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OUTPUTS IN RANDOM f-ARY RECURSIVE CIRCUITS

MEHRI JAVANIAN1, MOHAMMAD Q. VAHIDI-ASL2

Abstract. This paper extends the study of outputs for random recursive
binary circuits in Tsukiji and Mahmoud (Algorithmica 31(2001), 403). We
show via martingales that a suitably normalized version of the number of
outputs in random f -ary recursive circuits converges in distribution to a
normal random variate.
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1. Introduction

The underlying graph of any circuit is a directed acyclic graph. We call the
nodes of indegree 0 in a directed acyclic graph inputs, and we call the nodes
of outdegree 0 outputs. We study circuits with fixed indegree and unbounded
outdegree.

Consider a circuit of size n where nodes are labeled with {1, . . . , n} in such
a way that labels increase along every input-output path. In this case the
circuit is called recursive circuit. Various models in electro and neural sciences
adopt recursive circuits as their graph-theoretic backbone. Some examples
are boolean, algebraic and VLSI circuits in complexity theory [1], and neural
computing networks in artificial intelligence [7].

For any integer f ≥ 1, an f -ary recursive circuit is a recursive circuit where
the indegree of all non-input nodes is f .

The growth of an f -ary recursive circuit is as follows. The circuit starts
out with a ≥ f isolated inputs, labeled 1, . . . , a, and evolves in stages. After
n − 1 stages, a circuit RCn−1 has grown. At the nth stage, f distinct nodes
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Figure 1. All ternary circuits of size 5 grown from three inputs.

are chosen from RCn−1 as parents for a new entrant labeled n+ a. The new
node is joined to the circuit with edges directed from the f parents to it, and
is given 0 outdegree forming the circuit RCn. A recursive forest corresponds
to the case f = 1 (see Balińska et al. [2]). The building block of a recursive
forest is the recursive tree, which grows out of a single node. The recursive
trees has been a popular topic in both probability and computer science (see
Smythe and Mahmoud [5] and the many references therein).

Figure 1 below shows all possible ternary circuits after two insertion steps
into an initial graph of three isolated nodes (outputs are illustrated as boxes
and non-outputs as bullets).

We impose a probability distribution induced by growth process that chooses
f distinct parents uniformly at random from all existing nodes. It can be easily
argued that the growth after n insertions according to this stochastic view is
equivalent to a sample space of all recursive circuits of size n+ a, where each
circuit is equally likely. So a random f -ary recursive circuit having a input
nodes and n non-input nodes, is one chosen with equal probability from the
space of all such circuits.

At the nth stage of the growth of a random f -ary recursive circuit having a
input nodes, let Ln,a be the number of outputs. The number of inputs a will
be held fixed throughout. So we can drop it from all notation and think of it
as implicit. For example, we write Ln for Ln,a, and so on.

Throughout, we shall use the following notation. We shall denote the nor-
mally distributed random variate with mean 0 and variance σ2 by N (0, σ2).

We shall use the symbols
D−→ and

P−→ for convergence in distribution and in
probability, respectively. The notation f(n) ∼ g(n) will be used occasionally
to denote that

lim
n−→∞

f(n)

g(n)
= 1.

The notation OL1(g(n)) will stand for a random variable that is O(g(n)) in
L1 norm.

In electrical engineering the number of outputs may have many implications
concerning the amount of output currents down and in boolean circuits they
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stand for how many ”answers” are derived from a given inputs. Via martingale
difference formulation, Tsukiji and Mahmoud [6] find a central limit tendency
for the number of outputs in random binary circuit. Mahmoud and Tsukiji [4]
studied the joint probability distribution of the number of nodes of outdegree
k in random binary circuit.

The current paper considers the study of the number of outputs of ran-
dom f -ary recursive circuits, for arbitrary f ≥ 2. The main result of this
investigation is to prove the central limit tendency:

Ln − 1
f+1n√
n

D−→ N
(
0 ,

f2

(2f + 1)(f + 1)2

)
.

This central limit theorem is derived in Section 2 via a matingale difference
theorem.

2. Central Limit Law

There are F = min{f, Ln−1} ways for choosing f parents for the nth in-
sertion from the nodes of RCn−1 which may be numbered from 1 to F . For
the kth way, the k parents of the nth insertion are outputs in RCn−1, and the
other f − k parents for n are not. Let Ik,n be the indicator of this event (the
kth way). In this case, k outputs of RCn−1 are turned into non-output nodes,
and a new output appears in RCn, a net gain of −k + 1. The change in the
number of outputs can be written conditionally as

Ln = Ln−1 −
min{f,Ln−1}∑

k=0

k Ik,n + 1. (1)

If we let Fn be the sigma filed generated by the first n steps, we have the
conditional expectation

E[Ln | Fn−1] = Ln−1 −
min{f,Ln−1}∑

k=0

kE[Ik,n | Fn−1] + 1. (2)

According to the definition of the indicators, we have

E[Ik,n | Fn−1] =

(Ln−1

k

)(n+a−1−Ln−1

f−k

)(
n+a−1

f

) , 0 ≤ k ≤ min{f, Ln−1}. (3)

Plugging (3) into the conditional equation (2),

E[Ln | Fn−1] =
n+ a− f − 1

n+ a− 1
Ln−1 + 1. (4)

The recurrence (4) can be ”martingalized:” Appropriate factors bn and cn can
be chosen so that bnLn+ cn is a martingale. We develop this useful lead next.
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We let Mn = bnLn + cn and seek bn and cn so as to satisfy

E[Mn | Fn−1] = Mn−1.

Lemma 1. The random variable

Mn =
(a− f)!

a!
(n+ a− 1)(n+ a− 2) · · · (n+ a− f)Ln − (a− f)

−(a− f)!

a!

n∑
k=1

(k + a− 1)(k + a− 2) · · · (k + a− f),

is a martingale with respect to the sigma fields Fn.

Proof. Let Mn = bnLn + cn, for yet-to-be-determined constants bn and cn,
that render Mn a martingale sequence, with respect to the sigma fields Fn.
These constants must then satisfy

bnE[Ln | Fn−1] + cn = E[Mn | Fn−1] = Mn−1 = bn−1Ln−1 + cn−1.

Using the recurrence (4), we obtain

bn

(
n+ a− f − 1

n+ a− 1
Ln−1 + 1

)
+ cn = bn−1Ln−1 + cn−1, (5)

for every n ≥ 1. This is possible, if

bn =
n+ a− 1

n+ a− f − 1
bn−1,

which unwinds in

bn =
(a− f)! b1

a!
(n+ a− 1)(n+ a− 2) · · · (n+ a− f),

for arbitrary constant b1. Equating the free terms in (5), we get

cn = cn−1 − bn,

yielding

cn = c0 −
n∑

k=1

bk = c0 −
(a− f)! b1

a!

n∑
k=1

(k + a− 1)(k + a− 2) · · · (k + a− f).

We also want E[M1] = 0, requiring that c0 = (f − a)b1, (E[L1] = a− f + 1).
Hence, for arbitrary b1,

Mn =
(a− f)! b1

a!
(n+ a− 1)(n+ a− 2) · · · (n+ a− f)Ln − b1(a− f)

−(a− f)! b1
a!

n∑
k=1

(k + a− 1)(k + a− 2) · · · (k + a− f)

is a martingale. �
The main result of this section is presented next.
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Theorem 2. Let Ln be the number of outputs in a random f -ary recursive
circuit after the insertion of n nodes. The outputs follow the central limit law:

Ln − 1
f+1n√
n

D−→ N
(
0 ,

f2

(f + 1)2
· 1

2f + 1

)
.

Proof. The expected number of outputs after n random insertions is immediate
from Lemma 1, as the associated martingale has 0 mean. That is,

E[Ln] =
1

(n+ a− 1)(n+ a− 2) · · · (n+ a− f)

[
a!

(a− f − 1)!

+
n∑

k=1

(k + a− 1)(k + a− 2) · · · (k + a− f)

]
. (6)

On the other hand
n∑

k=f+1

(k + a− 1)(k + a− 2) · · · (k + a− f)

= f !

n∑
k=f+1

(
k + a− 1

f

)

= f !

n∑
k=f+1

[(
k + a

f + 1

)
−

(
k + a− 1

f + 1

)]

= f !

(
n+ a

f + 1

)
− f !

(
f + a

f + 1

)
=

(n+ a)(n+ a− 1) · · · (n+ a− f)

f + 1
− f !

(
f + a

f + 1

)
.

Therefore for large values of n,

n∑
k=1

(k + a− 1)(k + a− 2) · · · (k + a− f)

∼
n∑

k=f+1

(k + a− 1)(k + a− 2) · · · (k + a− f)

∼ (n+ a)(n+ a− 1) · · · (n+ a− f)

f + 1
. (7)

From which we conclude that
n∑

k=1

kf ∼
n∑

k=1

(k + a− 1)(k + a− 2) · · · (k + a− f) ∼ nf+1

f + 1
. (8)
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It is immediate from (6) and (7), that

E[Ln] ∼
1

f + 1
n. (9)

Now we obtain the growth rate of the variance. Starting with squaring both
sides of the recurrence in (1), one derives

E[L2
n | Fn−1] = L2

n−1 + 1 + 2Ln−1

+

min{f,Ln−1}∑
k=0

(k2 − 2kLn−1 − 2k)E[Ik,n | Fn−1]

= L2
n−1 + 1 + 2Ln−1

+
fLn−1

n+ a− 1

(
n+ a− 1− Ln−1 − f + fLn−1

n+ a− 2

)
−2Ln−1

fLn−1

n+ a− 1
− 2

fLn−1

n+ a− 1
, (10)

where the relations I2k,n = Ik,n, for all k, and Ik,nIj,n = 0, for all k ̸= j are
applied. Take expectations and simplify to get

E[L2
n] =

(n+ a− f − 1)(n+ a− f − 2)

(n+ a− 1)(n+ a− 2)
E[L2

n−1]

+
(n+ a− f − 1)

(
2(n+ a− 2) + f

)
(n+ a− 1)(n+ a− 2)

E[Ln−1] + 1. (11)

Taking expectations, then squaring of the recurrence (4), we get

E2[Ln] =

(
n+ a− f − 1

n+ a− 1

)2

E2[Ln−1] + 2

(
n+ a− f − 1

n+ a− 1

)
E[Ln−1] + 1. (12)

Subtracting (12) from (11), we obtain

Var[Ln] =
(n+ a− f − 1)(n+ a− f − 2)

(n+ a− 1)(n+ a− 2)
Var[Ln−1]

+
f(n+ a− f − 1)

n+ a− 2

(
E[Ln−1]

n+ a− 1

)(
1− E[Ln−1]

n+ a− 1

)
. (13)

From (13), one can recursively conclude

Var[Ln] =

n−1∑
k=1

f(k + a− f)

k + a− 1

(
E[Lk]

k + a

)(
1− E[Lk]

k + a

)

×
n−1∏

j=k+1

(j + a− f)(j + a− f − 1)

(j + a)(j + a− 1)
,

where the product is interpreted as 1 when the range of j is empty.
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However, Lk ≤ k+a, and by (9) there exist a positive constant C such that
for all k

1− E[Lk]

k + a
− f

f + 1
≤

∣∣∣∣1− E[Lk]

k + a
− f

f + 1

∣∣∣∣ ≤ C;

therefore

Var[Ln] ≤
n−1∑
k=1

f(k + a− f)

k + a− 1

(
C +

f

f + 1

) n−1∏
j=k+1

(j + a− f)(j + a− f − 1)

(j + a)(j + a− 1)

≤ f(C + 1)

n−1∑
k=1

k + a− f

k + a− 1
.

It follows that

Var[Ln] = O(n). (14)

The growth rates of the mean and the variance give a concentration law. It is
immediate from (9) and (14), by Chebyshev’s inequality, that

Ln

n

P−→ 1

f + 1
.

Further, let ▽Mk = Mk − Mk−1. For any constant factors An, An ▽ Mk is
a martingale difference sequence, with respect to the sigma fields Fk. The
factor An = n−(2f+1)/2 suits our purpose. We verify martingale central limit
theorem for the martingale difference n−(2f+1)/2▽Mk. It suffices to check the
conditional Lindeberg condition and the conditional variance condition on the
martingale differences (see [3]). The conditional Lindeberg condition requires
that, for all ε > 0,

Un
def
=

n∑
k=1

E

[(
▽Mk

n(2f+1)/2

)2

1{|n−(2f+1)/2▽Mk|>ε}

∣∣∣∣Fn−1

]
P−→ 0.

We have

▽Mk =
(a− f)!

a!
(k + a− 2)(k + a− 3) · · · (k + a− f)

×
[
(k + a− 1)(Lk − Lk−1 − 1) + fLk−1

]
.

However, Lk−1 − f + 1 ≤ Lk ≤ Lk−1 + 1, and Lk ≤ k + a; therefore

| ▽Mk| ≤
2f(a− f)!

a!
(k + a− 1)(k + a− 2) · · · (k + a− f).

The square differences (▽Mk)
2 are therefore O(k2f ), and it follows that the

sets {| ▽Mk|2 > ε2n2f+1} are empty for large n, and every k ≤ n. Determin-
istically, Un −→ 0; the conditional Lindeberg condition has been verified.
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A Z- conditional variance condition requires that

Vn
def
=

n∑
k=1

E

[(
▽Mk

n(2f+1)/2

)2 ∣∣∣∣Fn−1

]
P−→ Z,

for the random variable Z. In our case, it will turn out that Z =
(
(a−f)!

a! ·
f

f+1

)2
· 1
2f+1 . According to the martingale formulation of Lemma 1, we have

E[(▽Mk)
2 | Fn−1]

=

[
(a− f)!

a!
(k + a− 2)(k + a− 3) · · · (k + a− f)

]2
E[(k + a− 1)2L2

k

+(k + a− f − 1)2L2
k−1 + (k + a− 1)2 − 2(k + a− 1)(k + a− f − 1)LkLk−1

−2(k + a− 1)2Lk + 2(k + a− 1)(k + a− f − 1)Lk−1 | Fn−1].

Substituting (4) and (10), one derives

E[(▽Mk)
2 | Fn−1] =

[
(a− f)!

a!
(k + a− 2)(k + a− 3) · · · (k + a− f)

]2
×k + a− f − 1

k + a− 2

[(
f +O

(
1

k

))
kLk−1 − fL2

k−1

]
. (15)

From the asymptotics of the variance we have

E

[(
Lk −

k

f + 1

)2]
= Var[Lk] +

(
E[Lk]−

k

f + 1

)2

= O(k), (16)

so, from the Cauchy-Schwartz inequality one derives

E

[∣∣∣∣Lk −
k

f + 1

∣∣∣∣ · 1] ≤

√
E

[(
Lk −

k

f + 1

)2]
= O(

√
k).

The latter inequality gives

Lk =
k

f + 1
+OL1(

√
k). (17)

Further, by the Cauchy-Schwartz inequality we have

E

[∣∣∣∣L2
k −

k2

(f + 1)2

∣∣∣∣] = E

[∣∣∣∣Lk +
k

f + 1

∣∣∣∣ ∣∣∣∣Lk −
k

f + 1

∣∣∣∣]

≤

√
E

[(
Lk +

k

f + 1

)2]
E

[(
Lk −

k

f + 1

)2]
.
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We can use (16) to bound

√
E

[(
Lk − k

f+1

)2]
by O(

√
k), and use the obvious

O(k) bound Lk + k/(f + 1), to obtain

E

[∣∣∣∣L2
k −

k2

(f + 1)2

∣∣∣∣] = O(k3/2).

We thus have

L2
k =

k2

(f + 1)2
+OL1(k

3/2). (18)

In view of (17) and (18), (15) can be rewritten as

E[(▽Mk)
2 | Fn−1]

=

[
(a− f)!

a!
(k + a− 3)(k + a− 4) · · · (k + a− f)

]2
(k + a− 2)(k + a− f − 1)

×
[
fk

(
k − 1

f + 1
+OL1(k

1/2)

)
+O(k)− f

((k − 1

f + 1

)2
+OL1(k

3/2)

)]
=

[
(a− f)!

a!
(k + a− 3)(k + a− 4) · · · (k + a− f)

]2
(k + a− 2)(k + a− f − 1)

×
[

f2

(f + 1)2
k2 +OL1(k

3/2)

]
=

((a− f)!

a!
· f

f + 1

)2
k2f +O(k2f−1) +OL1(k

4f−1
2 )

=
((a− f)!

a!
· f

f + 1

)2
k2f +OL1(k

4f−1
2 ).

When this is summed from 1 to n and normed by n−(2f+1), by (8), the condi-

tional variance Vn approaches
(
(a−f)!

a! · f
f+1

)2
· 1
2f+1 in L1, and the Z conditional

variance has been verified.
Finally, by martingale central limit theorem,

n∑
k=1

▽Mk

n(2f+1)/2
=

Mn

n(2f+1)/2

D−→ N
(
0 ,

((a− f)!

a!
· f

f + 1

)2
· 1

2f + 1

)
.

�
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