NEW SUBCLASS OF STARLIKE FUNCTIONS OF COMPLEX ORDER

YASAR POLATOĜLU, H. ESRA ÖZKAN

Abstract

The aim of the present paper is to investigate a new subclass of starlike functions of complex order, $b \neq 0$. Let $f(z)=z+a_{2} z^{2}+\ldots$ be an analytic function in the unit disc $D=\{z| | z \mid<1\}$ which satisfies $1+\frac{1}{b}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=\frac{1+A \omega(z)}{1+B \omega(z)}$, for some $\omega \in \Omega$ and for all $z \in D$. Then f is called a Janowski starlike function of complex order b , where A and B are complex numbers such that $\operatorname{Re}(1-A \bar{B}) \geq|A-B|, \operatorname{im}(1-$ $A \bar{B})<|A-B|,|B|<1$, and $\omega(z)$ is a Schwarz function in the unit disc D [1], [10], [12]. The class of these functions is denoted by $S^{*}(A, B, b)$.

In this paper we will give the representation theorem, distortion theorem, two point distortion theorem, Koebe domain under the montel normalization, and coefficient inequality for this class.

Key words : Starlike, distortion, Koebe, Montel normalization, coefficient. AMS SUBJECT: 30C45

1. Introduction

Let Ω be the family of functions $\omega(z)$ regular in the unit disc $D=\{z| | z \mid<1\}$ and satisfying the conditions $\omega(0)=0,|\omega(z)|<1$ for $z \in D$.

Next, for arbitrary fixed complex numbers A and B such that $\operatorname{Re}(1-A \bar{B}) \geq$ $|A-B|, \operatorname{im}(1-A \bar{B})<|A-B|$ and $|B|<1$, denote by $P_{C}(A, B)$ the family of functions

$$
\begin{equation*}
p(z)=1+b_{1} z+\ldots \tag{1}
\end{equation*}
$$

regular in D such that $p(z)$ is in $P_{C}(A, B)$ if and only if

$$
p(z)=\frac{1+A \omega(z)}{1+B \omega(z)}
$$

for some function $\omega(z) \in \Omega$ and every $z \in D$.

[^0]Moreover, let $S^{*}(A, B, b)$ denote the family of functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\ldots \tag{2}
\end{equation*}
$$

regular in D and such that $\mathrm{f}(\mathrm{z})$ is in $S^{*}(A, B, b)$ if and only if

$$
\begin{equation*}
1+\frac{1}{b}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=p(z) \tag{3}
\end{equation*}
$$

for some $\mathrm{p}(\mathrm{z})$ in $P_{C}(A, B)$ and all z in D .
Let f and F be analytic in the unit disc D . The function f is subordinate to F, written $\mathrm{f} \prec F$, ifF is univalent, $f(0)=F(0)$, and $f(U) \subset F(U)$.

The following lemma is due to I. S. Jack's [2] and plays a very important role in our proofs.
Lemma 1.1. Let $\omega(z)$ be regular in the unit disc with $\omega(0)=0$. Then if $|\omega(z)|$ attains its maximum value on the circle $|z|=r$ at the point z_{1}, one has $z_{1} \omega^{\prime}\left(z_{1}\right)=k \omega\left(z_{1}\right)$, for some real $k \geq 1$.

Definition 1.1. The Koebe domain $K(F)$ for a family F of regular functions $f(z)$ in F is the set of all points ω contained in $f(D)$ for every function $f(z)$ in F. In symbols

$$
K(F)=\bigcap_{f(z) \in D} f(D) .
$$

Supposing that the set F is invariant under rotations, so that $e^{i \alpha} f\left(e^{-i \alpha} z\right)$ is in F, are concludes that the Koebe domain will be either the single point $\omega=0$ or an open disc $|\omega|<R$ in which case R is often easy to find. Indeed, supposing that we have a sharp lower bound $M(r)$ for $\left|f\left(r e^{i \theta}\right)\right|$ for all functions in F and F contains only univalent functions, then

$$
R=\lim _{R \rightarrow 1^{-}} M(r)
$$

gives the disc $|\omega|<R$ as the Koebe domain for the set F.
We can also impose a Montel-type normalization. This means that for some fixed $r_{0}, 0<r_{0}<1$, we consider the family of normalized functions $f(z)$ regular and univalent in D with $f(0)=0, f^{\prime}(0)=1, f\left(r_{0}\right)=r_{0}[1]$.

2. Main Results

In this section, we will give new results for the class $S^{*}(A, B, b)$.
Lemma 2.1. The function

$$
\omega= \begin{cases}\frac{b(A-B) z}{1+B z}, & B \neq 0 \\ b A z, & B=0\end{cases}
$$

maps $|z|<r$ onto the disc centred at $\mathrm{C}(\mathrm{r})$, and having radius $\rho(r)$, where

$$
\left\{\begin{array}{lll}
C(r)=\left(\frac{-R e(c \bar{B}) r^{2}}{1-|B|^{2} r^{2}}, \frac{-i m(c \bar{B})}{1-|B|^{2} r^{2}}\right), & \rho(r)=\frac{|c| r}{1-|B|^{2} r^{2}}, & B \neq 0 \\
C(r)=(0,0) & \rho(r)=|A||b| r, & B=0
\end{array}\right.
$$

and $\mathrm{c}=\mathrm{b}(\mathrm{A}-\mathrm{B})$.
Lemma 2.2. The function

$$
\omega= \begin{cases}\frac{1+A z}{1+B z}, & B \neq 0 \\ 1+A z, & B=0\end{cases}
$$

maps $|z|<r$ onto the disc centred at $\mathrm{C}(\mathrm{r})$ and having radius $\rho(r)$ where

$$
\left\{\begin{array}{lll}
C(r)=\left(\frac{1-R e(A B) r^{2}}{1-|B|^{2} r^{2}}, \frac{i m(A B)}{1-|B|^{2} r^{2}}\right), & \rho(r)=\frac{|A-B| r}{1-|B|^{2} r^{2}}, & B \neq 0 \\
C(r)=(1,0), & \rho(r)=|A| r, & B=0
\end{array}\right.
$$

Theorem 2.1. Let $f(z)=z+a_{2} z^{2}+\ldots$ be an analytic function in the unit disc D. If $f(z)$ satisfies the condition

$$
\left(z \frac{f^{\prime}(z)}{f(z)}-1\right) \prec\left\{\begin{array}{ll}
\frac{b(A-B) z}{1+B z}, & B \neq 0 \tag{4}\\
b A z & , \\
B=0
\end{array},\right.
$$

then $f(z) \in S^{*}(A, B, b)$, and this result is sharp on the function

$$
\left\{\begin{array}{lc}
z(1+B z)^{\frac{b(A-B)}{B}}, & B \neq 0 \\
z e^{b A z} & B=0
\end{array}\right.
$$

Proof

We define the function $\omega(z)$ by

$$
\frac{f(z)}{z}=\left\{\begin{array}{lr}
(1+B \omega(z))^{\frac{b(A-B)}{B}} & B \neq 0 ; \tag{5}\\
e^{b A \omega(z)} & B=0,
\end{array}\right.
$$

where $(1+B \omega(z))^{\frac{b(A-B)}{B}}$ and $e^{b A \omega(z)}$ have the value 1 at $\mathrm{z}=0$. Then $\omega(z)$ is analytic and $\omega(0)=0$. If we take the logarithmic derivative of (5) and after brief calculations, we get

$$
z \frac{f^{\prime}(z)}{f(z)}-1 \prec\left\{\begin{array}{ll}
\frac{b(A-B) z \omega^{\prime}(z)}{1+B \omega(z)} & B \neq 0 \tag{6}\\
b A z \omega^{\prime}(z) & B=0
\end{array} .\right.
$$

Now it is easy to realize that the subordination (4) is equivalent to $|\omega(z)|<$ 1 for all $z \in D$. Indeed, assume the contrary: then, there exist a $z_{1} \in D$ such that $\left|\omega\left(z_{1}\right)\right|=1$. So by Lemma 2.1., $z_{1} \omega^{\prime}\left(z_{1}\right)=k \omega\left(z_{1}\right)$ for some $k \geq 1$, and for such $z_{1} \in D$ (by using Lemma 2.1), we have

$$
\left(z_{1} \frac{f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)}-1\right)=\left\{\begin{array}{l}
\frac{b(A-B) k \omega\left(z_{1}\right)}{1+B \omega\left(z_{1}\right)}=F_{1}\left(\omega\left(z_{1}\right)\right) \notin F_{1}(D) \quad, \quad B \neq 0 \tag{7}\\
b A k \omega\left(z_{1}\right)=F_{2}\left(\omega\left(z_{1}\right)\right) \notin F_{2}(D) \quad, \quad B=0 .
\end{array} .\right.
$$

But this contradicts (4); so our assumption is wrong, i. e., $|\omega(z)|<1$ for all $z \in D$. By using condition (6), we get

$$
1+\frac{1}{b}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)= \begin{cases}\frac{1+A \omega(z)}{1+B \omega(z)} & B \neq 0 \tag{8}\\ 1+A \omega(z), & B=0\end{cases}
$$

Sharpness follows from the fact that for

$$
f(z)= \begin{cases}z(1+B z)^{\frac{b(A-B)}{B}}, & B \neq 0 \\ z e^{b A z} & , \quad B=0\end{cases}
$$

one has

$$
1+\frac{1}{b}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=\left\{\begin{array}{lc}
\frac{1+A z}{1+B z}, & B \neq 0 \\
1+A z, & B=0
\end{array}\right.
$$

and then we have $f(z) \in S^{*}(A, B, b)$.
Corollary 2.1. Let $f(z) \in S^{*}(A, B, b)$. Then $\mathrm{f}(\mathrm{z})$ can be written in the form

$$
f_{*}(z)= \begin{cases}z(1+B \omega(z))^{\frac{b(A-B)}{B}}, & B \neq 0 \\ z e^{b A \omega(z)}, & B=0\end{cases}
$$

Theorem 2.2. If $f(z) \in S^{*}(A, B, b)$, then, for $|z|=r<1$
$\frac{r(1-|B| r)^{\frac{|B b(A-B)|-|B|^{2} b+\operatorname{Re}(A \bar{B}) b}{2|B|^{2}}}}{(1+|B| r)^{\frac{|B b(A-B)|+|B|^{2} b-\operatorname{Re}(A \bar{B}) b}{2|B|^{2}}}} \leq|f(z)| \leq \frac{r(1+|B| r)^{\frac{|B b(A-B)|-|B|^{2} b+\operatorname{Re}(A \bar{B}) b}{2|B|^{2}}}}{(1-|B| r)^{\frac{|B b(A-B)|+|B|^{2} b-\operatorname{Re}(A \bar{B}) b}{2|B|^{2}}}}, B \neq 0$

$$
\begin{equation*}
r e^{-|b||A| r} \leq|f(z)| \leq r e^{|b||A| r}, \quad B=0 \tag{*}
\end{equation*}
$$

These bounds are sharp because the extremal function is

$$
f_{*}(z)=\left\{\begin{array}{lc}
z(1+B z)^{\frac{b(A-B)}{B}} & , \quad B \neq 0 \tag{9}\\
z e^{b A z}, & B=0
\end{array}\right.
$$

Proof
From the definition of the class $S^{*}(A, B, b)$ and Lemma 2.2, we have

$$
\left\{\begin{array}{ll}
\left|z \frac{f^{\prime}(z)}{f(z)}-\frac{1-\left(|B|^{2}+\left(|B|^{2}-A \bar{B}\right) b\right) r^{2}}{1-|B|^{2} r^{2}}\right| \leq \frac{|b(A-B)|}{1-|B|^{2} r^{2}} \quad, \quad, \quad B \neq 0 \tag{10}\\
\left.z \frac{f^{\prime}(z)}{f(z)}-1|\leq|b|| A \right\rvert\, r & B=0
\end{array} .\right.
$$

After brief calculations from (10), we get

$$
\left\{\begin{array}{cc}
\frac{1-|b(A-B)| r+\left(-|B|^{2}+\operatorname{Re}\left(|B|^{2}-A \bar{B}\right) b\right) r^{2}}{1-|B|^{2} r^{2}} \leq \operatorname{Re} z \frac{f^{\prime}(z)}{f(z)} \leq \frac{1+|b(A-B)|+\left(-|B|^{2}+\operatorname{Re}\left(|B|^{2}-A \bar{B}\right) b\right) r^{2}}{1-\left.B\right|^{2} r^{2}}, & B \neq 0 \tag{11}\\
1-|b||A| r \leq \operatorname{Re} z \frac{f^{\prime}(z)}{f(z)} \leq 1+|b||A| r & B=0
\end{array}\right.
$$

on the other hand, we have

$$
\begin{equation*}
\operatorname{Re} z \frac{f^{\prime}(z)}{f(z)}=r \frac{\partial}{\partial r} \log |f(z)| \tag{12}
\end{equation*}
$$

If we substitute (12) into (11) and after simple calculations, we get

$$
\left\{\begin{array}{cl}
\frac{1}{r}-\frac{|b(A-B)|}{1-|B|^{2} r^{2}}+\frac{\operatorname{Re}\left(|B|^{2}-A \bar{B}\right) b r}{1-|B|^{2} r^{2}} \leq \frac{\partial}{\partial r} \log |f(z)| \leq \frac{1}{r}-\frac{|b(A-B)|}{1-|B|^{2} r^{2}}+\frac{\left.\operatorname{Re}\left(|B|^{2}-A \bar{B}\right) b\right) r}{1-|B|^{2} r^{2}}, & B \neq 0 \tag{13}\\
\frac{1}{r}-|b||A| \leq \frac{\partial}{\partial r} \log |f(z)| \leq \frac{1}{r}+|b||A| & B=0
\end{array}\right.
$$

Integrating both sides of (13) we obtain $\left(^{*}\right)$.
Corollary 2.2. The class $S^{*}(A, B, b)$ is compact.
Proof
If we use the inequalities $\left(^{*}\right),(10)$ and after simple calculations, we get

Therefore, $S^{*}(A, B, b)$ is normal and compact.
Theorem 2.3. The radius of starlikeness of the class $S^{*}(A, B, b)$ is

$$
r_{S}= \begin{cases}\frac{2}{|b(A-B)|-\sqrt{|b(A-B)|^{2}-4\left[\operatorname{Re}\left(|B|^{2}-A \bar{B}\right) b-|B|^{2}\right]}}, & B \neq 0 \tag{14}\\ \frac{1}{|b||A|} \quad B=0\end{cases}
$$

The radius is sharp because the extremal function is given in (9).
Proof
Using Lemma 2.2, the set of values $\left(1+\frac{1}{b}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)\right)$ are obtained, which comprises the closed disc with centre $\mathrm{C}(\mathrm{r})$ and the radius $\rho(r)$, where

$$
\left\{\begin{array}{ll}
C(r)=\left(\frac{1-\operatorname{Re}(A \bar{B}) r^{2}}{1-|B|^{2} r^{2}}, \frac{-i m(A \bar{B})}{1-|B|^{2} r^{2}}\right), & \rho(r)=\frac{|A-B| r}{1-|B|^{2} r^{2}}, \tag{15}\\
C(r)=(1,0) & , \quad(r)=|A| r \quad B=0
\end{array} .\right.
$$

Therefore, by using the definition of the class $S^{*}(A, B, b)$, we have

$$
\left|1+\frac{1}{b}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)-C(r)\right| \leq \rho(r)
$$

This gives

$$
\begin{cases}\operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right) \geq \frac{1-|b(A-B)| r+\left(-|B|^{2}+\operatorname{Re}\left(|B|^{2}-A \bar{B}\right) b\right) r^{2}}{1-|B|^{2} r^{2}} & , B \neq 0 \tag{16}\\ \operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right) \geq 1-|b||A| r & , B=0\end{cases}
$$

Hence for $r<r_{S}$, the first hand side of the preceeding inequality is positive, implying that

$$
r_{S}= \begin{cases}\frac{2}{|b(A-B)|-\sqrt{|b(A-B)|^{2}-4\left[\operatorname{Re}\left(|B|^{2}-A \bar{B}\right) b-|B|^{2}\right]}} \quad & , \quad B \neq 0 \\ \frac{1}{|b||A|} & , \quad B=0\end{cases}
$$

Also note that the inequality (14) becomes an equality for the function $f_{*}(z)$ from which it follows that

$$
r_{S}= \begin{cases}\frac{2}{|b(A-B)|-\sqrt{|b(A-B)|^{2}-4\left[\operatorname{Re}\left(|B|^{2}-A \bar{B}\right) b-|B|^{2}\right]}} & , \quad B \neq 0 \\ \frac{1}{|b||A|} & , \quad B=0\end{cases}
$$

Theorem 2.4. If $\mathrm{f}(\mathrm{z})$ belongs to $S^{*}(A, B, b)$, and the function

$$
f_{0}(z)=\left\{\begin{array}{ll}
\frac{a z f\left(\frac{z+a}{1+\bar{a} z}\right)}{f(a)(z+a)(1+\bar{a} z z)^{-\frac{A b}{B}}}, & B \neq 0, \tag{17}\\
\frac{a z f\left(\frac{z+a}{1+\bar{a} z}\right)}{} \frac{a \in D}{f(a)(z+a)(1+\bar{a} z)^{2 A-1}}, & B=0,
\end{array}, a \in D\right.
$$

satisfies the condition

$$
\left(z \frac{f_{0}^{\prime}(z)}{f_{0}(z)}-1\right) \prec \begin{cases}\frac{b(A-B) z}{1+B z} & , \tag{18}\\ b A z & B=0 \\ b=0\end{cases}
$$

then $f_{0}(z) \in S^{*}(A, B, b)$.
Proof
We define the function $\omega(z)$ by
$f_{0 \rho}(z)=\left\{\begin{array}{lr}\frac{a z f\left(\rho\left(\frac{z+a}{1+\bar{a} z}\right)\right)}{f(a)(z+a)(1+\bar{a} z z)-\frac{A b}{B}}=(1+B \omega(z))^{\frac{b(A-B)}{B}}, & B \neq 0, \quad a \in D, \quad 0<\rho<1 \\ \frac{a z f\left(\rho\left(\frac{z+a}{1+\bar{a})}\right)\right.}{f(a)(z+a)(1+\bar{a} z)^{2 A-1}}=e^{b A \omega(z)}, & B=0, \quad a \in D, \quad 0<\rho<1\end{array}\right.$
where $(1+B \omega(z))^{\frac{b(A-B)}{B}}$ and $e^{b A \omega(z)}$ have the value 1 at $\mathrm{z}=0$. Then $\omega(z)$ is analytic in $\mathrm{D}, \omega(0)=0$, and

$$
\left(z \frac{f_{0 \rho}^{\prime}(z)}{f_{0 \rho}(z)}-1\right)=\left\{\begin{array}{l}
z \frac{\left(1-|a|^{2}\right)}{(1+\bar{a} z)}\left[\rho\left(\frac{z+a}{1+\bar{a} z}\right) \frac{f^{\prime}\left(\frac{z+a}{1+\bar{z} z}\right)}{f\left(\frac{z+a}{1+\bar{a} z}\right)}\right]-\frac{z}{(z+a)}+\frac{A b}{B} \frac{\bar{a} z}{1+\bar{a} z}=\frac{b(A-B) z \omega^{\prime}(z)}{1+B \omega(z)}, B \neq 0, a \in D \tag{20}\\
z \frac{\left(1-|a|^{2}\right)}{(1+\bar{a} z)}\left[\rho\left(\frac{z+a}{1+\bar{a} z}\right) \frac{f^{\prime}\left(\frac{z+a}{1+\bar{z} z}\right)}{f\left(\frac{z+a}{1+\bar{z} z}\right)}\right]-\frac{z}{(z+a)}-(2 A-1) \frac{\bar{a} z}{1+\bar{a} z}=b A z \omega^{\prime}(z), B=0, a \in D
\end{array}\right.
$$

We can easily conclude that this subordination is equivalent to $|\omega(z)|<$ 1 for all $z \in D$. On the contrary let's assume that there exists $z_{1} \in D$, $\operatorname{Max} x_{|z|=\left|z_{1}\right|} \mid$, such that $|\omega(z)|$ attains its maximum value on the circle $|z|=r$, that is $\left|\omega\left(z_{1}\right)\right|=1$. Then when the conditions $z_{1} \omega^{\prime}\left(z_{1}=k \omega\left(z_{1}\right), k \geq 1\right.$ are satisfied for such $z_{1} \in D$ (using I. S. Jack's Lemma), we obtain

$$
\left(z_{1} \frac{f_{0 \rho}^{\prime}\left(z_{1}\right)}{f_{0 \rho}\left(z_{1}\right)}-1\right)=\left\{\begin{array}{ll}
\frac{(A-B) k \omega\left(z_{1}\right)}{1+B \omega\left(z_{1}\right)}=F_{1}\left(\omega\left(z_{1}\right)\right) \notin F_{1}(D) \tag{21}\\
b A k \omega\left(z_{1}\right)=F_{2}\left(\omega\left(z_{1}\right)\right) \notin F_{2}(D), & B \neq 0 \\
\end{array},\right.
$$

which contradicts (18) implying that the assumption is wrong, i. e., $|\omega(z)|<1$ for all $z \in D$. On the other hand, we have

$$
\left(z \frac{f_{0 \rho}^{\prime}(z)}{f_{0 \rho}(z)}\right)= \begin{cases}\frac{1+A \omega(z)}{1+B \omega(z)}, & B \neq 0 \\ 1+A \omega(z), & B=0\end{cases}
$$

Using also the property of compactness of $S^{*}(A, B, b)$, we conclude that

$$
f_{0}(z)=\lim _{\rho \rightarrow 1} f_{0 \rho}(z)
$$

is in $S^{*}(A, B, b)$.
Theorem 2.5. Let $f(z) \in S^{*}(A, B, b)$. Then

$$
\left\{\begin{array}{l}
F_{2}(k,|u|) \leq\left|\frac{k f(u)}{f(k u)}\right| \leq F_{1}(k,|u|), \quad B \neq 0 ; \tag{22}\\
F_{4}(k,|u|) \leq\left|\frac{k f(u)}{f(k u)}\right| \leq F_{3}(k,|u|), B=0,
\end{array}\right.
$$

where

$$
\begin{gathered}
F_{1}(k,|u|)=\frac{\left(\frac{1+|B|(1-k)|u|-k|u|^{2}}{1-k|u|^{2}}\right)^{\frac{|B b(A-B)|-|B|^{2} b+\operatorname{Re}(A \bar{B}) b}{2|B|^{2}}}\left(\frac{1-k^{2}|u|^{2}}{1-k|u|^{2}}\right)^{1-\operatorname{Re}\left(\frac{A b}{B}\right)}}{\left(\frac{1-|B|(1-k)|u|-k|u|^{2}}{1-k|u|^{2}}\right)^{\frac{|B b(A-B)|+|B|^{2} b-R e(A \bar{B}) b}{2|B|^{2}}}}, \\
F_{2}(k,|u|)=\frac{\left(\frac{1-|B|(1-k)|u|-k|u|^{2}}{1-k|u|^{2}}\right)^{\frac{|B b(A-B)|-|B|^{2} b+\operatorname{Re}(A \bar{B}) b}{2|B|^{2}}}\left(\frac{1-k^{2}|u|^{2}}{1-k|u|^{2}}\right)^{1-\operatorname{Re}\left(\frac{A b}{B}\right)}}{\left(\frac{1-|B|(1-k)|u|-k|u|^{2}}{1-k|u|^{2}}\right)^{\frac{|B b(A-B)|+|B|^{2} b-\operatorname{Re}(A \bar{B}) b}{2|B|^{2}}}}, \\
F_{3}(k,|u|)=e^{|b||A| \frac{(1-k)|u|}{1-k|u|^{2}}}\left(\frac{1-k^{2}|u|^{2}}{1-k|u|^{2}}\right)^{2 R e A}
\end{gathered}
$$

and

$$
F_{4}(k,|u|)=e^{-|b||A| \frac{(1-k)|u|}{1-k|u|^{2}}}\left(\frac{1-k^{2}|u|^{2}}{1-k|u|^{2}}\right)^{2 \operatorname{Re} A}
$$

for $-1<k<1$.
Proof
Using Theorem 2.2, Theorem 2.4 and taking $a=k u, u=\frac{z+a}{1+\bar{a} z} \Leftrightarrow z=\frac{u-a}{1-\bar{a} z}$, $-1<k<1$ we get (22) after simple calculations.

Theorem 2.6. The Koebe domain of the class $S^{*}(A, B, b)$ under the Montel normalization is

$$
R= \begin{cases}\frac{(1-|B|)}{\frac{|B b(A-B)|-|B|^{2} b+\operatorname{Re}(A \bar{B}) b}{2|B|^{2}}}\left(1-r_{0}^{2}\right)^{1-\operatorname{Re}\left(\frac{A b}{B}\right)}\left(1-2 r_{0} \operatorname{Cos} \theta+r_{0}^{2}\right)^{\frac{1}{2}\left(\operatorname{Re}\left(\frac{A b}{B}-1\right)\right)}, B \neq 0 \tag{23}\\ (1+|B|) \frac{|B(A-B)|+|B|^{2} b-\operatorname{Re}(A \bar{B}) b}{2|B|^{2}} & , B=0 \\ e^{-|b||A|}\left(1-r_{0}^{2}\right)^{2 R e} A \\ \left(1-2 r_{0} \operatorname{Cos} \theta+r_{0}^{2}\right)^{-2 \operatorname{Re} A} & , B=0\end{cases}
$$

Proof

Using the definition of the Koebe domain and Theorem 2.5, we get

$$
\left|f\left(\frac{z+a}{1+\bar{a} z}\right)\right| \geq\left\{\begin{array}{l}
\left.\frac{|1-|B| r|}{\frac{|B b(A-B)|-|B|^{2} b+R e(A \bar{B}) b}{2|B|^{2}}}|z+a|(1+\bar{a} z)^{-\frac{A b}{B}} \right\rvert\, \tag{24}\\
|a(a)|, B \neq 0 \\
e^{-|B||A||z| \frac{|B| A-B)\left|+|B|^{2} b-R e(A \bar{B}) b\right.}{2|B|^{2}}} \frac{|z+a|\left|(1+\bar{a} z)^{2 A-1}\right|}{|a|}|f(a)| \quad, B=0
\end{array}\right.
$$

If we take $a=r_{0}, f(a)=f\left(r_{0}\right)=r_{0}, u=\frac{z+a}{1+\bar{a} z} \Leftrightarrow z=\frac{u-a}{1-\bar{a} z}, u=r e^{i \theta}$ in (24) and pass to limit $r \rightarrow 1^{-}$, we obtain (23).

Theorem 2.7. If $f(z)=z+a_{2} z^{2}+\ldots+a_{n} z^{n}+\ldots$ belongs to $S^{*}(A, B, b)$, then

$$
\left|a_{n}\right| \leq \begin{cases}\prod_{k=0}^{n-2} \frac{|b(A-B)+k B|}{k+1} & , B \neq 0 \tag{25}\\ \prod_{k=0}^{n-2} \frac{|b A|}{k+1} & , B=0\end{cases}
$$

These bounds are sharp because the extremal function is

$$
f_{*}(z)= \begin{cases}\frac{z}{(1-B \delta z)^{\frac{-b(A-B)}{B}}} & ,|\delta|=1, B \neq 0 \tag{26}\\ z e^{b A z} & , B=0\end{cases}
$$

Proof

Let $B \neq 0$. If we use the definition of the class $S^{*}(A, B, b)$, then we write

$$
\begin{equation*}
1+\frac{1}{b}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)=p(z) \tag{27}
\end{equation*}
$$

Equality (27) can be written by using the Taylor expansion of $f(z)$ and $p(z)$ in the form
$z+2 a_{2} z^{2}+3 a_{3} z^{3}+\ldots+n a_{n} z^{n}+\ldots=\left(z+a_{2} z^{2}+a_{3} z^{3}+\ldots+a_{n} z^{n}+\ldots\right)\left(1+b p_{1} z+b p_{2} z^{2}+\ldots+b p_{n} z^{n}+\ldots\right)$
Evaluating the coefficient of z^{n} in both sides of (28), we get

$$
\begin{equation*}
n a_{n}=a_{n}+b p_{1} a_{n-1}+b p_{2} a_{n-2}+\ldots+b p_{n-1} \tag{29}
\end{equation*}
$$

on the other hand, if we use the same tecnique of [11], we obtain (because $\left.\left|\frac{c}{d}\right|^{n} \frac{1}{|c . d|}=\left|\frac{B}{1}\right|^{n}\left|\frac{1}{B}\right|=|B|^{n-1}<1\right)$

$$
\begin{equation*}
\left|p_{n}\right| \leq|A-B| \tag{30}
\end{equation*}
$$

If we consider the relations (29) and (30) together, then we obtain

$$
\begin{equation*}
(n-1)\left|a_{n}\right| \leq|b||A-B|\left(1+\left|a_{2}\right|+\left|a_{3}\right|+\ldots+\left|a_{n-1}\right|\right) \tag{31}
\end{equation*}
$$

which can be written in the form

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1}{(n-1)} \sum_{k=1}^{n-1}|b||A-B|\left|a_{k}\right| \quad, \quad\left|a_{1}\right|=1 \tag{32}
\end{equation*}
$$

To prove (25), we will use the induction principle.
Now, observe that
(i) for $n=2$,

$$
\begin{gathered}
\left|a_{n}\right| \leq \frac{|b||A-B|}{(n-1)} \sum_{k=1}^{n-1}\left|a_{k}\right| \quad, \quad\left|a_{1}\right|=1 \Rightarrow\left|a_{2}\right| \leq \frac{|b||A-B|}{(2-1)} \sum_{k=1}^{(2-1)}\left|a_{k}\right|, \\
\Rightarrow\left|a_{2}\right| \leq|b||A-B|\left|a_{1}\right| \Rightarrow\left|a_{2}\right| \leq|b||A-B| \\
\left|a_{n}\right| \leq \prod_{k=0}^{n-2} \frac{|b(A-B)+k B|}{k+1} \Rightarrow\left|a_{2}\right| \leq \prod_{k=0}^{(2-2)} \frac{|b(A-B)+k B|}{k+1} \Rightarrow\left|a_{2}\right| \leq|b||A-B|
\end{gathered}
$$

Therefore the right hand side of these inequalities one same for $n=2$.
(ii) for $n=3$,

$$
\begin{gathered}
\left|a_{n}\right| \leq \frac{|b||A-B|}{(n-1)} \sum_{k=1}^{n-1}\left|a_{k}\right|,\left|a_{1}\right|=1 \Rightarrow\left|a_{3}\right| \leq \frac{|b||A-B|}{(3-1)} \sum_{k=1}^{(3-1)}\left|a_{k}\right|=\frac{1}{2}|b||A-B|\left(1+\left|a_{2}\right|\right) \\
\Rightarrow\left|a_{3}\right| \leq \frac{1}{2}|b|^{2}|A-B|^{2}+\frac{1}{2}|b||A-B|, \\
\left|a_{n}\right| \leq \prod_{k=0}^{n-2} \frac{|b(A-B)+k B|}{k+1} \Rightarrow\left|a_{3}\right| \leq \prod_{k=0}^{3-2} \frac{|b(A-B)+k B|}{k+1}=|b||A-B| \frac{|b(A-B)+B|}{2} \\
\Rightarrow\left|a_{3}\right| \leq \frac{1}{2}|b||A-B|[|b||A-B|+|B|] \leq \frac{1}{2}|b||A-B|[|b||A-B|+1] \\
\quad \Rightarrow\left|a_{3}\right| \leq \frac{1}{2}|b|^{2}|A-B|^{2}+\frac{1}{2}|b||A-B|
\end{gathered}
$$

Therefore the right hand side of these inequalities one same for $\mathrm{n}=3$.
Suppose that this result is true for $n=p$. Then we have

$$
\begin{gather*}
\left|a_{n}\right| \leq \frac{|b||A-B|}{(n-1)} \sum_{k=1}^{n-1}\left|a_{k}\right| \tag{33}\\
\left|a_{1}\right|=1 \Rightarrow\left|a_{p}\right| \leq \frac{|b||A-B|}{(p-1)}\left(1+\left|a_{2}\right|+\left|a_{3}\right|+\ldots+\left|a_{p-1}\right|\right), \\
\left|a_{n}\right| \leq \prod_{k=0}^{n-2} \frac{|b(A-B)+k B|}{k+1} \Rightarrow\left|a_{p}\right| \leq \prod_{k=0}^{p-2} \frac{|b(A-B)+k B|}{k+1} \tag{34}
\end{gather*}
$$

$$
\Rightarrow\left|a_{p}\right| \leq \frac{1}{(p-1)!}|b||A-B|(|b||A-B|+1)(|b||A-B|+2) \ldots(|b||A-B|+(p-2))
$$

From (33), (34), and the induction hypothesis, we have

$$
\begin{gathered}
\frac{|b||A-B|}{(p-1)}\left(1+\left|a_{2}\right|+\left|a_{3}\right|+\ldots+\left|a_{p-1}\right|\right) \\
=\frac{1}{(p-1)!}|b||A-B|(|b||A-B|+1)(|b||A-B|+2) \ldots(|b||A-B|+(p-2))
\end{gathered}
$$

If we write $x=|b||A-B|>0$, equality (34) can be written in the form

$$
\begin{align*}
& \frac{x}{(p-1)}\left(1+\left|a_{2}\right|+\left|a_{3}\right|+\ldots+\left|a_{p-1}\right|\right) \tag{35}\\
= & \frac{1}{(p-1)!} x(x+1)(x+2) \ldots(x+(p-2)) .
\end{align*}
$$

After simple calculations from (35), we get

$$
\begin{align*}
& \frac{1}{p}(x+(p-1)) \frac{x}{(p-1)}\left(1+\left|a_{2}\right|+\left|a_{3}\right|+\ldots+\left|a_{p-1}\right|\right) \\
& =\frac{1}{p!}(x+1)(x+2)(x+3) \ldots(x+(p-2))(x+(p-1)) \\
& \quad \Rightarrow \frac{1}{p}\left[\frac{x}{(p-1)}\left(1+\left|a_{2}\right|+\left|a_{3}\right|+\ldots+\left|a_{p-1}\right|\right)\right]+ \\
& \quad\left[\frac{1}{p}\left(1+\left|a_{2}\right|+\left|a_{3}\right|+\ldots+\left|a_{p-1}\right|\right)\right] \\
& =\frac{1}{p!}(x+1)(x+2)(x+3) \ldots(x+(p-2))(x+(p-1)) \tag{36}\\
& \quad \Rightarrow \frac{1}{p}\left|a_{p}\right|+\left[\frac{1}{p}\left(1+\left|a_{2}\right|+\left|a_{3}\right|+\ldots+\left|a_{p-1}\right|\right)\right] \\
& =\frac{1}{p!}(x+1)(x+2)(x+3) \ldots(x+(p-2))(x+(p-1)) \\
& \quad \Rightarrow \frac{x}{p}\left(1+\left|a_{2}\right|+\left|a_{3}\right|+\ldots+\left|a_{p-1}\right|+\left|a_{p}\right|\right) \\
& =\frac{1}{p!} x(x+1)(x+2)(x+3) \ldots(x+(p-2))(x+(p-1)) .
\end{align*}
$$

Equality (36) shows that the results is valid for $n=p+1$.

Therefore, we have (25).
We also note that by giving specific values to b we obtain the following inequalities
(i) For $b=1$

$$
\left|a_{n}\right| \leq\left\{\begin{array}{ll}
\prod_{k=0}^{n-2} \frac{|(A-B)+k B|}{k+1} & , \\
n \neq 0 \\
\prod_{k=0}^{n-2} \frac{|A|}{k+1} & ,
\end{array} \quad B=0\right.
$$

This is the coefficient inequality for the class $S^{*}(A, B, 1)$. The class $S^{*}(A, B, 1)$ is a generalization of the W. Janowski class [10].

Because A, B are arbitrary fixed complex numbers, $\operatorname{Re}(1-A \bar{B}) \geq|A-B|$, $\operatorname{im}(1-A \bar{B})<|A-B|$ and $|B|<1$.
(ii) For $b=(1-\alpha), 0 \leq \alpha<1$, we get

$$
\left|a_{n}\right| \leq \begin{cases}\prod_{k=0}^{n-2} \frac{(1-\alpha)|(A-B)+k B|}{k+1} & , \quad B \neq 0 \\ \prod_{k=0}^{n-2} \frac{|(1-\alpha) A|}{k+1} & , \quad B=0\end{cases}
$$

This is the coefficient inequality for the class $S^{*}(A, B, 1-\alpha)$. The class $S^{*}(A, B, 1-\alpha)$ is a subclass of starlike functions of order $\alpha[2],[6]$.
(iii) Similarly if we take $b=\operatorname{Cos} \lambda e^{-i \lambda}$ and $b=(1-\alpha) \operatorname{Cos} \lambda e^{-i \lambda}$ we obtain the coefficient inequality for the subclasses of λ-spirallike functions and λ-spirallike functions of order α respectively [5], [8], [9], [11].

References

[1] Goodman, A. W., Univalent Functions, Volume I and Volume II, Mariner Publ. Co. Inc., Tampa, Florida, (1983).
[2] Jack, I. S., Functions Starlike and Convex of order α, J. London. Math. Soc.(2), 3(1971), 469-474.
[3] Krzyz, J. K., On a problem of Montel, Ann. Polon. Math. 12(1962), 55-60.
[4] Fan, K., Distortion of univalent functions, J. Math. Anal. Appl. 66(1979), 626-631.
[5] Spacek, L., Prispeek k teorii funkci prostych, Casopis Pest. Mat. Fys. 62(1993), 12-19.
[6] Robertson, M. S., On a theory of univalent functions, Ann. Math. 37(1936), 374-408.
[7] Wiatrowski, P., The coefficient of a certain family of holomorphic functions, Zeszyty Nauk. Univ. Todzk. Nauki. Mat. Przyrod. ser II. 39(1971), 57-85.
[8] Libera, R. J., Univalent α-spiral functions, Canad. J. Math. 19(1967), 449-456.
[9] Libera, R. J. and Ziegler, M. R., Regular functions $f(z)$ for which $z f^{\prime}(z)$ is α-spiral, Trans. Amer. Math. Soc. 166(1972), 361-370.
[10] Janowski, W., Some extremal problems for certain families of analytic functions. I, Ann. Pol. Math. 28(1973), 297-326.
[11] Polatoĝlu, Y. and Özkan, H. E., Some results of the generalization of p-valent convex function of complex order, Journal of Nat. Sci. And Math., 2006(accepted and in press).
[12] Polatoĝlu, Y. and Bolcal, M., A coefficient inequality for the class of analytic functions in the unit disc, Int. Journal of Math. and Math. Sci., 59(2003), 3753-3759.

[^0]: Department of Mathematics and Computer Sciences, Kültür University, Turkey, E-mail: \{y.polatoglu, e.ozkan\}@iku.edu.tr.

