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UNSTEADY MHD OSCILLATING FLOW WITH GENERAL
FREE STREAM VELOCITY

MUHAMMAD R. MOHYUDDIN

Abstract. Unsteady magnetohydrodynamics viscous problem is solved
by Laplace transform technique when fluid at lower plate is oscillating in
time and fluid at infinity is assumed as general free stream velocity. Some
special cases with their physical significance are also discussed and are
compared with already known results.
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1. Introduction

Fluid Mechanics has fascinated many generations of scientists and engi-
neers. Although many years of research have been devoted to the study of
fluids of low molecular weight, which are well described by the Navier-Stokes
equations [1, 2], many challenging problems in both theory and applications
remain. The motion of any fluid is described by the equations of conserva-
tion of mass, momentum, and energy. Physically, the equation of continuity
states that within a small fixed volume there can be no net rate of addition of
mass. The equation of momentum describes that the mass-time-acceleration
of a fluid element equals the sum of the pressure, viscous, and gravitational
forces acting on the element, and the energy equation interprets that the tem-
perature of a fluid element changes as it moves along with the fluid because
of heat conduction and heat production by viscous heating [3, 4]. In general,
these three governing equations are used to describe the flow behaviour but
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there are few situations under which the energy equation is not important.
For example, in sufficiently slow flows, viscous heating is not essential.

Also in our analysis, we use the equations for incompressible Newtonian fluid
under isothermal conditions. For such flow, the continuity and the momentum
equations are enough to describe the flow behaviour. These are four partial
differential equations for the four unknowns; pressure and three components
of velocity. Extensive experimental testing has shown that these equations
describe the incompressible flow of Newtonian fluids exactly. Analytical so-
lutions are, not always easy to obtain but there are numerous flow situations
for which the equations are simplified by making assumptions on the velocity
field. In fact the equations are among the most challenging and extensively
studied equations of mathematical physics. As a consequence we have avail-
able numerous treatises giving analytical solutions and solution procedures for
Newtonian fluid mechanics [5, 6].

In most of the problems, the body forces, in the Navier-Stokes equations are
neglected for simplicity and convenience. It is observed theoretically [7− 9]
and experimentally [10] that when magnetohydrodynamics (MHD) forces acts
as the body forces in the flow field phenomena, it controls the boundary layers.
Also MHD is the theory of the macroscopic interaction of electrically conduct-
ing fluids with a magnetic field and it acts perpendicular to the velocity field.
It is significant applications in many engineering problems, geophysics and
astronomy.

In the present work, we discuss the viscous or Newtonian problem of an
unsteady MHD flow past an infinite oscillating porous plate at y = 0 with the
velocity U0e

(β−iω)t and at y = ∞ with the general free stream velocity f1(t).
The Laplace transform technique has been used to find the exact solution of
the problem. Graphs are also sketched for the special cases.

2. Formulation of the equations

According to Stokes the constitutive equation for the Newtonian fluid is:

Υij = −pδij + ΛDkkδij + 2µDij (1)

Where Λ is the bulk viscosity, µ is the dynamic viscosity, δij is the Kroneker
delta and

Dij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
(2)

is the strain tensor. Stoke assumed that Λ = −2
3µ, so that pure volumetric

change does not affect the stress (trΥij is independent of trDij). Furthermore,
the terms ΛDkkδij can be absorbed in the pressure term. This leads to the
familiar constitutive equation for Newtonian fluid:

Υij = −pδij + 2µDij . (3)
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Using the constitutive equation in the balance of linear momentum and con-
sidering only the fact that the fluid can undergo only isochoric motion, we
obtain

∂vi

∂xi
= 0, (4)

ρ

(
∂vi

∂t
+ vj

∂vi

∂xj

)
= ρgi − ∂p

∂xi
+ µ

∂2vi

∂xj∂xj
, (5)

where vi, p, and ρ are velocity vector, pressure, and density respectively.

3. Solution of the problem

Let us assume the x−axis parallel to the oscillating porous plate and the
y−axis perpendicular to it and also that the fluid initially is at rest. The
velocity field thus becomes

vi = [u (y, t) , V0, 0] (6)

where u(y, t) is the velocity of the fluid in the x-direction, V0 < 0 is the suction
velocity, and V0 > 0 is the blowing velocity. For t > 0 the flat plate is moved
periodically with the following velocity

u(0, t) = U(t) = U0 e(β−iω)t, ( ω > 0, t > 0, β = const. 6= 0), (7)

where ω is the oscillating frequency of the plate at y = 0. We also consider
that the fluid is electrically conducting and there is transversal magnetic field
in the flow region. It is also assumed that the magnetic field is perpendicular
to the velocity field and that there is no imposed external electric field such
that the magnetic Reynolds number is small [7, 8]. Therefore, the body forces
are replaced by MHD forces and we obtain from Maxwell’s equations [7, 8]

J×B = −σB2
0V, (8)

where σ is the electrical conductivity, J is the electric current density and B is
the total magnetic field in which induced magnetic field is neglected compared
to the applied external magnetic field [7, 8]. Inserting equations (6) and (8)
into (5) we obtain the following partial differential equation

∂2u

∂y∂t
+ V0

∂2u

∂y2
− ν

∂3u

∂y3
+ n

∂u

∂y
= 0. (9)

Integrating with respect to y



134 Muhammad R. Mohyuddin

∂u

∂t
+ V0

∂u

∂y
− ν

∂2u

∂y2
+ nu = c (t) . (10)

where c (t) is integration constant and

n =
σB2

0

ρ
, ν =

µ

ρ
(11)

are MHD parameter and kinematic viscosity respectively.
Suppose at y →∞, u(y, t) → f1(t). This implies from (10) that

c (t) =
∂f1

∂t
+ nf1 (t) . (12)

Using the value of c (t) from (12) in (10) we obtain

∂u

∂t
+ V0

∂u

∂y
=

∂f1

∂t
− n (u− f1) + ν

∂2u

∂y2
, (13)

where f1(t) is the free stream velocity.
The boundary and initial conditions for the problem are given by

u (0, t) = U0e
(β−iω)t, (14)

u (∞, t) = f1 (t) ,

u (y, 0) = 0,

where U0 is the reference velocity.
Applying the Laplace transform to (13) and (14) and using initial condition,

we obtain

d2ū

dy2
− V0

ν

du

dy
− n + s

ν
u = −n + s

ν
F1 (s) , (15)

u (0, s) =
U0

s− (β − iω)
, (16)

u (∞, s) = F1 (s) .

The solution of (15), after applying the boundary conditions (16), is given
by

u (y, s) =
U0

s− (β − iω)
e

1
2ν

h
V0−

√
V 2
0 +4ν(n+s)

i
y (17)

+F1 (s)
[
1− e

1
2ν

h
V0−

√
V 2
0 +4ν(n+s)

i
y
]

.
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The Laplace inversion of (17) is obtained by applying convolution theorem
and is given as

u (y, t) =
U0

2
e

y
2ν

V0+(β−iω)t (18)

×




e
y
2ν

√
V 2
0 +4ν[n+(β−iω)]

×erfc
{

y

2
√

νt
+

√
V 2

0 + 4ν [n + (β − iω)]
√

t
4ν

}

+e−
y
2ν

√
V 2
0 +4ν[n+(β−iω)]

×erfc
{

y

2
√

νt
−

√
V 2

0 + 4ν [n + (β − iω)]
√

t
4ν

}




+f1 (t)− y

4
√

π
e

V0
2ν

y

∫ t
a

0
f1 (t− aτ) τ

−3
2 e−bτ− y2

16τ dτ,

where

a =
4
ν

, b =
V 2

0

ν2
+

4n

ν
.

We now discuss some specific cases in order to understand some physical
aspects of the solution (18).

3.1. f1 (t) = 0. which means that the general free stream velocity f1(t) van-
ishes far from the plate (i.e. y →∞). The solution in this case is given as

u (y, t) =
U0

2
e

y
2ν

V0+(β−iω)t (19)

×




e
y
2ν

√
V 2
0 +4ν[n+(β−iω)]

×erfc
{

y

2
√

νt
+

√
V 2

0 + 4ν [n + (β − iω)]
√

t
4ν

}

+e−
y
2ν

√
V 2
0 +4ν[n+(β−iω)]

×erfc
{

y

2
√

νt
−

√
V 2

0 + 4ν [n + (β − iω)]
√

t
4ν

}




.

In order to see the effects of suction/blowing, amplitude, and the MHD, we
first non-dimensionalize (19) and then make some graphs so that we can have
some physical phenomena. Introducing

η =
√

ω

2v
y, c =

β

ω
, d =

V0

2
√

vω
, τ = ωt, f =

u

U0
, α =

n

ω
(20)
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into (19) we obtain the non-dimensional form as follows

f (η, τ) =
1
2
e
√

2dη+(c−i)τ (21)

×

 e

√
2η
√

d2+α+c−ierfc
{

η√
2τ

+
√

d2 + α + c− i
√

τ
}

+e−
√

2η
√

d2+α+c−ierfc
{

η√
2τ
−√d2 + α + c− i

√
τ
}


 .

In order to see the physical behaviour of equation (21) we have made graphs
in Figs. 1-4.

Discussion on graphs Figs. 1− 4 are plotted for non-dimentional veloc-
ity f against non-dimentional variable η. In Figs. 1 − 4 we have shown the
effects of suction/blowing, acceleration/deceleration and MHD. In Fig. 1 the
suction/blowing parameter d = V0

2
√

vω
is given values −2,−1, 0, 0.5, 1 whereas

acceleration/deceleration parameter c = β
ω is fixed to zero and MHD param-

eter α is fixed at 0.1. It is observed from Fig. 1 that in the caseof suction
(d = −2,−1) the boundary layer thickness decreases and hence the velocity
increases whereas in the case of blowing (d = 0.5, 1) the boundary layer thick-
ness becomeslarge as it is expected physically. The case d = α = 0 refers to the
classical viscous case. In Fig. 2 similar observations are obtained as in Fig.1
except with the difference that MHD parameter α is increased to 0.5 and it
is noted that with this increase the boundary layer thickness is controlled i.e.
it decreases with increase in α. In Fig. 3 the velocity amplitude is discussed
for (c = −0.6,−0.5,−0.4, 0, 0.5, d = 0, α = 0.1) . It is clear from Fig. 3 that
the amplitude increases in the case of deceleration (c = −0.6,−0.5,−0.4) and
decreases for acceleration (c = 0.5) . Again the case c = α = 0 gives the classi-
cal viscous case. Fig. 4 also shows the similar results as Fig. 3 only with the
difference that the MHD parameter is increased to 0.2 and with this difference
the boundarylayer thickness is decreased, and which is in agreement to the
experimental results
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(see for instance, the refs. [7− 10]).

3.2. f1 (t) = 0, n = V0 = β = 0. Under these assumptions the solution reduces
to the Stokes second problem. Because far from the plate when t → ∞, we
have

erfc

{
y

2
√

νt
+

√
V 2

0 + 4ν [n + (β − iω)]

√
t

4ν

}
→ 0 (22)

erfc

{
y

2
√

νt
−

√
V 2

0 + 4ν [n + (β − iω)]

√
t

4ν

}
→ 2 (23)

and we get the following solution [2]

u (y, t) = U0e
−iωte−

y
2ν

√−iω. (24)

The dimensionless form of (24) is given as

fs (η, τ) = e−iτeη(1−i). (25)
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3.3. Constant free stream velocity f1 (t) = U0. The solution when the
free stream velocity is of magnitude U0, is given by

u (y, t) =
U0

2
e

y
2ν

V0+(β−iω)t (26)

×




e
y
2ν

√
V 2
0 +4ν[n+(β−iω)]

×erfc
{

y

2
√

νt
+

√
V 2

0 + 4ν [n + (β − iω)]
√

t
4ν

}

+e
−y
2ν

√
V 2
0 +4ν[n+(β−iω)]

×erfc
{

y

2
√

νt
−

√
V 2

0 + 4ν [n + (β − iω)]
√

t
4ν

}




+U0

[
1− y

2
√

νπt3
e

y
2ν

V0−
�

V 2
0

4ν
+n

�
t− y2

4νt

]

The non-dimensional form of (23) is

f (η, τ) =
1
2
e
√

2dη+(c−i)τ (27)

×

 e

√
2η
√

d2+α+c−ierfc
{

η√
2τ

+
√

d2 + α + c− i
√

τ
}

+e−
√

2η
√

d2+α+c−ierfc
{

η√
2τ
−√d2 + α + c− i

√
τ
}




+1− η√
2πτ3

e
√

2dη−(d2+α)τ−η2/2τ .

In order to see the physical behaviour of equation (27) we have plotted graphs
in Figs. 5− 8 for non-dimentional velocity f against non-dimentional variable
η.
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The effects of suction/blowing, acceleration/deceleration and MHD are the
same as in section 3.1, except that the range of the velocity is increased from
1 to 2 and that the velocity is strictly positive.

3.4. f1 (t) = 0, α = n
ω = 0. The non-dimensional solution in this case is given

by

f (η, τ) =
1
2
e
√

2dη+(c−i)τ (28)

×

 e

√
2η
√

d2+c−ierfc
{

η√
2τ

+
√

d2 + c− i
√

τ
}

+e−
√

2η
√

d2+c−ierfc
{

η√
2τ
−√d2 + c− i

√
τ
}


 .

The solution (25) is in agreement to the solution given in [11].
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4. Conclusion

We have solved unsteady viscous problem when plate at y = 0 is oscillating
in time with amplitude β and plate at y = ∞ is general free stream velocity
f1 (t). A uniform magnetic field is applied perpendicular to the velocity field.
The general free stream velocity is discussed in different situations and their
results are explained with physical implications.
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