Journal of Prime Research in Mathematics Vol. 3(2007), 154-161

ON THE CONVERGENCE OF STRICTLY PSEUDO-CONTRACTIVE MAPPINGS IN BANACH SPACES

XIAOLONG QIN¹, YONGFU SU² AND MEIJUAN SHANG³

ABSTRACT. In this paper, we establish the weak and strong convergence theorems for strictly pseudo-contractive mappings in the framework of *q*uniformly smooth Banach spaces. Our results improve and extend the corresponding ones announced by Reich, Acedo, Marino, Xu and some others.

Key words : Nonexpansive mapping; Strictly pseudo-contractive mapping; q-uniformly smooth; Fixed point AMS SUBJECT: 47H09; 47H10.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we assume that E is an arbitrary real Banach space and $J_q(q > 1)$ denotes the generalized duality mapping from E into 2^{E^*} given by

$$J_q x = \{ f^* \in E^* : \langle x, f^* \rangle = \|x\|^q \text{ and } \|f\| = \|x\|^{q-1} \},\$$

where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. In particular, J_2 is called the normalized duality mapping and it is usually denoted by J. Let T be a mapping. We denote the fixed points set of T by F(T). It is well known (see, for example, [8]) that $J_q(x) = ||x||^{q-2}J(x)$ if $x \neq 0$, and that if E^* is strictly convex, then J_q is single-valued. We shall denote the single-valued duality mapping by j_q .

¹Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, PR China. E-mail: qxlxajh@163.com

²Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, PR China. E-mail: suyongfu@tjpu.edu.cn

³Department of Mathematics, Shijiazhuang University, Shijiazhuang 050035, PR China. E-mail: meijuanshang@yahoo.com.cn.

The modulus of smoothness of E is the function $\rho_E : [0, \infty) \to [0, \infty)$ defined by

$$\rho_E(\tau) = \{ \frac{1}{2} (\|x+y\| + \|x-y\|) - 1 : \|x \le 1, \|y\| \le \tau \| \}.$$

E is uniformly smooth if and only if $\lim_{\tau\to\infty} \frac{\rho_E(\tau)}{\tau} = 0$. Let q > 1. E is said to be q-uniformly smooth (or to have a modulus of smoothness of power type q > 1) if there exists a constant c > 0 such that $\rho_E(\tau) \le c\tau^q$. It is known that if E is q-uniformly smooth [8], then there is a constant $c_q > 0$ such that

$$||x+y||^{q} \le ||x||^{q} + q\langle y, j_{q}(x) \rangle + c_{q} ||y||^{q}.$$
(1.1)

Let C be a subset of E. A mapping T is said to be a k-strict pseudocontractive [2] with a sequence $\{k_n\} \subset [1,\infty)$ such that $\lim_{n\to\infty} k_n = 1$ if for any $x, y \in C$, there exist $j_q(x-y) \in J_q(x-y)$ and a constant $k \in [0,1)$ such that

$$\langle Tx - Ty, j_q(x - y) \rangle \le ||x - y||^q - k||(I - T)x - (I - T)y||^q,$$
 (1.2)

for all $n \ge 1$. If I denotes the identity operator, then (1.2) can be written in the form

$$\langle (I-T)x - (I-T)y, j_q(x-y) \rangle \ge k ||(I-T)x - (I-T)y)||^q.$$
 (1.3)

In Hilbert spaces, (1.2) (and hence (1.3)) is equivalent to the inequality

$$||Tx - Ty||^{2} \le ||x - y||^{2} + (1 - 2k)||(I - T)x - (I - T)y||^{2}.$$
 (1.4)

These mappings are extensions of nonexpansive mappings which satisfy the inequality (1.4) with $k = \frac{1}{2}$. That is, $T: C \to C$ is nonexpansive if there exists a sequence $\{k_n\}$ such that

$$||Tx - Ty|| \le k_n ||x - y||$$

for all $n \ge 1$ and $x, y \in C$.

ł

The normal Mann's iterative process [4] generates a sequence $\{x_n\}$ in the following manner:

$$\forall x_1 \in C, \quad x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n, \quad \forall n \ge 1, \tag{1.5}$$

where the sequence $\{\alpha_n\}_{n=0}^{\infty}$ is in the interval (0,1).

If T is a nonexpansive mapping with a fixed point and the control sequence $\{\alpha_n\}$ is chosen so that $\sum_{n=0}^{\infty} \alpha_n (1 - \alpha_n) = \infty$, then the sequence $\{x_n\}$ generated by Normal Mann's iterative process (1.5) converges weakly to a fixed point of T (this is also valid in a uniformly convex Banach space with the Fréchet differentiable norm [6]).

Recently, Marino and Xu [5] extended the results of Reich [6] from nonexpansive mappings to strict pseudo-contractions and obtained a weak convergence theorem in Hilbert spaces. More precisely, they gave the following results. **Theorem 1.1** (Marino and Xu [5]). Let C be a closed convex subset of a Hilbert space H. Let $T : C \to C$ be a k-strict pseudo-contraction for some $0 \le k < 1$ and assume that T admits a fixed point in C. Let $\{x_n\}_{n=0}^{\infty}$ be the sequence generated by Normal Mann's algorithm (1.5). Assume that the control sequence $\{\alpha_n\}_{n=0}^{\infty}$ is chosen so that $k < \alpha_n < 1$ for all n and $\sum_{n=0}^{\infty} (\alpha_n - k)(1 - \alpha_n) = \infty$. Then $\{x_n\}$ converges weakly to a fixed point of T.

Very recently, Acedo and Xu [1] still in the framework of Hilbert spaces introduced the following cyclic algorithm.

Let C be a closed convex subset of a Hilbert space H and let $\{T_i\}_{i=0}^{N-1}$ be N k-strict pseudo-contractions on C such that $F = \bigcap_{i=0}^{N-1} F(T_i) \neq \emptyset$. Let $x_0 \in C$ and let $\{\alpha_n\}$ be a sequence in (0,1). The cyclic algorithm generates a sequence $\{x_n\}_{n=1}^{\infty}$ in the following way:

$$x_{1} = \alpha_{0}x_{0} + (1 - \alpha_{0})T_{0}x_{0},$$

$$x_{2} = \alpha_{1}x_{1} + (1 - \alpha_{1})T_{1}x_{1},$$

$$\vdots$$

$$x_{N} = \alpha_{N-1}x_{N-1} + (1 - \alpha_{N-1})T_{N-1}x_{N-1},$$

$$x_{N+1} = \alpha_{N}x_{N} + (1 - \alpha_{N})T_{0}x_{N},$$

$$\vdots$$

In general, x_{n+1} is defined by

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T_{[n]} x_n, \tag{1.6}$$

where $T_{[n]} = T_i$, with $i = n \pmod{N}$, $0 \le i \le N-1$. They also proved a weak convergence theorem for k-strict pseudo-contractions in Hilbert spaces by cyclic algorithm (1.6). More precisely, they obtained the following theorem:

Theorem 1.2 (Acedo and Xu [1]). Let C be a closed convex subset of a Hilbert space H. Let $N \ge 1$ be an integer. Let, for each $0 \le i \le N - 1$, $T_i: C \to C$ be a k_i -strict pseudo-contraction for some $0 \le k_i < 1$. Let $k = \max\{k_i: 1 \le i \le N\}$. Assume the common fixed point the set $\bigcap_{i=0}^{N-1} F(T_i)$ of $\{T_i\}_{i=0}^{N-1}$ is nonempty. Given $x_0 \in C$, let $\{x_n\}_{n=0}^{\infty}$ be the sequence generated by the cyclic algorithm (1.6). Assume that the control sequence $\{\alpha_n\}$ is chosen so that $k + \epsilon \le \alpha_n \le 1 - \epsilon$ for all n and some $\epsilon \in (0, 1)$. Then $\{x_n\}$ converges weakly to a common fixed point of the family $\{T_i\}_{i=0}^{N-1}$.

Motivated by Acedo and Xu [1] and Marino and Xu [5], this paper establishes the weak and strong convergence theorems of iteration process (1.6) for k-strict pseudo-contractions in q-uniformly Banach spaces. Our results extend the Acedo and Xu [1]'s from Hilbert spaces to q-uniformly smooth Banach spaces.

156

On the convergence theorems of strictly pseudo-contractive mappings in Banach spaces 157

In order to prove our main results, we need the following Lemmas.

Lemma 1.1 (Krüppel [3]). Let C be a nonempty closed convex bounded subset of a uniformly convex Banach space E, and let $T: C \to E$ be a nonexpansive mapping. Let $\{x_n\}$ be a sequence in C such that $\{x_n\}$ converges weakly to some point x. Then there exists an increasing continuous function $h: [0, \infty) \to$ $[0, \infty)$ with h(0) = 0 depending on the diameter of C such that $h(||x - Tx||) \leq$ $\liminf_{n\to\infty} ||x_n - Tx_n||.$

Lemma 1.2. Let E be a real Banach space, C a nonempty subset of E and $T: C \rightarrow C$ a k-strictly pseudo-contractive mapping. Then T is uniformly L-Lipschitzian.

Proof. It follows from the definition of T that

$$\langle x - Tx - (y - Ty), j(x - y) \rangle \ge k ||x - T - (y - Ty)||^{q}.$$

Observing that $||j(x-y)|| = ||x-y||^{q-1}$, we have

$$k||x - Tx - (y - Ty)||^{q} \le ||x - Tx - (y - Ty)|| ||x - y||^{q-1}.$$

That is, $k^{\frac{1}{q-1}} \|x - Tx - (y - Ty)\| \le \|x - y\|$, which yields that

$$||Tx - Ty|| \le (\frac{1}{k^{\frac{1}{q-1}}} + 1)||x - y||.$$

This completes the proof.

Lemma 1.3 (Tan and Xu [7]). Let $\{r_n\}$, $\{s_n\}$ and $\{t_n\}$ be three nonnegative sequences satisfying the following condition:

$$r_{n+1} \leq r_n + t_n$$
, for all $n \in N$.

If (i) $\sum_{n=1}^{\infty} t_n < \infty$, then $\lim_{n\to\infty} r_n$ exists. (ii) If $\sum_{n=1}^{\infty} t_n < \infty$ and $\{r_n\}$ has a subsequence converging to zero, then $\lim_{n\to\infty} r_n = 0$.

Lemma 1.4. Let H be a real q-uniformly smooth Banach space. Let C be a nonempty closed convex subset of E and $T : C \to C$ a k-strictly pseudocontractive mapping for some $0 \le k < 1$ and the fixed point set of T is nonempty. Then (I - T) is demi-closed at zero.

Proof. Let $\{x_n\}$ be a sequence in C which is generated by the Mann's algorithm $x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T^n x_n$ and converges weakly to x^* and $\{x_n - Tx_n\}$ converges strongly to 0. Our aim is to prove $x^* = Tx^*$. Let $p \in F(T)$. Next we consider the mapping $\alpha_n I + (1 - \alpha_n) T^n$, where the sequence $\{\alpha_n\}$ is chosen such that $1 - (\frac{qk}{c_q})^{\frac{1}{q-1}} < a \leq \alpha_n$, for some constant $a \in (0, 1)$. It follows from

$$\begin{aligned} (1.1), (1.3) &\text{and } (1.6) \text{ that} \\ &\|(\alpha_n I + (1 - \alpha_n)T)x_n - (\alpha_n I + (1 - \alpha_n)T)y_n\|^q \\ &= \|x_n - y_n - (1 - \alpha_n)((I - T)x_n - (I - T)y_n)\|^q \\ &\leq \|x_n - y_n\|^q - q(1 - \alpha_n)\langle (I - T)x_n - (I - T)y_n), j_q(x_n - y_n)\rangle \\ &+ c_q(1 - \alpha_n)^q \|(I - T)x_n - (I - T)y_n)\|^q \\ &\leq \|x_n - y_n\|^q - q(1 - \alpha_n)(k\|(I - T)x_n - (I - T)y_n)\|^q \\ &+ c_q(1 - \alpha_n)^q \|(I - T)x_n - (I - T)y_n)\|^q \\ &= \|x_n - y_n\|^q - (1 - \alpha_n)[qk - c_q(1 - \alpha_n)^{q-1}]\|(I - T)x_n - (I - T)y_n)\|^q. \end{aligned}$$

Noting that the assumptions $1 - \left(\frac{qk}{c_q}\right)^{\frac{1}{q-1}} < a \le \alpha_n$, we have

$$|(aI + (1 - a)T)x_n - (aI + (1 - a)T)y_n||^q \le ||x_n - y_n||^q$$

That is,

$$\|(aI + (1 - a)T)x_n - (aI + (1 - a)T)y_n\| \le \|x_n - y_n\|.$$
(1.8)

It follows that the mapping (aI + (1 - a)T) is a nonexpansive. Observing (1.8) and taking $y_n = p$, we have that

$$||x_{n+1} - p|| \le ||x_n - p||.$$

Since Lemma 1.3, we know the limit $\lim_{n\to\infty} ||x_n-p||^q$ exists. Then there exists R > 0 such that $||x_n - p|| \le R$, $\forall n \ge 1$. Let $B_R = \{x \in E : ||x_n - p|| \le R\}$ and let $K = C \cap B_R$. Then K is nonempty closed convex and bounded, and $\{x_n\} \subset K$. It follows from Lemma 1.1 that there exists an increasing continuous function $h : [0, \infty) \to [0, \infty)$ with h(0) = 0 depending on the diameter of C such that

$$h(\|x^* - (aI + (1-a)T)x^*\|) \le \liminf_{n \to \infty} \|x_n - (aI + (1-a)T)x_n\|$$
(1.9)

On the other hand, we have

$$||x_n - (aI + (1 - a)T)x_n|| \le (1 - a)||x_n - Tx_n|| \to 0,$$
(1.10)

as $n \to \infty$. That is,

$$\lim_{n \to \infty} \|x_n - (aI + (1 - a)T)x_n\| = 0.$$

Observe that (1.10) yields that

$$h(\|x^* - (aI + (1 - a)T)x^*\|) \le 0.$$
(1.11)

That is,

$$||x^* - (aI + (1 - a)T)x^*|| \le (1 - a)||x^* - Tx^*|| = 0$$
(1.12)

One can easily see $x^* = Tx^*$. This completes the proof. \Box

158

On the convergence theorems of strictly pseudo-contractive mappings in Banach spaces 159

2. MAIN RESULTS.

Theorem 2.1. Let C be a closed convex subset of a real q-uniformly smooth Banach E which satisfies the opial's condition. Let $N \ge 1$ be an integer. Let, for each $0 \le i \le N-1$, $T_i: C \to C$ be a k_i -strictly pseudo-contractive mapping for some $0 \le k_i < 1$. Let $k = \max\{k_i: 1 \le i \le N-1\}$. Assume the common fixed point the set $\bigcap_{i=0}^{N-1} F(T_i)$ of $\{T_i\}_{i=0}^{N-1}$ is nonempty. Given $x_0 \in C$, let $\{x_n\}_{n=0}^{\infty}$ be the sequence generated by the cyclic algorithm (1.6). Assume that the control sequence $\{\alpha_n\}$ is chosen so that

$$1 - (\frac{qk}{c_q})^{\frac{1}{q-1}} < a \le \alpha_n \le b < 1,$$

for all $n \ge 1$. Then $\{x_n\}$ converges weakly to a common fixed point of the family $\{T_i\}_{i=0}^{N-1}$.

Proof. Let $p \in F = \bigcap_{i=0}^{n-1} F(T_i)$. It follows from (1.1), (1.3) and (1.6) that

$$\begin{aligned} \|x_{n+1} - p\|^{q} \\ &= \|x_{n} - p - (1 - \alpha_{n})[(I - T_{[n]})x_{n} - (I - T_{[n]})p]\|^{q} \\ &\leq \|x_{n} - p\|^{q} - q(1 - \alpha_{n})\langle (I - T_{[n]})x_{n} - (I - T_{[n]})p, j_{q}(x_{n} - p)\rangle \\ &+ c_{q}(1 - \alpha_{n})^{q}\|(I - T_{[n]})x_{n} - (I - T_{[n]})p\|^{q} \\ &\leq \|x_{n} - p\|^{q} - q(1 - \alpha_{n})k\|(I - T^{n})x - (I - T^{n})y\|^{q} \\ &+ c_{q}(1 - \alpha_{n})^{q}\|(I - T_{[n]})x_{n} - (I - T_{[n]})p\|^{q} \\ &\leq \|x_{n} - p\|^{q} - (q(1 - \alpha_{n})k - c_{q}(1 - \alpha_{n})^{q})\|(I - T_{[n]})x_{n} - (I - T_{[n]})p\|^{q}. \end{aligned}$$

$$(2.1)$$

It follows from the assumptions that

$$||x_{n+1} - p|| \le ||x_n - p||, \tag{2.2}$$

which implies $\{x_n\}$ is bounded. It follows from Lemma 1.3 that $\lim_{n\to\infty} ||x_n - p||$ exists. Consider (2.1) again yields that

$$\begin{aligned} &(q(1-\alpha_n)k - c_q(1-\alpha_n)^q) \| (I-T_{[n]})x_n - (I-T_{[n]})p \|^q \\ &\leq \|x_n - p\|^q - \|x_{n+1} - p\|^q. \end{aligned}$$
(2.3)

Observing that the assumptions $1 - \left(\frac{qk}{c_q}\right)^{\frac{1}{q-1}} < a \le \alpha_n \le b < 1$, we have

$$(1-b)[qk - c_q(1-a)^{q-1}] || (I - T_{[n]})x_n - (I - T_{[n]})p ||^q \leq ||x_n - p||^q - ||x_{n+1} - p||^q.$$
(2.4)

Since $\lim_{n\to\infty} ||x_n - p||$ exists, we obtain

$$\lim_{n \to \infty} \|x_n - T_{[n]} x_n\| = 0.$$
(2.5)

It follows that

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = \lim_{n \to \infty} (1 - \alpha_n) \|x_n - T_{[n]} x_n\| = 0,$$
(2.6)

Since $\{x_n\}$ is bounded, we pick a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that x_{n_i} converges weakly to \bar{x} . We may further assume $n_i = k \pmod{N}$ for all i. From (2.6), we also have x_{n_i+j} converges weakly to \bar{x} for all $j \ge 0$, which yields that

$$||x_{n_i+j} - T_{[k+j]}x_{n_i+j}|| = ||x_{n_i+j} - T_{[n_i+j]}x_{n_i+j}|| \to 0.$$

An application of Lemma 1.4 yields that $\bar{x} \in F(T_{[k+j]})$ for all j which implies that $\bar{x} \in F$.

Next we show $\{x_n\}$ converges weakly to \bar{x} . Suppose the contrary, if $\{x_n\}$ has another subsequence $\{n_j\}$ which converges weakly to \hat{x} such that $\hat{x} \neq \bar{x}$, then we must have $\hat{x} \in F$ and since $\lim_{n\to\infty} ||x_n - p||$ exists for all $p \in F$ and E satisfies *Opial* condition, it follows from a standard argument that $\hat{x} = \bar{x}$. Thus $\{x_n\}$ converges weakly to $\bar{x} \in F$. This completes the proof. \Box

Remark 2.2. Our result improves Acedo and Xu [1]'s results from Hilbert spaces to more general Banach spaces. From Theorem 2.1, we can easy to get Acedo and Xu [1]'s results (Theorem 1.2). That is, Acedo and Xu [1]'s a result is a special case of our Theorem 2.1 in Hilbert spaces.

Theorem 2.3. Let C be a closed convex compact subset of a q-uniformly smooth Banach E. Let $N \ge 1$ be an integer. Let, for each $0 \le i \le N - 1$, $T_i : C \to C$ be a k_i -strict pseudo-contraction for some $0 \le k_i < 1$. Let $k = \max\{k_i : 1 \le i \le N - 1\}$. Assume the common fixed point the set $\bigcap_{i=0}^{N-1} F(T_i)$ of $\{T_i\}_{i=0}^{N-1}$ is nonempty. Given $x_0 \in C$, let $\{x_n\}_{n=0}^{\infty}$ be the sequence generated by the cyclic algorithm (1.6). Assume that the control sequence $\{\alpha_n\}$ is chosen so that

$$1 - (\frac{qk}{c_q})^{\frac{1}{q-1}} < a \le \alpha_n \le b < 1,$$

for all $n \ge 1$. Then $\{x_n\}$ converges strongly to a common fixed point p of the family $\{T_i\}_{i=0}^{N-1}$.

Proof. We only conclude the difference. By compactness of C this immediately implies that there is a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ which converges to a fixed point of T, say p. Combining (2.2) with Lemma 1.3, we have $\lim_{n\to\infty} ||x_n - p|| = 0$. This completes the proof.

Acknowledgments

The authors are extremely grateful to the referees for useful suggestions that improved the content of the paper.

160

On the convergence theorems of strictly pseudo-contractive mappings in Banach spaces 161

References

- G.L. Acedo, Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 67 (2007) 2258-2271.
- F.E. Browder, W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967) 197-228.
- M. Kruppel, On an inequality for nonexpansive mappings in uniformly convex Banach spaces, Rostock. Math. Kolloq. 51 (1997) 25-32.
- 4. W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510.
- 5. G. Marino, H.K. Xu, Weak and strong convergence theorems for strict pseudocontractions in Hilbert space, J. Math. Anal. Appl. 329 (2007) 336-346.
- S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979) 274-276.
- K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993) 301-308.
- H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991) 1127-1138.