AN ITERATIVE METHOD FOR NONEXPANSIVE MAPPING IN BANACH SPACES

XIAOLONG QIN ${ }^{1}$, YONGFU SU ${ }^{2}$

Abstract

In this paper, we establish weak and strong convergence theorems of the three-step iterative sequences with errors for non-self nonexpansive mappings in uniformly convex Banach spaces. Our results extend and improve the recent ones announced by Naseer Shahzad and some others.

Key words : Nonexpansive non-self map; Opial's condition; Uniformly convex; Demiclosed
AMS SUBJECT: 47H09; 46B20

1. Introduction and Preliminaries

Let E be a real Banach space, C a nonempty closed convex subset of E, and $T: C \rightarrow C$ a mapping. Recall that T is nonexpansive mapping if $\|T x-T y\| \leq$ $\|x-y\|$ for all $x, y \in C$. A point $x \in C$ is a fixed point of T provided $T x=x$. Denote by N the set of natural numbers and Denote by $F(T)$ the set of fixed points of T; that is, $F(T)=\{x \in C: T x=x\}$. It is assumed throughout this paper that T is a nonexpansive mapping such that $F(T) \neq \emptyset$.

Iterative techniques for approximating fixed points of nonexpansive mappings have been studied by various authors (see e.g., [3, 7, 9, 11, 12]). In [11], Tan and Xu introduced a modified Ishikawa process to approximate fixed points of nonexpansive mappings defined on nonempty closed convex bounded subsets of a uniformly convex Banach space E. More precisely, They proved the following theorem.

Theorem TX (Tan and Xu [11,Theorem 1]). Let E be a a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable

[^0]norm and C a nonempty closed convex bounded subset of E. Let $T: C \rightarrow C$ be a nonexpansive mapping. Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be real sequences in $[0,1]$ such that $\sum_{n=1}^{\infty} \alpha_{n}\left(1-\alpha_{n}\right)=\infty$ and $\sum_{n=1}^{\infty} \beta_{n}\left(1-\alpha_{n}\right)=\infty$. Then the sequence $\left\{x_{n}\right\}$ generated from arbitrary $x_{1} \in C$ by
\[

$$
\begin{equation*}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T\left[\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n}\right], \quad n \geq 1, \tag{1.1}
\end{equation*}
$$

\]

converges weakly to some fixed point of T.
In the above result, T remains self-mapping of a nonempty closed convex subset K of a uniformly convex Banach space, if, however, the domain K of T is a proper subset of E (and this is the cases in several applications), and T maps K into E then iteration processes of Mann [5] and Ishikawa [2] studied by these authors may fail to be well defined.

Recently, Naseer Shahzad [10] studied the sequence $\left\{x_{n}\right\}$ defined by

$$
\begin{equation*}
x_{1} \in K, \quad x_{n+1}=P\left(\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T P\left[\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n}\right]\right), \tag{1.2}
\end{equation*}
$$

where K is a nonempty closed convex nonexpansive retract of a real uniformly convex Banach space E with P as a nonexpansive retraction. He proved weak and strong convergence theorems for non-self nonexpansive mappings in Banach spaces.

Motivated by the Nasser Shahzad [10], this paper study the iteration scheme as following

$$
\left\{\begin{array}{l}
z_{n}=P\left(\alpha_{n}^{\prime \prime} T_{3} x_{n}+\beta_{n}^{\prime \prime} x_{n}+\gamma_{n}^{\prime \prime} w_{n}\right), \tag{1.3}\\
y_{n}=P\left(\alpha_{n}^{\prime} T_{2} z_{n}+\beta_{n}^{\prime} x_{n}+\gamma_{n}^{\prime} v_{n}\right), \\
x_{n+1}=P\left(\alpha_{n} T_{1} y_{n}+\beta_{n} x_{n}+\gamma_{n} u_{n}\right),
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\alpha_{n}^{\prime}\right\},\left\{\beta_{n}^{\prime}\right\},\left\{\gamma_{n}^{\prime}\right\},\left\{\alpha_{n}^{\prime \prime}\right\},\left\{\beta_{n}^{\prime \prime}\right\}$ and $\left\{\gamma_{n}^{\prime \prime}\right\}$ are sequences in $[0,1]$ such that $\alpha_{n}+\beta_{n}+\gamma_{n}=\alpha_{n}^{\prime}+\beta_{n}^{\prime}+\gamma_{n}^{\prime}=\alpha_{n}^{\prime \prime}+\beta_{n}^{\prime \prime}+\gamma_{n}^{\prime \prime}=1$ and $\epsilon \leq \alpha_{n}, \alpha_{n}^{\prime}, \alpha_{n}^{\prime \prime} \leq 1-\epsilon$ for all $n \in N$ and some $\epsilon>0,\left\{u_{n}\right\},\left\{v_{n}\right\},\left\{w_{n}\right\}$ are bounded sequence in K.

The purpose of this paper is to construct an iteration scheme with errors for approximating a common fixed point of nonexpansive non-self maps (when such a fixed point exists) and to prove some strong and weak convergence theorems for such maps. Our theorems improve and generalize some previous results.

A normed space E is said to satisfy O pial' $^{\prime}$ condition [6] if for any sequence $\left\{x_{n}\right\}$ in $E, x_{n} \rightharpoonup x$ implies that

$$
\limsup _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\limsup _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

for all $y \in E$ with $y \neq x$.
Let E be a real Banach space. A subset K of E is said to be a retract of E if there exists a continuous map $P: E \rightarrow E$ such that $P x=x$ for all $x \in K$.

A map $P: E \rightarrow E$ is said to be a retraction if $P^{2}=P$. It follows that if a map P is a retraction, then $P y=y$ for all y in the range of P.

A mappingt T with domain $D(T)$ and range $R(T)$ in E is said to be demiclosed at p if whenever $\left\{x_{n}\right\}$ is a sequence in $D(T)$ such that $\left\{x_{n}\right\}$ converges weakly to $x^{*} \in D(T)$ and $\left\{T x_{n}\right\}$ converges strongly to p, then $T x^{*}=p$.

Recall that the mapping $T: K \rightarrow E$ with $F(T) \neq \emptyset$ where K is a subset of E, is said to satisfy condition A [10] if there is a nondecreasing function $f:[0, \infty) \rightarrow[0, \infty)$ with $f(0)=0$ and $f(r)>0$ for all $r \in(0, \infty)$ such that for all $x \in K$

$$
\|x-T x\| \geq f(d(x, F(T))),
$$

where $d(x, F(T)=\inf \{\|x-p\|: p \in F(T)\}$.
Senter and Dotson [9] approximated fixed points of a nonexpansive mapping T by Mann iterates, Later on, Maiti and Ghosh [4] and Tan and Xu [11] studied the approximation of fixed points of a nonexpansive mapping T by Ishikawa iterates under the same condition (A) which is weaker than the requirement that T is demicompact. We modify this condition for three mappings T_{1}, T_{2} and $T_{3}: C \rightarrow C$ as follows:

Three mappings T_{1}, T_{2} and $T_{3}: C \rightarrow C$ where C a subset of E, are said to satisfy condition $\left(\mathrm{A}^{\prime}\right)$ if there exists a nondecreasing function $f:[0, \infty) \rightarrow$ $[0, \infty)$ with $f(0)=0, f(r)>0$ for all $r \in(0, \infty)$ such that $a\left\|x-T_{1} x\right\|+$ $b\left\|x-T_{2} x\right\|+c\left\|x-T_{3} x\right\| \geq f(d(x, F(T)))$ for all $x \in C$ where $d(x, F(T))=$ $\inf \left\{\|x-p\|: p \in F\left(T_{1}\right) \cap F\left(T_{2}\right) \cap F\left(T_{3}\right)\right\}$ and a, b and c are three nonnegative real numbers such that $a+b+c=1$.

Note that condition (A^{\prime}) reduces to condition (A) when $T_{1}=T_{2}=T_{3}$.
In order to prove our main results, we shall make use of the following Lemmas.
Lemma 1.1 (Schu [8]). Suppose that E is a uniformly convex Banach space and $0<p \leq t_{n} \leq q<1$ for all $n \in N$. Suppose further that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in E such that

$$
\limsup _{n \rightarrow \infty}\left\|x_{n}\right\| \leq r, \quad \limsup _{n \rightarrow \infty}\left\|y_{n}\right\| \leq r
$$

and

$$
\lim _{n \rightarrow \infty}\left\|t_{n} x_{n}+\left(1-t_{n}\right) y_{n}\right\|=r
$$

hold for some $r \geq 0$. Then $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.

Lemma 1.2 (Browder [1]). Let E be a uniformly convex Banach space, C a nonempty closed convex subset of E. Let T be nonexpansive mapping of K into E. Then $I-T$ is demiclosed with respect to zero.

Lemma 1.3 (Tan and $\mathrm{Xu}[11]$). Let $\left\{r_{n}\right\},\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ be three nonnegative sequences satisfying the following condition:

$$
r_{n+1} \leq r_{n}+t_{n} \quad \text { for all } n \geq 1
$$

If $\sum_{n=1}^{\infty} t_{n}<\infty$, then $\lim _{n \rightarrow \infty} r_{n}$ exists.

2. Convergence of The Iteration Scheme

In this section, we shall prove the weak and strong convergence of the iterative scheme (1.3) to approximate a common fixed point of the nonexpansive mappings T_{1}, T_{2} and T_{3}.

Lemma 2.1 Let E be a normed linear space and K a nonempty convex closed subset which is also a nonexpansive retract of E. Let T_{1}, T_{2} and T_{3} : $K \rightarrow E$ be nonexpansive mappings with $F(T) \neq \emptyset$, where $F(T)$ denotes the set of all common fixed points of T_{1}, T_{2} and T_{3}. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$, $\left\{\alpha_{n}^{\prime}\right\},\left\{\beta_{n}^{\prime}\right\},\left\{\gamma_{n}^{\prime}\right\},\left\{\alpha_{n}^{\prime \prime}\right\},\left\{\beta_{n}^{\prime \prime}\right\}$ and $\left\{\gamma_{n}^{\prime \prime}\right\}$ be real sequences in $[0,1]$ such that $\alpha_{n}+\beta_{n}+\gamma_{n}=\alpha_{n}^{\prime}+\beta_{n}^{\prime}+\gamma_{n}^{\prime}=\alpha_{n}^{\prime \prime}+\beta_{n}^{\prime \prime}+\gamma_{n}^{\prime \prime}=1$, starting from arbitrary $x_{1} \in K$, define the sequence $\left\{x_{n}\right\}$ by the recursion (1.3) with the restrictions $\sum_{n=1}^{\infty} \gamma_{n}^{\prime \prime}<\infty, \sum_{n=1}^{\infty} \gamma_{n}^{\prime}<\infty$ and $\sum_{n=1}^{\infty} \gamma_{n}<\infty$. Then $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists.

Proof. Let $p \in F(T)$. Since $\left\{w_{n}\right\},\left\{v_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded sequences in C We set
$M_{1}=\sup \left\{\left\|u_{n}-p\right\|: n \geq 1\right\}, \quad M_{2}=\sup \left\{\left\|v_{n}-p\right\|: n \geq 1\right\}$, $M_{3}=\sup \left\{\left\|w_{n}-p\right\|: n \geq 1\right\}, \quad M=\max \left\{M_{i}: i=1,2,3\right\}$.
It follows from (1.3) that

$$
\begin{aligned}
\left\|z_{n}-p\right\| & =\left\|P\left(\alpha_{n}^{\prime \prime} T_{3} x_{n}+\beta_{n}^{\prime \prime} x_{n}+\gamma_{n}^{\prime \prime} w_{n}\right)-p\right\| \\
& \leq\left\|\alpha_{n}^{\prime \prime} T_{3} x_{n}+\beta_{n}^{\prime \prime} x_{n}+\gamma_{n}^{\prime \prime} w_{n}-p\right\| \\
& \leq \alpha_{n}^{\prime \prime}\left\|T_{3} x_{n}-p\right\|+\beta_{n}^{\prime \prime}\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime}\left\|w_{n}-p\right\| \\
& \leq \alpha_{n}^{\prime \prime}\left\|x_{n}-p\right\|+\beta_{n}^{\prime \prime}\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime}\left\|w_{n}-p\right\| \\
& \leq\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} M .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\left\|z_{n}-p\right\| \leq\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} M \tag{2.1}
\end{equation*}
$$

From (1.3) and (2.1) we get

$$
\begin{aligned}
\left\|y_{n}-p\right\| & =\left\|P\left(\alpha_{n}^{\prime} T_{2} z_{n}+\beta_{n}^{\prime} x_{n}+\gamma_{n}^{\prime} v_{n}\right)-p\right\| \\
& \leq\left\|\alpha_{n}^{\prime} T_{2} z_{n}+\beta_{n}^{\prime} x_{n}+\gamma_{n}^{\prime} v_{n}-p\right\| \\
& \leq \alpha_{n}^{\prime}\left\|T_{2} z_{n}-p\right\|+\beta_{n}^{\prime}\left\|x_{n}-p\right\|+\gamma_{n}^{\prime}\left\|v_{n}-p\right\| \\
& \leq \alpha_{n}^{\prime}\left\|z_{n}-p\right\|+\beta_{n}^{\prime}\left\|x_{n}-p\right\|+\gamma_{n}^{\prime}\left\|v_{n}-p\right\| \\
& \leq \alpha_{n}^{\prime}\left\|z_{n}-p\right\|+\left(1-\alpha_{n}^{\prime}\right)\left\|x_{n}-p\right\|+\gamma_{n}^{\prime}\left\|v_{n}-p\right\| \\
& \leq \alpha_{n}^{\prime}\left(\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} M\right)+\left(1-\alpha_{n}^{\prime}\right)\left\|x_{n}-p\right\|+\gamma_{n}^{\prime}\left\|v_{n}-p\right\| \\
& \leq\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} M+\gamma_{n}^{\prime} M .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\left\|y_{n}-p\right\| \leq\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} M+\gamma_{n}^{\prime} M . \tag{2.2}
\end{equation*}
$$

Again, from (1.3) and (2.2) we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|P\left(\alpha_{n} T_{1} y_{n}+\beta_{n} x_{n}+\gamma_{n} u_{n}\right)-p\right\| \\
& =\left\|\alpha_{n} T_{1} y_{n}+\beta_{n} x_{n}+\gamma_{n} u_{n}-p\right\| \\
& \leq \alpha_{n}\left\|T_{1} y_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\gamma_{n}\left\|u_{n}-p\right\| \\
& \leq \alpha_{n}\left\|y_{n}-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\gamma_{n}\left\|u_{n}-p\right\| \\
& \leq \alpha_{n}\left\|y_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|+\gamma_{n}\left\|u_{n}-p\right\| \\
& \leq \alpha_{n}\left(\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} M+\gamma_{n}^{\prime} M\right)+\left(1-\alpha_{n}^{\prime}\right)\left\|x_{n}-p\right\|+\gamma_{n} M \\
& \leq\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} M+\gamma_{n}^{\prime} M+\gamma_{n} M \\
& \leq\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} M+\gamma_{n}^{\prime} M+\gamma_{n} M .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\left\|x_{n+1}-p\right\| \leq\left\|x_{n}-p\right\|+\left(\gamma_{n}^{\prime \prime}+\gamma_{n}^{\prime}+\gamma_{n}^{\prime}\right) M . \tag{2.3}
\end{equation*}
$$

Therefore, by using Lemma 1.3, $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for all $p \in F(T)$. This completes the proof.

Notation. In the following, \varlimsup stands for \lim sup and $\underline{\lim }$ for lim inf.
Lemma 2.2 Let E be a uniformly convex Banach space and K a nonempty convex closed subset which is also a nonexpansive retract of E. Let T_{1}, T_{2} and T_{3} : $K \rightarrow E$ be nonexpansive mappings with $F(T) \neq \emptyset$, where $F(T)$ denotes the set of all common fixed points of T_{1}, T_{2} and T_{3}. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$, $\left\{\alpha_{n}^{\prime}\right\},\left\{\beta_{n}^{\prime}\right\},\left\{\gamma_{n}^{\prime}\right\},\left\{\alpha_{n}^{\prime \prime}\right\},\left\{\beta_{n}^{\prime \prime}\right\}$ and $\left\{\gamma_{n}^{\prime \prime}\right\}$ be real sequences in $[0,1]$ such that $\alpha_{n}+\beta_{n}+\gamma_{n}=\alpha_{n}^{\prime}+\beta_{n}^{\prime}+\gamma_{n}^{\prime}=\alpha_{n}^{\prime \prime}+\beta_{n}^{\prime \prime}+\gamma_{n}^{\prime \prime}=1$ and $\epsilon \leq \alpha_{n}, \alpha_{n}^{\prime}, \alpha_{n}^{\prime \prime} \leq 1-\epsilon$ for all $n \in N$ and some $\epsilon>0$, starting from arbitrary $x_{1} \in K$, define the sequence $\left\{x_{n}\right\}$ by the recursion (1.3).
Then $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{1} x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-T_{2} x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-T_{3} x_{n}\right\|=0$.

Proof. Take $p \in F(T)$, by Lemma $2.1 \lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. Let $\lim _{n \rightarrow \infty} \| x_{n}-$ $p \|=c$. If $c=0$, then by the continuity of T_{1}, T_{2} and T_{3} the conclusion follows. Now suppose $c>0$. We claim $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{1} x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-T_{2} x_{n}\right\|=$ $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{3} x_{n}\right\|=0$. Since $\left\{u_{n}\right\},\left\{v_{n}\right\}$ and $\left\{w_{n}\right\}$ are bounded, it follows that $\left\{u_{n}-x_{n}\right\},\left\{v_{n}-x_{n}\right\}$ and $\left\{w_{n}-x_{n}\right\}$ are all bounded. Now, we set $r_{1}=\sup \left\{\left\|u_{n}-x_{n}\right\|: n \geq 1\right\}, \quad r_{2}=\sup \left\{\left\|v_{n}-x_{n}\right\|: n \geq 1\right\}$, $r_{3}=\sup \left\{\left\|w_{n}-x_{n}\right\|: n \geq 1\right\}, \quad r=\max \left\{r_{i}: 1 \leq i \leq 3\right\}$.
Taking limsup on both the sides in the inequality (2.1), we have

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left\|z_{n}-p\right\| \leq c \tag{2.4}
\end{equation*}
$$

Similarly, taking limsup on both the sides in the inequality (2.2), we have

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty}\left\|y_{n}-p\right\| \leq c \tag{2.5}
\end{equation*}
$$

Next, we consider

$$
\begin{aligned}
\left\|T_{1} y_{n}-p+\gamma_{n}\left(u_{n}-x_{n}\right)\right\| & \leq\left\|T_{1} y_{n}-p\right\|+\gamma_{n}\left\|u_{n}-x_{n}\right\| \\
& \leq\left\|y_{n}-p\right\|+\gamma_{n} r .
\end{aligned}
$$

Taking limsup on both the sides in the above inequality and using (2.5), we get that

$$
\overline{\lim }_{n \rightarrow \infty}\left\|T y_{n}-p+\gamma_{n}\left(u_{n}-x_{n}\right)\right\| \leq c
$$

The inequalities

$$
\begin{aligned}
\left\|x_{n}-p+\gamma_{n}\left(u_{n}-x_{n}\right)\right\| & \leq\left\|x_{n}-p\right\|+\gamma_{n}\left\|u_{n}-x_{n}\right\| \\
& \leq\left\|x_{n}-p\right\|+\gamma_{n} r,
\end{aligned}
$$

yield

$$
\varlimsup_{n \rightarrow \infty}\left\|x_{n}-p+\gamma_{n}\left(u_{n}-x_{n}\right)\right\| \leq c .
$$

Again, $\lim _{n \rightarrow \infty}\left\|x_{n+1}-p\right\|=c$ means that
(2.6) $\underline{l i m}_{n \rightarrow \infty}\left\|\alpha_{n}\left(T_{1} y_{n}-p+\gamma_{n}\left(u_{n}-x_{n}\right)\right)+\left(1-\alpha_{n}\right)\left(x_{n}-p+\gamma_{n}\left(u_{n}-x_{n}\right)\right)\right\| \geq c$.

On the other hand, we have

$$
\begin{aligned}
& \left\|\alpha_{n}\left(T_{1} y_{n}-p+\gamma_{n}\left(u_{n}-x_{n}\right)\right)+\left(1-\alpha_{n}\right)\left(x_{n}-p+\gamma_{n}\left(u_{n}-x_{n}\right)\right)\right\| \\
\leq & \alpha_{n}\left\|T_{1} y_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|+\gamma_{n}\left\|u_{n}-x_{n}\right\| \\
\leq & \alpha_{n}\left\|y_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|+\gamma_{n}\left\|u_{n}-x_{n}\right\| \\
\leq & \alpha_{n}\left(\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} r+\gamma_{n}^{\prime} r\right)+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|+\gamma_{n}\left\|u_{n}-x_{n}\right\| \\
\leq & \left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} r+\gamma_{n}^{\prime} r+\gamma_{n} r .
\end{aligned}
$$

Therefore, we obtain
(2.7) $\varlimsup_{n \rightarrow \infty}\left\|\alpha_{n}\left(T y_{n}-p+\gamma_{n}\left(u_{n}-x_{n}\right)\right)+\left(1-\alpha_{n}\right)\left(x_{n}-p+\gamma_{n}\left(u_{n}-x_{n}\right)\right)\right\| \leq c$.

Formulas (2.6) and (2.7) yield

$$
\lim _{n \rightarrow \infty}\left\|\alpha_{n}\left(T_{1} y_{n}-p+\gamma_{n}\left(u_{n}-x_{n}\right)\right)+\left(1-\alpha_{n}\right)\left(x_{n}-p+\gamma_{n}\left(u_{n}-x_{n}\right)\right)\right\|=c .
$$

Hence applying Lemma 1.1, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{1} y_{n}-x_{n}\right\|=0 \tag{2.8}
\end{equation*}
$$

Next, we observe that

$$
\begin{aligned}
\left\|x_{n}-p\right\| & \leq\left\|T_{1} y_{n}-x_{n}\right\|+\left\|T y_{n}-p\right\| \\
& \leq\left\|T_{1} y_{n}-x_{n}\right\|+\left\|y_{n}-p\right\| .
\end{aligned}
$$

The latter yields

$$
c \leq \underline{\lim }_{n \rightarrow \infty}\left\|y_{n}-p\right\| \leq \varlimsup_{n \rightarrow \infty}\left\|y_{n}-p\right\| \leq c .
$$

That is,

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-p\right\|=c
$$

Again, $\lim _{n \rightarrow \infty}\left\|y_{n}-p\right\|=c$ implies that
(2.9) $\varliminf_{n \rightarrow \infty}\left\|\alpha_{n}^{\prime}\left(T_{2} z_{n}-p+\gamma_{n}^{\prime}\left(v_{n}-x_{n}\right)\right)+\left(1-\alpha_{n}^{\prime}\right)\left(x_{n}-p+\gamma_{n}^{\prime}\left(v_{n}-x_{n}\right)\right)\right\| \geq c$.

Similarly, we obtain

$$
\begin{aligned}
& \left\|\alpha_{n}^{\prime}\left(T_{2} z_{n}-p+\gamma_{n}^{\prime}\left(v_{n}-x_{n}\right)\right)+\left(1-\alpha_{n}^{\prime}\right)\left(x_{n}-p+\gamma_{n}^{\prime}\left(v_{n}-x_{n}\right)\right)\right\| \\
\leq & \alpha_{n}^{\prime}\left\|T_{2} z_{n}-p\right\|+\left(1-\alpha_{n}^{\prime}\right)\left\|x_{n}-p\right\|+\gamma_{n}^{\prime}\left\|v_{n}-x_{n}\right\| \\
\leq & \alpha_{n}^{\prime}\left\|z_{n}-p\right\|+\left(1-\alpha_{n}^{\prime}\right)\left\|x_{n}-p\right\|+\gamma_{n}^{\prime}\left\|v_{n}-x_{n}\right\| \\
\leq & \alpha_{n}^{\prime}\left(\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} r\right)+\left(1-\alpha_{n}^{\prime}\right)\left\|x_{n}-p\right\|+\gamma_{n}^{\prime}\left\|v_{n}-x_{n}\right\| \\
\leq & \left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} r+\gamma_{n}^{\prime} r .
\end{aligned}
$$

Therefore, we have
(2.10) $\varlimsup_{n \rightarrow \infty}\left\|\alpha_{n}^{\prime}\left(T_{2} z_{n}-p+\gamma_{n}^{\prime}\left(v_{n}-x_{n}\right)\right)+\left(1-\alpha_{n}^{\prime}\right)\left(x_{n}-p+\gamma_{n}^{\prime}\left(v_{n}-x_{n}\right)\right)\right\| \leq c$.

Formulas (2.9) and (2.10) yield
(2.11) $\lim _{n \rightarrow \infty}\left\|\alpha_{n}^{\prime}\left(T_{2} z_{n}-p+\gamma_{n}^{\prime}\left(v_{n}-x_{n}\right)\right)+\left(1-\alpha_{n}^{\prime}\right)\left(x_{n}-p+\gamma_{n}^{\prime}\left(v_{n}-x_{n}\right)\right)\right\|=c$.

Notice that

$$
\begin{aligned}
\left\|T_{2} z_{n}-p+\gamma_{n}^{\prime}\left(v_{n}-x_{n}\right)\right\| & \leq\left\|T_{2} z_{n}-p\right\|+\gamma_{n}^{\prime}\left\|v_{n}-x_{n}\right\| \\
& \leq\left\|z_{n}-p\right\|+\gamma_{n}^{\prime} r .
\end{aligned}
$$

Taking limsup on both the sides in the above inequality and using (2.4), we have

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty}\left\|T_{2} z_{n}-p+\gamma_{n}^{\prime}\left(v_{n}-x_{n}\right)\right\| \leq c . \tag{2.12}
\end{equation*}
$$

The inequalities

$$
\begin{aligned}
\left\|x_{n}-p+\gamma_{n}^{\prime}\left(v_{n}-x_{n}\right)\right\| & \leq\left\|x_{n}-p\right\|+\gamma_{n}^{\prime}\left\|v_{n}-x_{n}\right\| \\
& \leq\left\|x_{n}-p\right\|+\gamma_{n}^{\prime} r,
\end{aligned}
$$

yield

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left\|x_{n}-p+\gamma_{n}^{\prime}\left(v_{n}-x_{n}\right)\right\| \leq c . \tag{2.13}
\end{equation*}
$$

Applying Lemma 1.1, it follows from (2.11), (2.12) and (2.13) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{2} z_{n}-x_{n}\right\|=0 \tag{2.14}
\end{equation*}
$$

The inequalities

$$
\begin{aligned}
\left\|x_{n}-p\right\| & \leq\left\|T_{2} z_{n}-x_{n}\right\|+\left\|T_{2} z_{n}-p\right\| \\
& \leq\left\|T_{2} z_{n}-x_{n}\right\|+\left\|z_{n}-p\right\|,
\end{aligned}
$$

yield

$$
c \leq \varliminf_{n \rightarrow \infty}\left\|z_{n}-p\right\| \leq \varlimsup_{n \rightarrow \infty}\left\|z_{n}-p\right\| \leq c
$$

That is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-p\right\|=c \tag{2.15}
\end{equation*}
$$

Using the same method, we have
$\lim _{n \rightarrow \infty}\left\|\alpha_{n}^{\prime \prime}\left(T_{3} x_{n}-p+\gamma_{n}^{\prime \prime}\left(w_{n}-x_{n}\right)\right)+\left(1-\alpha_{n}^{\prime \prime}\right)\left(x_{n}-p+\gamma_{n}^{\prime \prime}\left(w_{n}-x_{n}\right)\right)-p\right\|=c$.
The inequalities

$$
\begin{aligned}
\left\|T_{3} x_{n}-p+\gamma_{n}^{\prime \prime}\left(w_{n}-x_{n}\right)\right\| & \leq\left\|T_{3} x_{n}-p\right\|+\gamma_{n}^{\prime \prime}\left\|w_{n}-x_{n}\right\| \\
& \leq\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} r,
\end{aligned}
$$

yield

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|T_{3} x_{n}-p+\gamma_{n}^{\prime \prime}\left(w_{n}-x_{n}\right)\right\| \leq c \tag{2.17}
\end{equation*}
$$

Again,

$$
\begin{aligned}
\left\|x_{n}-p+\gamma_{n}^{\prime \prime}\left(w_{n}-x_{n}\right)\right\| & \leq\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime}\left\|w_{n}-x_{n}\right\| \\
& \leq\left\|x_{n}-p\right\|+\gamma_{n}^{\prime \prime} r .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty}\left\|x_{n}-p+\gamma_{n}^{\prime \prime}\left(w_{n}-x_{n}\right)\right\| \leq c . \tag{2.18}
\end{equation*}
$$

Formulas (2.16), (17) and (2.18) yield

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{3} x_{n}-x_{n}\right\|=0 \tag{2.19}
\end{equation*}
$$

Next we prove

$$
\lim _{n \rightarrow \infty}\left\|T_{2} x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0
$$

We note

$$
\begin{aligned}
\left\|T_{1} x_{n}-x_{n}\right\| & \leq\left\|x_{n}-T_{1} y_{n}\right\|+\left\|T_{1} y_{n}-T_{1} x_{n}\right\| \\
& \leq\left\|x_{n}-T_{1} y_{n}\right\|+\left\|y_{n}-x_{n}\right\| \\
& =\left\|x_{n}-T_{1} y_{n}\right\|+\left\|P\left(\alpha_{n}^{\prime} T_{2} z_{n}+\beta_{n}^{\prime} x_{n}+\gamma_{n}^{\prime} v_{n}\right)-P x_{n}\right\| \\
& \leq\left\|x_{n}-T_{1} y_{n}\right\|+\left\|\alpha_{n}^{\prime} T_{2} z_{n}+\beta_{n}^{\prime} x_{n}+\gamma_{n}^{\prime} v_{n}-x_{n}\right\| \\
& \leq\left\|x_{n}-T_{1} y_{n}\right\|+\left\|T_{2} z_{n}-x_{n}\right\|+\gamma_{n}^{\prime} r .
\end{aligned}
$$

It follows from (2.8), (2.14) and $\sum_{n=0}^{\infty} \gamma_{n}^{\prime}<\infty$ that

$$
\begin{equation*}
\left\|T_{1} x_{n}-x_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{2.20}
\end{equation*}
$$

Similarly, we have

$$
\begin{aligned}
\left\|T_{2} x_{n}-x_{n}\right\| & \leq\left\|x_{n}-T_{2} z_{n}\right\|+\left\|T_{2} z_{n}-T_{2} x_{n}\right\| \\
& \leq\left\|x_{n}-T_{2} z_{n}\right\|+\left\|z_{n}-x_{n}\right\| \\
& =\left\|x_{n}-T_{2} z_{n}\right\|+\left\|P\left(\alpha_{n}^{\prime \prime} T_{3} x_{n}+\beta_{n}^{\prime \prime} x_{n}+\gamma_{n}^{\prime \prime} r\right)-P x_{n}\right\| \\
& \leq\left\|x_{n}-T_{2} z_{n}\right\|+\left\|\alpha_{n}^{\prime \prime} T_{3} x_{n}+\beta_{n}^{\prime \prime} x_{n}+\gamma_{n}^{\prime \prime} r-x_{n}\right\| \\
& \leq\left\|x_{n}-T_{2} z_{n}\right\|+\left\|T_{3} x_{n}-x_{n}\right\|+\gamma_{n}^{\prime \prime} r .
\end{aligned}
$$

It follows from (2.14), (2.18) and $\sum_{n=0}^{\infty} \gamma_{n}^{\prime \prime}<\infty$ that

$$
\left\|T_{2} x_{n}-x_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty .
$$

That is,

$$
\lim _{n \rightarrow \infty}\left\|T_{3} x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|T_{2} x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0 .
$$

This completes the proof of the theorem.

Theorem 2.1 Let K be a nonempty closed convex subset of a uniformly convex Banach space E satisfying Opial's condition. Suppose T_{1}, T_{2} and $T_{3}: K \rightarrow E$ be nonexpansive mappings. Let $\left\{x_{n}\right\}$ be defined by (1.3), where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$, $\left\{\gamma_{n}\right\},\left\{\alpha_{n}^{\prime}\right\},\left\{\beta_{n}^{\prime}\right\},\left\{\gamma_{n}^{\prime}\right\},\left\{\alpha_{n}^{\prime \prime}\right\},\left\{\beta_{n}^{\prime \prime}\right\}$ and $\left\{\gamma_{n}^{\prime \prime}\right\}$ be real sequences in $[0,1]$ such that $\alpha_{n}+\beta_{n}+\gamma_{n}=\alpha_{n}^{\prime}+\beta_{n}^{\prime}+\gamma_{n}^{\prime}=\alpha_{n}^{\prime \prime}+\beta_{n}^{\prime \prime}+\gamma_{n}^{\prime \prime}=1$ and $\epsilon \leq \alpha_{n}, \alpha_{n}^{\prime}, \alpha_{n}^{\prime \prime} \leq 1-\epsilon$ for all $n \in N$ and some $\epsilon>0$. Then $\left\{x_{n}\right\}$ converges weakly to some common fixed point of T_{1}, T_{2} and T_{3}.

Proof. For any $p \in F\left(T_{1}\right) \cap F\left(T_{2}\right) \cap F\left(T_{3}\right)$, it follows from Lemma 2.1 that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. We now prove that $\left\{x_{n}\right\}$ has a unique weak subsequential limit in $F(T)$. Firstly, let p_{1} and p_{2} be weak limits of subsequences $\left\{x_{n_{k}}\right\}$ and $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$, respectively. By Lemmas 1.2 and 2.2, we know that $p \in F(T)$. Secondly, assume $p_{1} \neq p_{2}$, then by Opial's condition, we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|x_{n}-p_{1}\right\| & =\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-p_{1}\right\|<\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-p_{2}\right\|=\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-p_{2}\right\| \\
& <\lim _{k \rightarrow \infty}\left\|x_{n_{k}}-p_{1}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-p_{1}\right\|,
\end{aligned}
$$

which is a contradiction, hence $p_{1}=p_{2}$. Then $\left\{x_{n}\right\}$ converges weakly to some common fixed point of T_{1}, T_{2} and T_{3}. The proof is completed.

Next, we shall prove a strong convergence theorem.
Theorem 2.2 Let E be a uniformly convex Banach space and K a nonempty convex closed subset which is also a nonexpansive retract of E. Let T_{1}, T_{2} and T_{3} : $K \rightarrow E$ be nonexpansive mappings with $F(T) \neq \emptyset$, where $F(T)$ denotes the
set of all common fixed points of T_{1}, T_{2} and T_{3}. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\alpha_{n}^{\prime}\right\}$, $\left\{\beta_{n}^{\prime}\right\},\left\{\gamma_{n}^{\prime}\right\},\left\{\alpha_{n}^{\prime \prime}\right\},\left\{\beta_{n}^{\prime \prime}\right\}$ and $\left\{\gamma_{n}^{\prime \prime}\right\}$ be as taken in Lemma 2.1, starting from arbitrary $x_{1} \in K$, define the sequence $\left\{x_{n}\right\}$ by the recursion (1.3). Suppose T_{1}, T_{2} and T_{3} satisfies condition (A^{\prime}). Then x_{n} converges strongly to some common fixed point of T_{1}, T_{2} and T_{3}.
Proof. By Lemma 2.1, $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for all $p \in F(T)$. Let it be c for some $c \geq 0$. If $c=0$, there is nothing to prove. Suppose $c>0$. By Lemma 2.2,

$$
\lim _{n \rightarrow \infty}\left\|T_{3} x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|T_{2} x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0
$$

and (2.3) gives that

$$
\inf _{p \in F}\left\|x_{n+1}-p\right\| \leq \inf _{p \in F}\left\|x_{n}-p\right\|+\left(\gamma_{n}^{\prime \prime}+\gamma_{n}^{\prime}+\gamma_{n}\right) M
$$

That is,

$$
d\left(x_{n+1}, F\right) \leq d\left(x_{n}, F\right)+\left(\gamma_{n}^{\prime \prime}+\gamma_{n}^{\prime}+\gamma_{n}\right) M
$$

gives that $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)$ exists by virtue of Lemma 1.3. Now by condition $\left(\mathrm{A}^{\prime}\right), \lim _{n \rightarrow \infty} f\left(d\left(x_{n}, F\right)\right)=0$. Since f is a nondecreasing function and $f(0)=$ 0 , therefore $\lim _{n \rightarrow \infty} d\left(x_{n}, F\right)=0$. Now we can take a subsequence $\left\{x_{n_{j}}\right\}$ of x_{n} and sequence $y_{j} \subset F$ such that $\left\|x_{n_{j}}-y_{j}\right\|<2^{-j}$. Then following the arguments from [11], we get that $\left\{y_{j}\right\}$ is a Cauchy sequence in $F(T)$ and so it converges. Let $y_{j} \rightarrow y$. Since $F(T)$ is closed, therefore $y \in F(T)$ and then $x_{n_{j}} \rightarrow y$. As $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists, $x_{n} \rightarrow y \in F(T)$ thereby completing the proof.

References

[1] F. E. Browder, Nonlinear operators and nonlinear evolution in Banach spaces, Proceedings of the Symposium on Pure Mathematics, vol. 18, Pro. Amer. Math. Soc., Providence, RI, 1976.
[2] S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc. 44 (1974) 147-150.
[3] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976) 377-401.
[4] M. Maiti, M. K. Gosh, Approximating fixed points by Ishikawa iterates, Bull. Austral. Math. Soc. 40 (1989) 113-117.
[5] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510.
[6] Z. Opial, Weak convergence of the sequence of successive appproximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591-597.
[7] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979) 274-276.
[8] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991) 153-159.
[9] H. F. Senter, W. G. Doston, Approximating fixed points of nonexpansive mapping, Proc. Amer. Math. Soc. 44 (2)(1974)375-380.
[10] N. Shahzad, Approximating fixed points of non-self nonexpansive mappings in Banach spaces, Nonlinear Anal. 61 (2005) 1031-1039.
[11] K. K. Tan, H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawaiteration process, J. Math. Anal. Appl. 178 (1993) 301-308.
[12] L. C. Zeng, A note on approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 26 (1998) 245-250.

[^0]: ${ }^{1}$ Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, P.R.China, E-mail: qxlxajh@163.com.
 ${ }^{2}$ Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, P.R.China, E-mail: suyongfu@tjpu.edu.cn.

