VERTEX-MAGIC TOTAL LABELINGS OF DISCONNECTED GRAPHS

SLAMIN 1,2, A.C. PRIHANDOKO ${ }^{1}$, T.B. SETIAWAN ${ }^{1}$, F. ROSITA ${ }^{1}$, B. SHALEH ${ }^{1}$

Abstract. Let G be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$ and let $e=|E(G)|$ and $v=|V(G)|$. A one-to-one map λ from $V \cup E$ onto the integers $\{1,2, \ldots, v+e\}$ is called vertex magic total labeling if there is a constant k so that for every vertex x,

$$
\lambda(x)+\sum \lambda(x y)=k
$$

where the sum is over all vertices y adjacent to x. Let us call the sum of labels at vertex x the weight $w_{\lambda}(x)$ of the vertex under labeling λ; we require $w_{\lambda}(x)=k$ for all x. The constant k is called the magic constant for λ.

In this paper, we present the vertex magic total labelings of disconnected graph, in particular, two copies of isomorphic generalized Petersen graphs $2 P(n, m)$, disjoint union of two non-isomorphic suns $S_{m} \cup S_{n}$ and t copies of isomorphic suns $t S_{n}$.

Key words : Vertex magic total labeling, disconnected graph, generalized Petersen graph, sun.
AMS SUBJECT: 05C78.

1. Introduction

In this paper all graphs are finite, simple and undirected. The graph G has vertex set $V=V(G)$ and edge set $E=E(G)$ and we let $e=|E(G)|$ and $v=|V(G)|$. A general reference for graph theoretic notions is [10].

MacDougall et al. [6] introduced the notion of a vertex-magic total labeling. This is an assignment of the integers from 1 to $v+e$ to the vertices and edges of G so that at each vertex the vertex label and the labels on the edges incident at that vertex add to a fixed constant. More formally, a one-to-one map λ

[^0]from $V \cup E$ onto the integers $\{1,2, \ldots, v+e\}$ is a vertex-magic total labeling if there is a constant k so that for every vertex x,
\[

$$
\begin{equation*}
\lambda(x)+\sum \lambda(x y)=k \tag{1}
\end{equation*}
$$

\]

where the sum is over all vertices y adjacent to x. Let us call the sum of labels at vertex x the weight of the vertex; we require $w(x)=k$ for all x. The constant k is called the magic constant for λ.

If a regular graph G possesses a vertex-magic total labeling, we can create a new labeling λ^{\prime} from λ by setting

$$
\lambda^{\prime}(x)=v+e+1-\lambda(x)
$$

for every vertex x, and

$$
\lambda^{\prime}(x y)=v+e+1-\lambda(x y)
$$

for every edge $x y$. Clearly, λ^{\prime} is also a one-to-one map from the set $V \cup E$ to $\{1,2, \ldots, v+e\}$ and we will call λ^{\prime} the dual of λ. If r is the degree of each vertex of G, then

$$
\begin{equation*}
k^{\prime}=(r+1)(v+e+1)-k \tag{2}
\end{equation*}
$$

is the new magic constant.
Since the introduction of this notion, there have been several results on vertex magic total labeling of particular classes of graphs. For example, MacDougall et al. [6] proved that cycle C_{n} for $n \geq 3$, path P_{n} for $n \geq 2$, complete graph K_{n} for odd n, complete bipartite graph $K_{n, n}$ for $n>1$, have vertex magic total labelings. Bača, Miller and Slamin [1] proved that for $n \geq 3,1 \leq m \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, every generalized Petersen graph $P(n, m)$ has a vertex-magic total labeling with the magic constant $k=9 n+2, k=10 n+2$, and $k=11 n+2$. The complete survey of the known results on vertex magic total labeling of graphs can be found in [4].

Most of the known results are concerning on vertex magic total labeling of connected graphs. For the case of disconnected graph, Wallis [8] proved the following theorem.

Theorem 1. Suppose G is regular graph of degree r which has a vertex magic total labeling.
(i) If r is even, then $t G$ is vertex magic whenever t is an odd positive integer.
(ii) If r is odd, then $t G$ is vertex magic for every positive integer t.

The result above concerns on vertex-magic total labeling of disconnected graph whose components are regular and isomorphic graphs. For the case of disconnected graph whose components are not regular graphs, Gray et al. [5] proved that t copies of stars on 3 vertices $t K_{1,2}$ has a vertex magic total labeling. In this paper, we present the vertex magic total labelings of two copies of isomorphic generalized Petersen graphs $2 P(n, m)$, disjoint union of two nonisomorphic suns $S_{m} \cup S_{n}$ as well as t copies of isomorphic suns $t S_{n}$.

The generalized Petersen graph $P(n, m), n \geq 3$ and $1 \leq m \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, consists of an outer n-cycle $u_{0} u_{1} \ldots u_{n-1}$, a set of n spokes $u_{i} v_{i}, 0 \leq i \leq n-1$, and n inner edges $v_{i} v_{i+m}$ with indices taken modulo n. The standard Petersen graph is the instance $P(5,2)$. Generalized Petersen graphs were first defined by Watkins [9]. The t copies of generalized Petersen graphs, denoted by $t P(n, m)$, has vertex set $V(t P(n, m))=\left\{u_{i}^{j} \mid 0 \leq i \leq n-1,1 \leq j \leq t\right\} \cup\left\{v_{i}^{j} \mid 0 \leq i \leq\right.$ $n-1,1 \leq j \leq t\}$ and edge set $E(t P(n, m))=\left\{u_{i}^{j} v_{i}^{j} \mid 0 \leq i \leq n-1,1 \leq j \leq\right.$ $t\} \cup\left\{v_{i}^{j} v_{i+m}^{j} \mid 0 \leq i \leq n-1,1 \leq j \leq t\right\}$.

A sun S_{n} is a cycle C_{n} with an edge terminating in a vertex of degree 1 attached to each vertex. The sun S_{n} consists of vertex set $V\left(S_{n}\right)=\left\{v_{i} \mid 1 \leq i \leq\right.$ $n\} \cup\left\{a_{i} \mid 1 \leq i \leq n\right\}$ and edge set $E\left(S_{n}\right)=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq n\right\} \cup\left\{v_{i} a_{i} \mid 1 \leq\right.$ $i \leq n\}$. We note that if $i=n$ then $i+1=1$. The t copies of suns, denoted by $t S_{n}$, has vertex set $V\left(t S_{n}\right)=\left\{v_{i}^{j} \mid 1 \leq i \leq n, 1 \leq j \leq t\right\} \cup\left\{a_{i}^{j} \mid 1 \leq\right.$ $i \leq n, 1 \leq j \leq t\}$ and edge set $E\left(t S_{n}\right)=\left\{v_{i}^{j} v_{i+1}^{j} \mid 1 \leq i \leq n, 1 \leq j \leq\right.$ $t\} \cup\left\{v_{i}^{j} a_{i}^{j} \mid 1 \leq i \leq n, 1 \leq j \leq t\right\}$. Thus $t S_{n}$ has $2 n t$ vertices and $2 n t$ edges.

2. Main Results

We start this section with a construction of vertex magic total labeling of 2 copies of generalized Petersen graphs as a consequence of the Theorem 1 as stated in the previous section.

Corollary 1. For $n \geq 3,1 \leq m \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, the 2 copies generalized Petersen graphs $2 P(n, m)$ has a vertex-magic total labeling with the magic constant $k=19 n+2$.

Proof. Label the first graph of $2 P(n, m)$ according to the labeling of $P(n, m)$ given by Baca, Miller and Slamin [1]. Continue to label the second graph of $2 P(n, m)$ by adding each label with $5 n$ (the labels are $\{5 n+1,5 n+2, \ldots, 10 n\}$). Interchange the correspondence edge labels of the outer cycle as well as the inner cycle in the first graph with the ones in the second graph of $2 P(n, m)$.

This way gives the labeling of $2 P(n, m)$ as described in the following formula.

$$
\begin{aligned}
\lambda\left(u_{i}^{j}\right)= & (4 n+1) \alpha(i, 0)+(5 n+1-i) \alpha(1, i)+(j-1) 5 n \\
\lambda\left(v_{i}^{j}\right)= & (2 n+m-i) \alpha(i, m-1)+(3 n+m-i) \alpha(m, i) \\
& +(j-1) 5 n \\
\lambda\left(u_{i}^{j} u_{i+1}^{j}\right)= & 1+i+(2-j) 5 n \\
\lambda\left(u_{i}^{j} v_{i}^{j}\right)= & 4 n-i+(j-1) 5 n \\
\lambda\left(v_{i}^{j} v_{i+m}^{j}\right)= & n+1+i+(2-j) 5 n
\end{aligned}
$$

for $i \in Z_{n}$ and $j=1,2$, where

$$
\alpha(x, y)= \begin{cases}1 & \text { if } x \leq y \\ 0 & \text { if } x>y\end{cases}
$$

It is simple to verify that the labeling λ is a bijection from the set $V(2 P(n, m)) \cup$ $E(2 P(n, m))$ onto the set $\{1,2, \ldots, 10 n\}$.

Let us denote the weights (under labeling λ) of vertices u_{i}^{j} of $2 P(n, m)$ by

$$
w_{\lambda}\left(u_{i}^{j}\right)=\lambda\left(u_{i}^{j}\right)+\lambda\left(u_{i}^{j} u_{i+1}^{j}\right)+\lambda\left(u_{i}^{j} v_{i}^{j}\right)+\lambda\left(u_{i-1}^{j} u_{i}^{j}\right)
$$

and the weights of vertices v_{i}^{j} by

$$
w_{\lambda}\left(v_{i}^{j}\right)=\lambda\left(v_{i}^{j}\right)+\lambda\left(v_{i}^{j} v_{i+m}^{j}\right)+\lambda\left(u_{i}^{j} v_{i}^{j}\right)+\lambda\left(v_{n+i-m}^{j} v_{i}^{j}\right)
$$

for $j=1,2$ and $i \in Z_{n}$, where all indices are taken modulo n.
It is clearly true that $w_{\lambda}\left(u_{i}^{j}\right)=19 n+2$ and $w_{\lambda}\left(v_{i}^{j}\right)=19 n+2$ for all $j=1,2$ and $i \in Z_{n}$. Consequently, λ is the vertex-magic total labeling of $2 P(n, m)$ with the magic constant $k=19 n+2$.

Figure 1 shows an example of vertex-magic total labeling of 2 copies of generalized Petersen graphs $2 P(6,2)$ with the magic constant $k=116$.

By duality, we have the following corollary.
Corollary 2. For $n \geq 3,1 \leq m \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, the 2 copies of generalized Petersen graphs $2 P(n, m)$ has a vertex-magic total labeling with the magic constant $k=21 n+2$.

The results above concern on vertex-magic total labeling of disconnected graph whose components are regular and isomorphic graphs. The following theorem presents vertex-magic total labeling of disconnected graph whose components are non-regular and non-isomorphic graphs.

Figure 1. Vertex-magic total labeling of $2 P(6,2)$ with $k=116$

Theorem 2. For $m \geq 3$ and $n \geq 3$, the disjoint union of two suns $S_{m} \cup S_{n}$ has a vertex-magic total labeling with the magic constant $k=6(m+n)+1$.

Proof. For any positive integer $m, n \geq 3$, label the vertices and edges of the first sun S_{m} in the following way:

$$
\begin{aligned}
\lambda\left(v_{i}^{1}\right) & =2 i \\
\lambda\left(v_{i}^{1} v_{i+1}^{1}\right) & = \begin{cases}2(m+n-i)+1 & \text { for } i=1,2, \ldots, m \\
2 n+1 & \text { for } i=1,2, \ldots, m-1\end{cases} \\
\lambda\left(a_{i}^{1}\right) & = \begin{cases}2(m+2 n+1) & \text { for } i=m \\
4(m+n+1)-2 i & \text { for } i=2,3, \ldots, m\end{cases} \\
\lambda\left(v_{i}^{1} a_{i}^{1}\right) & = \begin{cases}2(2 m+n)-1 & \text { for } i=1 \\
2(m+n+i)-3 & \text { for } i=2,3, \ldots, m\end{cases}
\end{aligned}
$$

Then label the vertices and edges of the second sun S_{n} for $n \geq 3$ in the following way:

$$
\begin{aligned}
\lambda\left(v_{j}^{2}\right) & =2(m+j) \\
\lambda\left(v_{j}^{2} v_{j+1}^{2}\right) & = \begin{cases}2(n-j)+1 & \text { for } j=1,2, \ldots, n \\
1 & \text { for } j=1,2, \ldots, n-1\end{cases} \\
\lambda\left(a_{j}^{2}\right) & = \begin{cases}2(m+n+1) & \text { for } j=n \\
2(m+2 n-j+2) & \text { for } j=1\end{cases} \\
\lambda\left(v_{j}^{2} a_{j}^{2}\right) & = \begin{cases}4(m+n)-1 & \text { for } j=1 \\
2(2 m+n+j)-3 & \text { for } j=2,3, \ldots, n\end{cases}
\end{aligned}
$$

It is easy to verify that the labeling λ is a bijection from the set $V\left(S_{m} \cup S_{n}\right) \cup$ $E\left(S_{m} \cup S_{n}\right)$ onto the set $\{1,2, \ldots, 4(m+n)\}$.

Let us denote the weights (under labeling λ) of vertices v_{i}^{1} of $S_{m} \cup S_{n}$ by

$$
w_{\lambda}\left(v_{i}^{1}\right)=\lambda\left(v_{i}^{1}\right)+\lambda\left(v_{i}^{1} v_{i+1}^{1}\right)+\lambda\left(v_{i}^{1} a_{i}^{1}\right)+\lambda\left(v_{i-1}^{1} v_{i}^{1}\right)
$$

the weights of vertices a_{i}^{1} by

$$
w_{\lambda}\left(a_{i}^{1}\right)=\lambda\left(a_{i}^{1}\right)+\lambda\left(v_{i}^{1} a_{i}^{1}\right)
$$

the weights of vertices v_{j}^{2} by

$$
w_{\lambda}\left(v_{j}^{2}\right)=\lambda\left(v_{j}^{2}\right)+\lambda\left(v_{j}^{1} v_{j+1}^{2}\right)+\lambda\left(v_{j}^{2} a_{j}^{2}\right)+\lambda\left(v_{j-1}^{2} v_{j}^{2}\right)
$$

and the weights of vertices a_{j}^{2} by

$$
w_{\lambda}\left(a_{j}^{2}\right)=\lambda\left(a_{j}^{2}\right)+\lambda\left(v_{j}^{2} a_{j}^{2}\right)
$$

It is clearly true that $w_{\lambda}\left(v_{i}^{1}\right)=6(m+n)+1, w_{\lambda}\left(a_{i}^{1}\right)=6(m+n)+1, w_{\lambda}\left(v_{j}^{2}\right)=$ $6(m+n)+1$ and $w_{\lambda}\left(a_{j}^{2}\right)=6(m+n)+1$, for all $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$. Thus λ is the vertex-magic total labeling of $S_{m} \cup S_{n}$ for any positive integer $m, n \geq 3$ with the magic constant $k=6(m+n)+1$.

Figure 2 shows an example of vertex-magic total labeling of $S_{4} \cup S_{6}$ with the magic constant $k=61$.

Figure 2. Vertex-magic total labeling of $S_{4} \cup S_{6}$ with $k=61$

We note that if $m=n$, then S_{m} is isomorphic to S_{n}. In this case Theorem 2 shows the vertex magic total labeling of 2 copies of isomorphic suns. General result on the vertex magic total labeling of t copies of isomorphic suns, for any integer $t \geq 1$, is given below.

Theorem 3. For $n \geq 3$ and $t \geq 1$, the t copies of sun $t S_{n}$ has a vertex-magic total labeling with the magic constant $k=6 n t+1$.

Proof. For all $j=1,2, \ldots, t$, label vertices and edges of $t S_{n}$ in the following way:

$$
\begin{aligned}
\lambda\left(v_{i}^{j}\right) & =2 n(j-1)+2 i \\
\lambda\left(v_{i}^{j} v_{i+1}^{j}\right) & = \begin{cases}2 n t-2 n(j-1)-2 i+1 & \text { for } i=1,2, \ldots, n \\
2 n t-2 n j+1 & \text { for } i=1,2, \ldots, n-1\end{cases} \\
\lambda\left(a_{i}^{j}\right) & = \begin{cases}4 n t-2 n(j-1)-2(n-1) & \text { for } i=1 \\
4 n t-2 n(j-1)-2(i-2) & \text { for } i=2,3, \ldots, n\end{cases} \\
\lambda\left(v_{i}^{j} a_{i}^{j}\right) & = \begin{cases}2 n t+2 n j-1 & \text { for } i=1 \\
2 n t+2 n(j-1)+2 i-3 & \text { for } i=2,3, \ldots, n\end{cases}
\end{aligned}
$$

It is easy to verify that the labeling λ is a bijection from the set $V\left(t S_{n}\right) \cup E\left(t S_{n}\right)$ onto the set $\{1,2, \ldots, 4 n t\}$.

Let us denote the weights (under labeling λ) of vertices v_{i}^{j} of $t S_{n}$ by

$$
w_{\lambda}\left(v_{i}^{j}\right)=\lambda\left(v_{i}^{j}\right)+\lambda\left(v_{i}^{j} v_{i+1}^{j}\right)+\lambda\left(v_{i}^{j} a_{i}^{j}\right)+\lambda\left(v_{i-1}^{j} v_{i}^{j}\right)
$$

and the weights of vertices a_{i}^{j} by

$$
w_{\lambda}\left(a_{i}^{j}\right)=\lambda\left(a_{i}^{j}\right)+\lambda\left(v_{i}^{j} a_{i}^{j}\right)
$$

Then, for all $j=1,2, \ldots, t$, the weights of vertices v_{i}^{j} can be determined as follows:

- for $i=1$

$$
\begin{aligned}
w_{\lambda}\left(v_{1}^{j}\right)= & (2 n(j-1)+2)+(2 n t-2 n(j-1)-2+1)+ \\
& (2 n t+2 n j-1)+(2 n t-2 n j+1) \\
= & (2 n j-2 n+2)+(2 n t-2 n j+2 n-1)+ \\
& (2 n t+2 n j-1)+(2 n t-2 n j+1) \\
= & 6 n t+1
\end{aligned}
$$

- for $i=2,3, \ldots, n-1$

$$
\begin{aligned}
w_{\lambda}\left(v_{i}^{j}\right)= & (2 n(j-1)+2 i)+(2 n t-2 n(j-1)-2 i+1)+ \\
& (2 n t+2 n(j-1)+2 i-3)+(2 n t-2 n(j-1)-2(i-1)+1) \\
= & (2 n j-2 n+2 i)+(2 n t-2 n j+2 n-2 i+1)+ \\
& (2 n t+2 n j-2 n+2 i-3)+(2 n t-2 n j+2 n-2 i+2+1) \\
= & 6 n t+1 .
\end{aligned}
$$

- for $i=n$

$$
\begin{aligned}
w_{\lambda}\left(v_{n}^{j}\right)= & (2 n(j-1)+2 n)+(2 n t-2 n j+1)+ \\
& (2 n t+2 n(j-1)+2 n-3)+(2 n t-2 n(j-1)-2(n-1)+1) \\
= & (2 n j-2 n+2 n)+(2 n t-2 n j+1)+ \\
& (2 n t+2 n j-2 n+2 n-3)+(2 n t-2 n j+2 n-2 n+2+1) \\
= & 6 n t+1
\end{aligned}
$$

and the weights of vertices a_{i}^{j} can be determined as follows:

- for $i=1$

$$
\begin{aligned}
w_{\lambda}\left(a_{1}^{j}\right) & =(4 n t-2 n(j-1)-2(n-1))+(2 n t+2 n j-1) \\
& =(4 n t-2 n j+2 n-2 n+2)+(2 n t+2 n j-1) \\
& =6 n t+1 .
\end{aligned}
$$

- for $i=2,3, \ldots, n$

$$
\begin{aligned}
w_{\lambda}\left(a_{i}^{j}\right) & =(4 n t-2 n(j-1)-2(i-2))+(2 n t+2 n(j-1)+2 i-3) \\
& =(4 n t-2 n j+2 n-2 i+4)+(2 n t+2 n j-2 n+2 i-3) \\
& =6 n t+1
\end{aligned}
$$

Since $w_{\lambda}\left(v_{i}^{j}\right)=6 n t+1$ and $w_{\lambda}\left(a_{i}^{j}\right)=6 n t+1$ for all $i=1,2, \ldots, n$ and $j=1,2, \ldots, t$, then λ is the vertex-magic total labeling of $t S_{n}$ with the magic constant $k=6 n t+1$.

Figure 3 shows an example of vertex-magic total labeling of 3 copies of S_{5} with the magic constant $k=91$.

Figure 3. Vertex-magic total labeling of $3 S_{5}$ with $k=91$

Unlike labeling of a regular graph which always has dual, the vertex magic total labeling of t copies of suns $t S_{n}$ does not have dual as $t S_{n}$ is not regular.

3. Conclusion

We conclude this paper with a conjecture and an open problem for the direction of further research in this area.

Corollary 1 and 2 provide construction of vertex-magic total labeling of disjoint union of two isomorphic generalized Petersen graphs. For the case of nonisomorphic, it is not known. So we pose the following open problem.

Open problem 1. Find a vertex-magic total labeling of the disjoint union of two non-isomorphic generalized Petersen graphs

Theorem 3 gives the vertex magic total labeling of t copies of suns $t S_{n}$ where all components are isomorphic. For the case where the components are not isomorphic, the labeling is given in Theorem 2. However, the labeling holds only for 2 non-isomorphic suns. It is possible to extend the labeling to the disjoint union of t non-isomorphic suns for any integer $t \geq 3$. The labeling of $S_{4} \cup S_{5} \cup S_{6}$ shown in Figure 4 is an evidence that such labeling exists. Thus we present a conjecture as follows.

Conjecture 1. There is a vertex-magic total labeling of the disjoint union of t non-isomorphic suns, for any positive integer $t \geq 3$.

Figure 4. Vertex-magic total labeling of $S_{4} \cup S_{5} \cup S_{6}$ with $k=91$

References

[1] M. Bača, M. Miller and Slamin, Vertex-magic total labelings of generalized Petersen graphs, Int. J. of Computer Mathematics 79, Issue 12, (2002) pp.1259-1264.
[2] R. Bodendiek and G. Walther, On number theoretical methods in graph labelings, Res. Exp. Math. 21 (1995) 3-25.
[3] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston-San DiegoNew York-London, 1990.
[4] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 5 (2005) \#DS6.
[5] I.D. Gray, J. MacDougall, J.P. McSorley and W.D. Wallis, Vertex-magic labeling of trees and forests, Discrete Mathematics 261 (2003) 285-298
[6] J. MacDougall, M. Miller, Slamin and W. D. Wallis, Vertex-magic total labelings, Utilitas Math., 61 (2002) 3-21
[7] Slamin and M. Miller, On two conjectures concerning vertex-magic total labelings of generalized Petersen graphs, Bulletin of ICA, 32 (2001) 9-16.
[8] W. D. Wallis, Magic Graph, Birkhäuser, (2001).
[9] M. E. Watkins, A Theorem on Tait Colorings with an Application to the Generalized Petersen Graphs, J. Combin. Theory 6 (1969) 152-164.
[10] D. B. West, An Introduction to Graph Theory, Prentice-Hall, (1996).

[^0]: ${ }^{1}$ Mathematics Education Study Program, FKIP, Universitas Jember, Jalan Kalimantan 37 Jember 68121 Indonesia, Emails: slamin@unej.ac.id, antoniuscp@fkip.unej.ac.id, totobara@fkip.unej.ac.id.
 ${ }^{2}$ Visiting Professor at School of Mathematical Sciences, GC University, 68-B New Muslim Town, Lahore, Pakistan.

