
Journal of Prime Research in Mathematics Vol. 4(2008), 165-170

A GREEDY APPROACH FOR COMPUTING LONGEST
COMMON SUBSEQUENCES

AFROZA BEGUM∗

Abstract. This paper presents an algorithm for computing Longest Com-
mon Subsequences for two sequences. Given two strings X and Y of length
m and n, we present a greedy algorithm, which requires O(n log s) prepro-
cessing time, where s is distinct symbols appearing in string Y and O(m)
time to determines Longest Common Subsequences.

Key words : Algorithms, alphabet, longest common subsequences, greedy
algorithm.

1. Introduction

Let X = x1, x2, x3, ..., xm and Y = y1, y2, y3, ..., yn be two strings on an
alphabet

∑
of constant size σ. A subsequence

⋃
of a string is defined as any

string which can be obtained by deleting zero or more elements from it, i.e.⋃
is a subsequence of X when

⋃
= xi1xi2...xik and iq < iq + 1 for all q and

1 ≤ q < k. Given two strings X and Y , a longest common subsequence (LCS)
of both strings is defined as any string which is a subsequence of both X and
Y and has maximum possible length [10].

The problem of finding the longest common subsequence (LCS) of two given
sequences is well studied and has a lot of applications in various fields, DNA or
protein alignments, file comparison, speech recognition, gas chromatography,
etc. Over the last two decades, many efficient algorithms have been designed
to solve LCS problem.

This paper describes a simple greedy approach to find LCS. Given two
strings X and Y of length m and n, an algorithm is presented which determines
Longest Common Subsequences in O(m) time with O(n log s) preprocessing
time, where s is distinct symbols appearing in string Y .

∗Department of Computer Science and Engineering, International Islamic University
Chittagong, Chittagong, Bangladesh. E-mail: afrozactg@yahoo.com.

165



166 Afroza Begum

The paper is organized as follows. In the next section, a brief literature
review has been presented. Section 3 gives an algorithm for computing the LCS
of two strings, followed by the complexity analysis of the proposed algorithm.
Finally section 4 presents the conclusion of the paper.

2. Literature Review

The classic dynamic programming solution to LCS problem was invented
by Wagner and Fischer [11]. This dynamic programming algorithm defines
the dynamic programming matrix L0...m,0..n as follows:

Lij =





1 if i = 0 or j = 0,
Li−1,j−1 + 1 if xi = yi,

max(Li,j−1, Li−1,j) if xi 6= yi,

Using dynamic programming, the values in this matrix can be computed in
O(mn) time and space [1]. But Hirschberg [4] shows that in fact, only linear
space is needed to find the length, since the computation of each row only
needs the preceding row. An LCS can be retrieved by backtracking through
the matrix, which would imply that the computation of the whole matrix L,
requiring O(mn) space. The corresponding string editing problem by Masek
and Peterson [13] that uses ”Four Russians trick” [12] is the fastest general
solution for LCS in O(nm/ log n) time. There are several algorithms that
exist with complexities depending on other parameters. For example, Hunt
and Szymanski gave a faster algorithm that runs in O((r+n) log n) time, where
r is the total number of matching pairs of X and Y [6]. Also, Myers in [5] and
Nakatsu et al. in [9] presented an O(nD) algorithm, where the parameter D is
the simple Levenshtein distance between the two given strings. Crochemore et
al. presented a practical bit vector algorithm in O(nm/w) time and O(m/w)
additional/working space, where w is the number of bits in a machine word
[7].

There are also a number of problems related to LCS. The constrained LCS
problem finds the LCS that contains a specific subsequence. Tsai [14] intro-
duced the problem and presented an algorithm based on dynamic program-
ming running on O(m2n2r) time and O(mnr) space. Another generalization
of LCS problem is the All-substrings Longest Common Subsequence (ALCS)
problem. Given two strings A and B of lengths m and n, respectively, the
ALCS problem obtains the lengths of all the longest common subsequences
for string A and all substrings of B. The sequential algorithm designed by
Alves et al. [2] for this problem takes O(mn) time and O(n) space. Later a
time-and space-efficient parallel algorithm is proposed in [3]. Illiopoulos and
Rahman [8] introduce the notion of gap-constraints in the LCS problems and
present efficient algorithms to solve several variants of LCS problem.



A Greedy Approach for Computing Longest Common Subsequences 167

3. The Algorithm

3.1. Preprocessing. Given two strings X = x1, x2, x3, ..., xm and Y = y1, y2,
y3, ..., yn, first the lists of coincident points or matches for each distinct symbol
in Y are computed. Lists of matches are the lists of ordered pairs of integers
(i, j) such that xi = yj . It is sufficient to record only the set of j values (the
positions in Y ) corresponding to each distinct symbol, since from this set, the
set of i values (the positions in X) can easily be obtained. For example, let
two strings X = ABCBDABE and Y = BDCABA . The lists of matches
for string Y are shown in Table 1.

Table 1. Lists of matches for string Y

Symbol,s Mathches in Y Count[s]
A 4,6 2
B 1,5 2
C 3 1
D 2 1

To compute lists of matches for a string of length n, it requires O(n log s)
time using O(n) space, where s is the total number of distinct symbols ap-
pearing in the string. For a known symbol set, calculating lists of matches can
be accomplished more efficiently, usually with O(n) time.

3.2. A Greedy Approach. Only the matched symbol can constitute a LCS.
So, at the time of scanning the string X, when we want to decide whether the
symbol being examined is to select next, we only look at the lists of matches for
that symbol. We can only consider the symbols for which lists of matches are
constructed. All other symbols can be disregarded. The preprocessing phase
gives opportunity to correctly find next available positions of each matched
symbol.

The idea behind the algorithm is that, at every choice we pick the symbol
that comes earlier. This is greedy because it leaves as much opportunity as
possible for the remaining symbols to be selected.

The proposed greedy algorithm uses the following steps to compute LCS:

1. Preprocessing phase: Constructs lists of matches for all distinct sym-
bols in Y .

2. Scan X from left to right. For those symbols of X that have match
lists do the following:

a. Let Pi and Pi+1 be the two positions of ith and i + 1st symbol
respectively that are obtained from lists of matches.



168 Afroza Begum

b. Compare them. If Pi is larger than Pi+1 then we disregard Pi and
Pi+1 is added to the set L. L is the set of positions of selected
symbol that will constitute LCS, which is initially empty.

c. If Pi is smaller than Pi+1 then Pi is added to the set L.
This algorithm records the position of last selected symbol in Y . If any of Pi

and Pi+1 denotes a position that belongs to the left of last selected position,
it is assigned ∞ to ignore that position. Also, match lists traces the next
matched positions of each symbol.

GreedyLCS
/∗ Takes two sequences X = x1, x2, x3, ..., xm and Y = y1, y2, y3, ..., yn as
inputs. Lists of matches of all distinct symbols in Y are provided by prepro-
cessing phase. A one dimensional array count[s] maintains the total number of
coincident points for symbol s. R records the position of last selected symbol.
L is the set of positions of selected symbol that will constitute LCS, which is
initially empty. ∗/

1. L = ∅
2. R = 0
3. i = 1
4. Pi= Position in Y of ith symbol
5. while i < m
6. do Pi+1= Position in Y of i + 1st symbol
7. count[Pi+1]=count[Pi+1]− 1
8. if Pi+1 < R
9. then R = ∞

10. if Pi > Pi+1

11. then L = L ^ Pi+1

12. R = Pi+1

13. i = i + 1
14. Pi= Position in Y of ith symbol
15. count[Pi]=count[Pi]− 1
16. else
17. L = L ^ Pi

18. R = Pi

19. Pi = Pi+1

20. return L



A Greedy Approach for Computing Longest Common Subsequences 169

Figure 1. The execution of GreedyLCS on two given strings
X and Y . Lightly shaded elements denote the symbols being
examined. In each iteration, hollow arrows indicate the last
selected position. The resulting set of selected positions is {1,
3, 5, 6}.

3.3. Complexity Analysis. This algorithm determines LCS in O(m) time
assuming that match lists are provided by a preprocessing phase that requires
O(n log s) time, where s denotes the total number of distinct symbols in string
Y and m and n are the length of two given strings.



170 Afroza Begum

4. Conclusion

The LCS problem was first studied by molecular biologists while studying
similar amino acids. Subsequently, many applications in computer science
found the use of LCS as a certain similarity measure of the objects represented
by the strings. This paper proposes a greedy algorithm for the computation
of the Longest Common Subsequences of two strings X and Y that achieves
complexity of O(m) time with O(n log s) preprocessing time, where m and
n are the lengths of two original strings and s denotes the total number of
distinct symbols in string Y .

References

[1] Corman, T.H., Leiserson, C.E., Riverst, R.L., Stein, C., Introduction to Algorithms. 2nd
edn. MIT Press, Cambridge, MA, 2001.

[2] C. E. R. Alves, E. N. Caceres, and S. W. Song, ”An all-substrings common subsequence
algorithm”, 2nd Brazilian symposium on graphs, algorithms and combinatorics. Elec-
tronics Notes in Discrete Mathematics, 19:133-139, 2005.

[3] C. E. R. Alves, E. N. Caceres, and S. W. Song, ”A BSP/CGM algorithm for the all-
substrings longest common subsequence problem”, Proceedings of the 17th IEEE/ACM
IPDPS, pages 1-8, 2003.

[4] D.S. Hirschberg, ”A linear space algorithm for computing maximal common subse-
quences”, Comm. Assoc. Comput. Mach., 18:6, 341-343, 1975.

[5] Eugene W. Myers, ”An O(ND) difference algorithm and its variations”, Algorithmica,
1(2):251-266, 1986.

[6] J.W. Hunt, T.G. Szymanski, ”A fast algorithm for computing longest common subse-
quences”, Comm. ACM 20 (1977) 350-353.

[7] M. Crochemore, C.S. Iliopoulos, Y.J. Pinzon, J.F. Reid, ”A fast and practical bit vector
algorithm for the longest common subsequence problem”, Inform. Process. Lett. 80 (2001)
279-285.

[8] M. Sohel Rahman and Costas Iliopoulos, ”Algorithms for Computing Variants of the
Longest Common Subsequence Problem”, In Proceedings of the Algorithms and Com-
putation (ISAAC 2006), India, December 2006, LNCS 4288, pp. 399-408.

[9] Narao Nakatsu, Yahiko Kambayashi, and Shuzo Yajima, ”A longest common subsequence
algorithm suitable for similar text strings”, Acta Inf., 18:171-179, 1982.

[10] Peter Krusche and Alexander Tiskin, ”Efficient Longest Common Subsequence Com-
putation using Bulk-Synchronous Parallelism”, Workshop on Parallel and Distributed
Computing (PDC-2006), 165-174.

[11] Robert A. Wagner and Michael J. Fischer. ”The string-to-string correction problem”,
J. ACM, 21(1):168-173, 1974.

[12] V.L. Arlazarov, E.A. Dinic, M.A. Kronrod, I.A. Faradzev, ”On economic construction
of the transitive closure of a directed graph”, Dokl. Akad. Nauk SSSR, 194, 487-488,
1970.

[13] W.J. Masek and M.S. Paterson, ”A faster algorithm computing string edit distances”,
J. Comput. System. Sci., 20, 18-31, (1980).

[14] Y.-T. Tsai. ”The constrained common subsequence problem. Information Processing
Letters”, 88:173-176, 2003.


