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AN ITERATIVE METHOD FOR NONEXPANSIVE MAPPING
IN BANACH SPACES

XIAOLONG QIN1, YONGFU SU2

Abstract. In this paper, we establish weak and strong convergence the-
orems of the three-step iterative sequences with errors for non-self nonex-
pansive mappings in uniformly convex Banach spaces. Our results extend
and improve the recent ones announced by Naseer Shahzad and some oth-
ers.
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1. Introduction and Preliminaries

Let E be a real Banach space, C a nonempty closed convex subset of E, and
T : C → C a mapping. Recall that T is nonexpansive mapping if ‖Tx−Ty‖ ≤
‖x−y‖ for all x, y ∈ C. A point x ∈ C is a fixed point of T provided Tx = x.
Denote by N the set of natural numbers and Denote by F (T ) the set of fixed
points of T ; that is, F (T ) = {x ∈ C : Tx = x}. It is assumed throughout this
paper that T is a nonexpansive mapping such that F (T ) 6= ∅.

Iterative techniques for approximating fixed points of nonexpansive map-
pings have been studied by various authors (see e.g., [3, 7, 9, 11, 12]). In
[11], Tan and Xu introduced a modified Ishikawa process to approximate fixed
points of nonexpansive mappings defined on nonempty closed convex bounded
subsets of a uniformly convex Banach space E. More precisely, They proved
the following theorem.

Theorem TX (Tan and Xu [11,Theorem 1]). Let E be a a uniformly convex
Banach space which satisfies Opial’s condition or has a Frechet differentiable
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norm and C a nonempty closed convex bounded subset of E. Let T : C → C
be a nonexpansive mapping. Let {αn} and {βn} be real sequences in [0,1] such
that

∑∞
n=1 αn(1 − αn) = ∞ and

∑∞
n=1 βn(1 − αn) = ∞. Then the sequence

{xn} generated from arbitrary x1 ∈ C by

(1.1) xn+1 = (1− αn)xn + αnT [(1− βn)xn + βnTxn], n ≥ 1,

converges weakly to some fixed point of T .
In the above result, T remains self-mapping of a nonempty closed convex

subset K of a uniformly convex Banach space, if, however, the domain K of
T is a proper subset of E(and this is the cases in several applications), and T
maps K into E then iteration processes of Mann [5] and Ishikawa [2] studied
by these authors may fail to be well defined.

Recently, Naseer Shahzad [10] studied the sequence {xn} defined by

(1.2) x1 ∈ K, xn+1 = P ((1− αn)xn + αnTP [(1− βn)xn + βnTxn]),

where K is a nonempty closed convex nonexpansive retract of a real uniformly
convex Banach space E with P as a nonexpansive retraction. He proved
weak and strong convergence theorems for non-self nonexpansive mappings in
Banach spaces.

Motivated by the Nasser Shahzad [10], this paper study the iteration scheme
as following

(1.3)





zn = P (α′′nT3xn + β′′nxn + γ′′nwn),
yn = P (α′nT2zn + β′nxn + γ′nvn),
xn+1 = P (αnT1yn + βnxn + γnun),

where {αn}, {βn}, {γn}, {α′n}, {β′n}, {γ′n}, {α′′n}, {β′′n} and {γ′′n} are sequences
in [0,1] such that αn + βn + γn = α′n + β′n + γ′n = α′′n + β′′n + γ′′n = 1 and
ε ≤ αn, α′n, α′′n ≤ 1 − ε for all n ∈ N and some ε > 0, {un}, {vn}, {wn} are
bounded sequence in K.

The purpose of this paper is to construct an iteration scheme with errors
for approximating a common fixed point of nonexpansive non-self maps (when
such a fixed point exists ) and to prove some strong and weak convergence
theorems for such maps. Our theorems improve and generalize some previous
results.

A normed space E is said to satisfy Opial′s condition [6] if for any sequence
{xn} in E, xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ E with y 6= x.
Let E be a real Banach space. A subset K of E is said to be a retract of E

if there exists a continuous map P : E → E such that Px = x for all x ∈ K.
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A map P : E → E is said to be a retraction if P 2 = P . It follows that if a
map P is a retraction, then Py = y for all y in the range of P .

A mappingt T with domain D(T ) and range R(T ) in E is said to be demi-
closed at p if whenever {xn} is a sequence in D(T ) such that {xn} converges
weakly to x∗ ∈ D(T ) and {Txn} converges strongly to p, then Tx∗ = p.

Recall that the mapping T : K → E with F (T ) 6= ∅ where K is a subset
of E, is said to satisfy condition A [10] if there is a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that
for all x ∈ K

‖x− Tx‖ ≥ f(d(x, F (T ))),

where d(x, F (T ) = inf{‖x− p‖ : p ∈ F (T )}.
Senter and Dotson [9] approximated fixed points of a nonexpansive map-

ping T by Mann iterates, Later on, Maiti and Ghosh [4] and Tan and Xu
[11] studied the approximation of fixed points of a nonexpansive mapping T
by Ishikawa iterates under the same condition (A) which is weaker than the
requirement that T is demicompact. We modify this condition for three map-
pings T1, T2 and T3 : C → C as follows:

Three mappings T1, T2 and T3 : C → C where C a subset of E, are said
to satisfy condition (A′) if there exists a nondecreasing function f : [0,∞) →
[0,∞) with f(0) = 0, f(r) > 0 for all r ∈ (0,∞) such that a‖x − T1x‖ +
b‖x − T2x‖ + c‖x − T3x‖ ≥ f(d(x, F (T ))) for all x ∈ C where d(x, F (T )) =
inf{‖x−p‖ : p ∈ F (T1)∩F (T2)∩F (T3)} and a, b and c are three nonnegative
real numbers such that a + b + c = 1.

Note that condition (A′) reduces to condition (A) when T1 = T2 = T3.
In order to prove our main results, we shall make use of the following Lem-

mas.

Lemma 1.1 (Schu [8]). Suppose that E is a uniformly convex Banach space
and 0 < p ≤ tn ≤ q < 1 for all n ∈ N . Suppose further that {xn} and {yn}
are sequences in E such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r

and

lim
n→∞ ‖tnxn + (1− tn)yn‖ = r

hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 1.2 (Browder [1]). Let E be a uniformly convex Banach space, C a
nonempty closed convex subset of E. Let T be nonexpansive mapping of K
into E. Then I − T is demiclosed with respect to zero.
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Lemma 1.3 (Tan and Xu [11]). Let {rn}, {sn} and {tn} be three nonnegative
sequences satisfying the following condition:

rn+1 ≤ rn + tn for all n ≥ 1.

If
∑∞

n=1 tn < ∞, then limn→∞ rn exists.

2. Convergence of The Iteration Scheme

In this section, we shall prove the weak and strong convergence of the iter-
ative scheme (1.3) to approximate a common fixed point of the nonexpansive
mappings T1, T2 and T3.

Lemma 2.1 Let E be a normed linear space and K a nonempty convex
closed subset which is also a nonexpansive retract of E. Let T1, T2 and T3 :
K → E be nonexpansive mappings with F (T ) 6= ∅, where F (T ) denotes
the set of all common fixed points of T1, T2 and T3. Let {αn}, {βn}, {γn},
{α′n}, {β′n}, {γ′n}, {α′′n}, {β′′n} and {γ′′n} be real sequences in [0, 1] such that
αn + βn + γn = α′n + β′n + γ′n = α′′n + β′′n + γ′′n = 1, starting from arbitrary
x1 ∈ K, define the sequence {xn} by the recursion (1.3) with the restrictions∑∞

n=1 γ′′n < ∞,
∑∞

n=1 γ′n < ∞ and
∑∞

n=1 γn < ∞. Then limn→∞ ‖xn − p‖
exists.

Proof. Let p ∈ F (T ). Since {wn}, {vn} and {un} are bounded sequences
in C We set
M1 = sup{‖un − p‖ : n ≥ 1}, M2 = sup{‖vn − p‖ : n ≥ 1},
M3 = sup{‖wn − p‖ : n ≥ 1}, M = max{Mi : i = 1, 2, 3}.
It follows from (1.3) that

‖zn − p‖ = ‖P (α′′nT3xn + β′′nxn + γ′′nwn)− p‖
≤ ‖α′′nT3xn + β′′nxn + γ′′nwn − p‖
≤ α′′n‖T3xn − p‖+ β′′n‖xn − p‖+ γ′′n‖wn − p‖
≤ α′′n‖xn − p‖+ β′′n‖xn − p‖+ γ′′n‖wn − p‖
≤ ‖xn − p‖+ γ′′nM.

That is,

(2.1) ‖zn − p‖ ≤ ‖xn − p‖+ γ′′nM.
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From (1.3) and (2.1) we get

‖yn − p‖ = ‖P (α′nT2zn + β′nxn + γ′nvn)− p‖
≤ ‖α′nT2zn + β′nxn + γ′nvn − p‖
≤ α′n‖T2zn − p‖+ β′n‖xn − p‖+ γ′n‖vn − p‖
≤ α′n‖zn − p‖+ β′n‖xn − p‖+ γ′n‖vn − p‖
≤ α′n‖zn − p‖+ (1− α′n)‖xn − p‖+ γ′n‖vn − p‖
≤ α′n(‖xn − p‖+ γ′′nM) + (1− α′n)‖xn − p‖+ γ′n‖vn − p‖
≤ ‖xn − p‖+ γ′′nM + γ′nM.

That is,

(2.2) ‖yn − p‖ ≤ ‖xn − p‖+ γ′′nM + γ′nM.

Again, from (1.3) and (2.2) we have

‖xn+1 − p‖ = ‖P (αnT1yn + βnxn + γnun)− p‖
= ‖αnT1yn + βnxn + γnun − p‖
≤ αn‖T1yn − p‖+ βn‖xn − p‖+ γn‖un − p‖
≤ αn‖yn − p‖+ βn‖xn − p‖+ γn‖un − p‖
≤ αn‖yn − p‖+ (1− αn)‖xn − p‖+ γn‖un − p‖
≤ αn(‖xn − p‖+ γ′′nM + γ′nM) + (1− α′n)‖xn − p‖+ γnM

≤ ‖xn − p‖+ γ′′nM + γ′nM + γnM

≤ ‖xn − p‖+ γ′′nM + γ′nM + γnM.

That is,

(2.3) ‖xn+1 − p‖ ≤ ‖xn − p‖+ (γ′′n + γ′n + γ′n)M.

Therefore, by using Lemma 1.3, limn→∞ ‖xn−p‖ exists for all p ∈ F (T ). This
completes the proof.

Notation. In the following, lim stands for lim sup and lim for lim inf.

Lemma 2.2 Let E be a uniformly convex Banach space and K a nonempty
convex closed subset which is also a nonexpansive retract of E. Let T1, T2 and T3 :
K → E be nonexpansive mappings with F (T ) 6= ∅, where F (T ) denotes
the set of all common fixed points of T1, T2 and T3. Let {αn}, {βn}, {γn},
{α′n}, {β′n}, {γ′n}, {α′′n}, {β′′n} and {γ′′n} be real sequences in [0, 1] such that
αn +βn +γn = α′n +β′n +γ′n = α′′n +β′′n +γ′′n = 1 and ε ≤ αn, α′n, α′′n ≤ 1− ε for
all n ∈ N and some ε > 0, starting from arbitrary x1 ∈ K, define the sequence
{xn} by the recursion (1.3).
Then limn→∞ ‖xn−T1xn‖ = limn→∞ ‖xn−T2xn‖ = limn→∞ ‖xn−T3xn‖ = 0.
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Proof. Take p ∈ F (T ), by Lemma 2.1 limn→∞ ‖xn−p‖ exists. Let limn→∞ ‖xn−
p‖ = c. If c = 0, then by the continuity of T1, T2 and T3 the conclusion follows.
Now suppose c > 0. We claim limn→∞ ‖xn − T1xn‖ = limn→∞ ‖xn − T2xn‖ =
limn→∞ ‖xn − T3xn‖ = 0. Since {un}, {vn} and {wn} are bounded, it follows
that {un − xn}, {vn − xn} and {wn − xn} are all bounded. Now, we set
r1 = sup{‖un − xn‖ : n ≥ 1}, r2 = sup{‖vn − xn‖ : n ≥ 1},
r3 = sup{‖wn − xn‖ : n ≥ 1}, r = max{ri : 1 ≤ i ≤ 3}.
Taking limsup on both the sides in the inequality (2.1), we have

(2.4) limn→∞‖zn − p‖ ≤ c.

Similarly, taking limsup on both the sides in the inequality (2.2), we have

(2.5) limn→∞‖yn − p‖ ≤ c.

Next, we consider
‖T1yn − p + γn(un − xn)‖ ≤ ‖T1yn − p‖+ γn‖un − xn‖

≤ ‖yn − p‖+ γnr.

Taking limsup on both the sides in the above inequality and using (2.5), we
get that

limn→∞‖Tyn − p + γn(un − xn)‖ ≤ c.

The inequalities
‖xn − p + γn(un − xn)‖ ≤ ‖xn − p‖+ γn‖un − xn‖

≤ ‖xn − p‖+ γnr,

yield
limn→∞‖xn − p + γn(un − xn)‖ ≤ c.

Again, lim
n→∞ ‖xn+1 − p‖ = c means that

(2.6) limn→∞‖αn(T1yn−p+γn(un−xn))+(1−αn)(xn−p+γn(un−xn))‖ ≥ c.

On the other hand, we have
‖αn(T1yn − p + γn(un − xn)) + (1− αn)(xn − p + γn(un − xn))‖

≤αn‖T1yn − p‖+ (1− αn)‖xn − p‖+ γn‖un − xn‖
≤αn‖yn − p‖+ (1− αn)‖xn − p‖+ γn‖un − xn‖
≤αn(‖xn − p‖+ γ′′nr + γ′nr) + (1− αn)‖xn − p‖+ γn‖un − xn‖
≤‖xn − p‖+ γ′′nr + γ′nr + γnr.

Therefore, we obtain

(2.7) limn→∞‖αn(Tyn−p+γn(un−xn))+(1−αn)(xn−p+γn(un−xn))‖ ≤ c.

Formulas (2.6) and (2.7) yield

lim
n→∞ ‖αn(T1yn − p + γn(un − xn)) + (1− αn)(xn − p + γn(un − xn))‖ = c.
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Hence applying Lemma 1.1, we have

(2.8) lim
n→∞ ‖T1yn − xn‖ = 0.

Next, we observe that
‖xn − p‖ ≤ ‖T1yn − xn‖+ ‖Tyn − p‖

≤ ‖T1yn − xn‖+ ‖yn − p‖.
The latter yields

c ≤ limn→∞‖yn − p‖ ≤ limn→∞‖yn − p‖ ≤ c.

That is,
lim

n→∞ ‖yn − p‖ = c.

Again, limn→∞ ‖yn − p‖ = c implies that

(2.9) limn→∞‖α′n(T2zn−p+γ′n(vn−xn))+(1−α′n)(xn−p+γ′n(vn−xn))‖ ≥ c.

Similarly, we obtain
‖α′n(T2zn − p + γ′n(vn − xn)) + (1− α′n)(xn − p + γ′n(vn − xn))‖

≤α′n‖T2zn − p‖+ (1− α′n)‖xn − p‖+ γ′n‖vn − xn‖
≤α′n‖zn − p‖+ (1− α′n)‖xn − p‖+ γ′n‖vn − xn‖
≤α′n(‖xn − p‖+ γ′′nr) + (1− α′n)‖xn − p‖+ γ′n‖vn − xn‖
≤‖xn − p‖+ γ′′nr + γ′nr.

Therefore, we have

(2.10) limn→∞‖α′n(T2zn−p+γ′n(vn−xn))+(1−α′n)(xn−p+γ′n(vn−xn))‖ ≤ c.

Formulas (2.9) and (2.10) yield

(2.11) lim
n→∞ ‖α

′
n(T2zn−p+γ′n(vn−xn))+(1−α′n)(xn−p+γ′n(vn−xn))‖ = c.

Notice that
‖T2zn − p + γ′n(vn − xn)‖ ≤ ‖T2zn − p‖+ γ′n‖vn − xn‖

≤ ‖zn − p‖+ γ′nr.

Taking limsup on both the sides in the above inequality and using (2.4), we
have

(2.12) limn→∞‖T2zn − p + γ′n(vn − xn)‖ ≤ c.

The inequalities
‖xn − p + γ′n(vn − xn)‖ ≤ ‖xn − p‖+ γ′n‖vn − xn‖

≤ ‖xn − p‖+ γ′nr,

yield

(2.13) limn→∞‖xn − p + γ′n(vn − xn)‖ ≤ c.
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Applying Lemma 1.1, it follows from (2.11), (2.12) and (2.13) that

(2.14) lim
n→∞ ‖T2zn − xn‖ = 0.

The inequalities
‖xn − p‖ ≤ ‖T2zn − xn‖+ ‖T2zn − p‖

≤ ‖T2zn − xn‖+ ‖zn − p‖,
yield

c ≤ limn→∞‖zn − p‖ ≤ limn→∞‖zn − p‖ ≤ c.

That is,

(2.15) lim
n→∞ ‖zn − p‖ = c.

Using the same method, we have
(2.16)
lim

n→∞ ‖α
′′
n(T3xn − p + γ′′n(wn − xn)) + (1−α′′n)(xn − p + γ′′n(wn − xn))− p‖ = c.

The inequalities

‖T3xn − p + γ′′n(wn − xn)‖ ≤ ‖T3xn − p‖+ γ′′n‖wn − xn‖
≤ ‖xn − p‖+ γ′′nr,

yield

(2.17) lim sup
n→∞

‖T3xn − p + γ′′n(wn − xn)‖ ≤ c.

Again,
‖xn − p + γ′′n(wn − xn)‖ ≤ ‖xn − p‖+ γ′′n‖wn − xn‖

≤ ‖xn − p‖+ γ′′nr.

Therefore, we obtain

(2.18) limn→∞‖xn − p + γ′′n(wn − xn)‖ ≤ c.

Formulas (2.16), (17) and (2.18) yield

(2.19) lim
n→∞ ‖T3xn − xn‖ = 0.

Next we prove

lim
n→∞ ‖T2xn − xn‖ = lim

n→∞ ‖T1xn − xn‖ = 0.

We note
‖T1xn − xn‖ ≤ ‖xn − T1yn‖+ ‖T1yn − T1xn‖

≤ ‖xn − T1yn‖+ ‖yn − xn‖
= ‖xn − T1yn‖+ ‖P (α′nT2zn + β′nxn + γ′nvn)− Pxn‖
≤ ‖xn − T1yn‖+ ‖α′nT2zn + β′nxn + γ′nvn − xn‖
≤ ‖xn − T1yn‖+ ‖T2zn − xn‖+ γ′nr.
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It follows from (2.8), (2.14) and
∑∞

n=0 γ′n < ∞ that

(2.20) ‖T1xn − xn‖ → 0, as n →∞.

Similarly, we have
‖T2xn − xn‖ ≤ ‖xn − T2zn‖+ ‖T2zn − T2xn‖

≤ ‖xn − T2zn‖+ ‖zn − xn‖
= ‖xn − T2zn‖+ ‖P (α′′nT3xn + β′′nxn + γ′′nr)− Pxn‖
≤ ‖xn − T2zn‖+ ‖α′′nT3xn + β′′nxn + γ′′nr − xn‖
≤ ‖xn − T2zn‖+ ‖T3xn − xn‖+ γ′′nr.

It follows from (2.14), (2.18) and
∑∞

n=0 γ′′n < ∞ that

‖T2xn − xn‖ → 0, as n →∞.

That is,

lim
n→∞ ‖T3xn − xn‖ = lim

n→∞ ‖T2xn − xn‖ = lim
n→∞ ‖T1xn − xn‖ = 0.

This completes the proof of the theorem.

Theorem 2.1 Let K be a nonempty closed convex subset of a uniformly convex
Banach space E satisfying Opial′s condition. Suppose T1, T2 and T3 : K → E
be nonexpansive mappings. Let {xn} be defined by (1.3), where {αn}, {βn},
{γn}, {α′n}, {β′n}, {γ′n}, {α′′n}, {β′′n} and {γ′′n} be real sequences in [0, 1] such
that αn +βn +γn = α′n +β′n +γ′n = α′′n +β′′n +γ′′n = 1 and ε ≤ αn, α′n, α′′n ≤ 1−ε
for all n ∈ N and some ε > 0. Then {xn} converges weakly to some common
fixed point of T1, T2 and T3.

Proof. For any p ∈ F (T1) ∩ F (T2) ∩ F (T3), it follows from Lemma 2.1 that
limn→∞ ‖xn − p‖ exists. We now prove that {xn} has a unique weak subse-
quential limit in F (T ). Firstly, let p1 and p2 be weak limits of subsequences
{xnk

} and {xnj} of {xn}, respectively. By Lemmas 1.2 and 2.2, we know that
p ∈ F (T ). Secondly, assume p1 6= p2, then by Opial’s condition, we obtain

lim
n→∞ ‖xn − p1‖ = lim

k→∞
‖xnk

− p1‖ < lim
k→∞

‖xnk
− p2‖ = lim

j→∞
‖xnj − p2‖

< lim
k→∞

‖xnk
− p1‖ = lim

n→∞ ‖xn − p1‖,
which is a contradiction, hence p1 = p2. Then {xn} converges weakly to some
common fixed point of T1, T2 and T3. The proof is completed.

Next, we shall prove a strong convergence theorem.

Theorem 2.2 Let E be a uniformly convex Banach space and K a nonempty
convex closed subset which is also a nonexpansive retract of E. Let T1, T2 and T3 :
K → E be nonexpansive mappings with F (T ) 6= ∅, where F (T ) denotes the



An iterative method for nonexpansive mapping in Banach spaces 129

set of all common fixed points of T1, T2 and T3. Let {αn}, {βn}, {γn}, {α′n},
{β′n}, {γ′n}, {α′′n}, {β′′n} and {γ′′n} be as taken in Lemma 2.1, starting from
arbitrary x1 ∈ K, define the sequence {xn} by the recursion (1.3). Suppose
T1, T2 and T3 satisfies condition (A′). Then xn converges strongly to some
common fixed point of T1, T2 and T3.

Proof. By Lemma 2.1, limn→∞ ‖xn − p‖ exists for all p ∈ F (T ). Let it be c
for some c ≥ 0. If c = 0, there is nothing to prove. Suppose c > 0. By Lemma
2.2,

lim
n→∞ ‖T3xn − xn‖ = lim

n→∞ ‖T2xn − xn‖ = lim
n→∞ ‖T1xn − xn‖ = 0

and (2.3) gives that

inf
p∈F

‖xn+1 − p‖ ≤ inf
p∈F

‖xn − p‖+ (γ′′n + γ′n + γn)M.

That is,
d(xn+1, F ) ≤ d(xn, F ) + (γ′′n + γ′n + γn)M

gives that limn→∞ d(xn, F ) exists by virtue of Lemma 1.3. Now by condition
(A′), limn→∞ f(d(xn, F )) = 0. Since f is a nondecreasing function and f(0) =
0, therefore limn→∞ d(xn, F ) = 0. Now we can take a subsequence {xnj} of
xn and sequence yj ⊂ F such that ‖xnj − yj‖ < 2−j . Then following the
arguments from [11], we get that {yj} is a Cauchy sequence in F (T ) and so
it converges. Let yj → y. Since F (T ) is closed, therefore y ∈ F (T ) and then
xnj → y. As limn→∞ ‖xn − p‖ exists, xn → y ∈ F (T ) thereby completing the
proof.
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