(u, τ)|dτ ≤ cn7/6. (A.27)

From this using Holder,s inequality we see that∫∞
−∞ |Ψn(t, τ)|dτ ≤ Cn7/6.

Therefore for ϕn = E exp{zTn(D)} from formula (3.1) we have

ϕn(u) =
1

2π
√

npn(n)

∫ ∞

−∞
Ψn(u, τ)dτ. (A.28)

Denoting ϕn ≡ E exp{itG∗n} we obtain

ϕn(t, h) =
exp{−itx}ϕn(u)

ϕn(h)
. (A.29)

Lemma A.3. Under conditions of Theorem 2 we have
i) There is a constant C1 such that for |t| ≤ C1

√
n

|ϕn(t, h)− exp{−t2/2}| ≤ C x2+|t|3√
n

exp{−t2/2}.
ii) for |t| ≤ 1
|Dt(ϕn(t, h)− exp{−t2/2})| ≤ C x2√

n
.
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Proof. By (A.28) we have

2π
√

npn(n)[exp(−itx)ϕn(u)] =
∫ +∞
−∞ exp{Q(t, τ, x)}dτ

+
∫
|τ |≤C2n1/6

(
e−itxΨn(u, τ)− eQ(t,τ,x)

)
dτ

+
∫

C2n1/6≤|τ |≤C2
√

n
e−itxPsin(u, τ)dτ

+
∫

C2
√

n≤|τ | e
−itxPsin(u, τ)dτ − ∫

C2n1/6≤|τ | e
Q̃(t,τ,x)dτ

≡ [
∑5

j=1 Bj ] (A.30)

where Bj denote the j-th integral inside the square brackets. Obviously

B1 = exp
[

x2

2 + x3

6σ3
n

∑
m Eg3

m − t2

2

]
and |B5| ≤ C exp{−Cn1/3 − 0.5t2 + 0.5x2},

since (A.22) and (2.1) .
Apply part i) and part ii) of Lemma A.3 for estimation of B2 and B3 respectively
also part iii) of Lemma A.3 and relation (A.27) for estimation of B4 to get
|B2|+ |B3|+ |B4| ≤ C |t|3+x2

√
n

exp
[

x2

2 + x3

6σ3
n

∑
m Eg3

m − t2

2

]
.

Thus

exp{−itx}φn(
√

2πpn(n))−1 exp

[
x2

2
+

x3

6σ3
n

∑
m

Eg3
m − t2

2

] [
1 +

|t|3 + x2

√
n

exp{0.25t2}
]

. (A.31)

Putting t = 0 we get

φn(h) = (
√

2πnpn(n))−1 exp

[√
x22 +

√
x36σ3

n

∑
m

Eg3
m

] [
1 +

x2

√
n

]
. (A.32)

and taking into account (3.6) and (A.22) we get the second part Lemma 2. Ap-
ply (A.31) and second part.
Thus the proof of Lemma 2 can be completed using Lemma A.2 and reasons like
those used for the proof of Lemma 1.
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