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ON THE RAMSEY NUMBER FOR PATHS AND BEADED
WHEELS

KASHIF ALI1, EDY TRI BASKORO2, IOAN TOMESCU3

Abstract. For given graphs G and H, the Ramsey number R(G, H) is
the least natural number n such that for every graph F of order n the
following condition holds: either F contains G or the complement of F
contains H. Beaded wheel BW2,m is a graph of order 2m + 1 which is
obtained by inserting a new vertex in each spoke of the wheel Wm. In this
paper, we determine the Ramsey number of paths versus Beaded wheels:
R(Pn, BW2,m) = 2n − 1 or 2n if m ≥ 3 is even or odd, respectively,
provided n ≥ 2m2 − 5m + 4.

Key words: ramsey number, path, beaded wheel.
AMS SUBJECT: 05C55, 05D10.

1. Introduction

Let G(V, E) be a graph with the vertex-set V (G) and edge-set E(G). If
xy ∈ E(G) then x is called adjacent to y, and y is a neighbor of x and vice
versa. For any A ⊆ V (G), we use NA(x) to denote the set of all neighbors of x
in A, namely NA(x) = {y ∈ A|xy ∈ E(G)}. Let Pn be a path with n vertices,
Cn be a cycle with n vertices, Wk be a wheel with k + 1 vertices, i.e., a graph
consisting of a cycle Ck with one additional vertex adjacent to all vertices of
Ck. For m ≥ 3, the Beaded wheel BW2,m is a graph with 2m+1 vertices which
is obtained by inserting one vertex in each spoke of the wheel Wm. The hub
of Wm is also called the hub of BW2,m. For example, Figure 1 shows Beaded
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wheel BW2,12 .

Figure 1. Beaded wheel BW2,12

Surahmat and Baskoro [1] determined the Ramsey number of a combination
of Pn versus a wheel Wk, as follows.

Theorem A [1].

R(Pn,Wk) =
{

2n− 1 if k ≥ 4 is even and n ≥ k
2 (k − 2),

3n− 2 if k ≥ 5 is odd and n ≥ k−1
2 (k − 3).

Other papers concerning Ramsey numbers of paths versus wheel related graphs
are [2-4,6,7]; a nice survey paper on Ramsey numbers is [5].

In this paper, we determine the Ramsey numbers involving paths and Beaded
wheels BW2,m as follows.

Theorem 1

R(Pn, BW2,m) =
{

2n− 1 if m ≥ 4 is even and n ≥ 2m2 − 5m + 4,
2n if m ≥ 3 is odd and n ≥ 2m2 − 5m + 3.
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2. The Proof of Theorem 1.

First we shall show that R(Pn, BW2,m) ≥ 2n − 1 if m ≥ 4 is even and
R(Pn, BW2,m) ≥ 2n if m ≥ 3 is odd.
1

Consider the graph F1 = 2Kn−1. It is clear that F1 6⊇ Pn nor F1 ⊇ BW2,m

since F1
∼= Kn−1,n−1 is bipartite but BW2,m is not, which implies R(Pn, BW2,m)

≥ 2n − 1. By taking F2 = K1 ∪ 2Kn−1 we also deduce that F2 6⊇ Pn. F2 is
the join K1 + Kn−1,n−1 and every odd cycle of F2 contains the vertex of K1.
If m is odd, m ≥ 3, for every vertex x ∈ V (BW2,m) there exists an odd cycle
in BW2,m−x, hence K1 +Kn−1,n−1 6⊇ BW2,m. It follows that if m ≥ 3 is odd
then R(Pn, BW2,m) ≥ 2n.

We will prove the opposite inequalities in the following cases: A. m ≥ 4 is
even and n ≥ 2m2 − 5m + 4 and B. m ≥ 3 is odd and n ≥ 2m2 − 5m + 3.

A. Let F be a graph on 2n−1 vertices containing no Pn. Let L1 = (l1,1, l1,2, · · · ,
l1,k−1, l1,k) be a longest path in F and so k ≤ n − 1. If k = 1 we have
F ∼= K2n−1 which contains BW2,m. Suppose that k ≥ 2. We shall prove that
F contains BW2,m. Obviously, for each z ∈ V1, where V1 = V (F )\V (L1),
zl1,1, zl1,k 6∈ E(F ). Let L2 = (l2,1, l2,2, · · · , l2,t−1, l2,t) be a longest path in
F [V1]. It is clear that 1 ≤ t ≤ k. Let V2 = V (F )\(V (L1) ∪ V (L2)). Since
|V (F )| = 2n− 1, there exists at least one vertex x ∈ V2, which is not adjacent
to any endpoint l1,1, l1,k, l2,1, l2,t. We distinguish three cases.

Case A1: k < 2m − 2. If t = 1 then the vertices in V1 induce a subgraph
having only isolated vertices. In this case we shall add an edge uv to F , where
u, v ∈ V1 and denote L2 = u, v. In this way we can define inductively a sys-
tem of paths L1, L2, · · · , Lm such that Li is a longest path in F [Vi−1], where
Vi−1 = V (F ) \⋃i−1

j=1 V (Lj) or an edge added to F as above. If F1 denotes the
graph F or the graph F plus some edges added in the process of defining the
system of paths, it follows that the endpoints of these Lj (1 ≤ j ≤ m) induce
a complete graph K2m minus a matching with at most m edges in F1 if some
of the endpoints of the same Lj are adjacent in F1. If Y denotes the set of
the remaining vertices, we have |V (Y )| ≥ 2n− 1−m(2m− 3) > 1. Let x ∈ Y
be a vertex which is not adjacent to any endpoint of these Lj for 1 ≤ j ≤ m.
It is easy to see that x together with all endpoints of paths Lj contains a
BW2,m ⊆ F1 ⊆ F having the hub x.
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Case A2 : k ≥ 2m − 2 and t ≥ 2m − 2. For 1 ≤ i ≤ m − 2 we define the
couples Ai in path L1 as follows:

Ai =
{ {l1,i+1, l1,i+2} for i odd,
{l1,k−i, l1,k−i+1} for i even .

In a similar way let

Bi =
{ {l2,i+1, l2,i+2} for i odd,
{l2,t−i, l2,t−i+1} for i even

for the path L2.

Since t ≤ k ≤ n−1 and |V (F )| = 2n−1, we have seen that there exists at least
one vertex x which is not in L1∪L2. L1 being a longest path in F , there exists
one vertex of Ai for each i, say ai, which is not adjacent with x. Similarly,
there must be one vertex, say bi in the couple Bi which is not adjacent to x
for each i.
By the maximality of the path L1 we have that aibi for 1 ≤ i ≤ m− 2, biai+1

for 1 ≤ i ≤ m− 3 and aibi+m
2
−1, biai+m

2
−1 for 1 ≤ i ≤ m

2 − 1 are not in E(F ).

If m = 4 then C = {l2,1, l1,1, l2,t, l1,k} induces a cycle C4 in F . We define the
set of inserted vertices I = {a1, b1, a2, b2}. Since a1l2,1, b1l1,1,
a2l2,t, b2l1,k 6∈ E(F ) and x is not adjacent to any vertex from C ∪ I it follows
that C ∪ I ∪ {x} induces in F a subgraph containing BW2,4 with the hub x.

Let m ≥ 6.
In this case C = {l2,1, l1,1, l2,t, am

2
+1, bm

2
+1, · · · , am−2, bm−2, l1,k} will form in

this order a cycle Cm in F and we define the set of inserted vertices as
I = {a1, b1, a2, b2, · · · , am

2
, bm

2
}. Since x is not adjacent with any vertex of

C and I, it follows that C, I together with x gives us a subgraph in F which
contains BW2,m with the hub x, so BW2,m ⊆ F .

Case A3: k ≥ 2m − 2 and t < 2m − 2. Since F has no Pn it follows that
k ≤ n − 1, hence V1 will have at least n vertices. Then we can define the
same process as in case A1. We obtain a system of paths L2, · · · , Lm in the
subgraph induced by V1 such that the endpoints of L1, · · · , Lm induce in F1

a complete graph K2m minus a matching having at most m edges. We get in
this case |V (Y )| ≥ n − (m − 1)(2m − 3) ≥ 1 and the proof is similar to the
case A1.

B. Let F be a graph on 2n vertices containing no Pn. With the same notation
and reasoning as in the case A, since |V (F )| = 2n, there exist at least two
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vertices x1, x2 ∈ V2 which are not adjacent to any endpoint l1,1, l1,k, l2,1, l2,t of
L1 and L2. We shall consider three cases.

Case B1: k < 2m − 2. This case can be treated exactly in the same way as
the case A1.

Case B2: k ≥ 2m−2 and t ≥ 2m−2. As for the case A2 for i = 1, 2, · · · , m−2
we can define the couples Ai in L1 and Bi in L2. Since t ≤ k ≤ n − 1 and
|V (F )| = 2n, we have seen that there exist at least two vertices x1, x2 6∈
V (L1) ∪ V (L2) which are not adjacent to any endpoint of L1 or L2.
In a similar manner to the case A2 we get vertices ai ∈ Ai and bi ∈ Bi for
1 ≤ i ≤ m− 2 which are not adjacent to x1 for each i.

Let m = 3. In this case C = {x2, l1,1, l2,1} induces a cycle C3 in F . The set of
inserted vertices is defined to be I = {l1,k, b1, a1} since by the maximality of
L1 we have x2l1,k, l1,1b1, l2,1a1 6∈ E(F ). Since x1 is not adjacent to any vertex
from I, it follows that C ∪ I ∪{x1} induces in F a subgraph containing BW2,3

with the hub x1.

Let m = 5 . In this case C = {l1,1, x2, l2,t, a2, b3} induces a cycle C5 in F .
The set of inserted vertices is I = {l2,1, y, a3, b2, l1,k}, where y is a1 or b1: if
x2a1 6∈ E(F ) then y = a1 and otherwise, by the maximality of L1, it follows
that x2b1 6∈ E(F ) and we define y = b1. Since l1,1l2,1, x2y, l2,ta3, a2b2, b3l1,k 6∈
E(F ) it follows that C ∪ I ∪ {x1} induces in F a subgraph containing BW2,5

with the hub x1.

If m ≥ 7 by the maximality of L1 we deduce that aibi for 1 ≤ i ≤ m − 2,
biai+1 for 1 ≤ i ≤ m− 3 and aibi+m−3

2
, biai+m−3

2
for 1 ≤ i ≤ m+1

2 − 1 are not
in E(F ).
Thus C = {l2,1, x2, l1,1, l2,t, am+1

2
+1, bm+1

2
+1, · · · , am−2, bm−2, l1,k} induces in

this order a cycle Cm in F . It is clear that from the maximality of L1 it follows
that x2 cannot be adjacent to both a1 and b1. If x2a1 6∈ E(F ) then we shall de-
fine the set of inserted vertices as I = {a1, b1, a2, b2, · · · , am+1

2
−1, bm+1

2
−1, am+1

2
}.

If x2a1 ∈ E(F ) then x2b1 6∈ E(F ) and we shall define I = {a1, b1, a2, b2, · · · ,
am+1

2
−1, bm+1

2
−1, bm+1

2
}.

In both cases we have aibi+m−3
2

, biai+m−3
2

6∈ E(F ) for 3 ≤ i ≤ m+1
2 − 1;

l1,kb2, l2,ta2 6∈ E(F ) by the maximality of L1. In the first case (x2a1 6∈ E(F ))
we also have l2,1am+1

2
6∈ E(F ) since L1 is maximal and m ≥ 7 and l1,1b1 6∈

E(F ). In the second case (x2b1 6∈ E(F )) we also have l2,1a1, l1,1bm+1
2
6∈ E(F ).

Since x1 is not adjacent to any vertex of I, as in the case A2 we have obtained
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a subgraph in F which contains BW2,m with the hub x1, so BW2,m ⊆ F .

Case B3: k ≥ 2m − 2 and t < 2m − 2. We deduce that |V1| ≥ n + 1. As in
the case A3 we get |V (Y )| ≥ n + 1− (m− 1)(2m− 3) ≥ 1 and the remaining
proof is analogous to the case B1. ¤
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