OUTPUTS IN RANDOM f-ARY RECURSIVE CIRCUITS

MEHRI JAVANIAN ${ }^{1}$, MOHAMMAD Q. VAHIDI-ASL ${ }^{2}$

Abstract

This paper extends the study of outputs for random recursive binary circuits in Tsukiji and Mahmoud (Algorithmica 31(2001), 403). We show via martingales that a suitably normalized version of the number of outputs in random f-ary recursive circuits converges in distribution to a normal random variate.

Key words: analysis of algorithm, recursive circuit, martingale central limit theorem.
AMS SUBJECT CLASSIFICATION 2010: Primary 05C05.

1. Introduction

The underlying graph of any circuit is a directed acyclic graph. We call the nodes of indegree 0 in a directed acyclic graph inputs, and we call the nodes of outdegree 0 outputs. We study circuits with fixed indegree and unbounded outdegree.

Consider a circuit of size n where nodes are labeled with $\{1, \ldots, n\}$ in such a way that labels increase along every input-output path. In this case the circuit is called recursive circuit. Various models in electro and neural sciences adopt recursive circuits as their graph-theoretic backbone. Some examples are boolean, algebraic and VLSI circuits in complexity theory [1], and neural computing networks in artificial intelligence [7].

For any integer $f \geq 1$, an f-ary recursive circuit is a recursive circuit where the indegree of all non-input nodes is f.

The growth of an f-ary recursive circuit is as follows. The circuit starts out with $a \geq f$ isolated inputs, labeled $1, \ldots, a$, and evolves in stages. After $n-1$ stages, a circuit $R C_{n-1}$ has grown. At the nth stage, f distinct nodes

[^0]

Figure 1. All ternary circuits of size 5 grown from three inputs.
are chosen from $R C_{n-1}$ as parents for a new entrant labeled $n+a$. The new node is joined to the circuit with edges directed from the f parents to it, and is given 0 outdegree forming the circuit $R C_{n}$. A recursive forest corresponds to the case $f=1$ (see Balinska et al. [2]). The building block of a recursive forest is the recursive tree, which grows out of a single node. The recursive trees has been a popular topic in both probability and computer science (see Smythe and Mahmoud [5] and the many references therein).

Figure 1 below shows all possible ternary circuits after two insertion steps into an initial graph of three isolated nodes (outputs are illustrated as boxes and non-outputs as bullets).

We impose a probability distribution induced by growth process that chooses f distinct parents uniformly at random from all existing nodes. It can be easily argued that the growth after n insertions according to this stochastic view is equivalent to a sample space of all recursive circuits of size $n+a$, where each circuit is equally likely. So a random f-ary recursive circuit having a input nodes and n non-input nodes, is one chosen with equal probability from the space of all such circuits.

At the nth stage of the growth of a random f-ary recursive circuit having a input nodes, let $L_{n, a}$ be the number of outputs. The number of inputs a will be held fixed throughout. So we can drop it from all notation and think of it as implicit. For example, we write L_{n} for $L_{n, a}$, and so on.

Throughout, we shall use the following notation. We shall denote the normally distributed random variate with mean 0 and variance σ^{2} by $\mathcal{N}\left(0, \sigma^{2}\right)$. We shall use the symbols $\xrightarrow{\mathcal{D}}$ and \xrightarrow{P} for convergence in distribution and in probability, respectively. The notation $f(n) \sim g(n)$ will be used occasionally to denote that

$$
\lim _{n \longrightarrow \infty} \frac{f(n)}{g(n)}=1 .
$$

The notation $O_{\mathcal{L}_{1}}(g(n))$ will stand for a random variable that is $O(g(n))$ in \mathcal{L}_{1} norm.

In electrical engineering the number of outputs may have many implications concerning the amount of output currents down and in boolean circuits they
stand for how many "answers" are derived from a given inputs. Via martingale difference formulation, Tsukiji and Mahmoud [6] find a central limit tendency for the number of outputs in random binary circuit. Mahmoud and Tsukiji [4] studied the joint probability distribution of the number of nodes of outdegree k in random binary circuit.

The current paper considers the study of the number of outputs of random f-ary recursive circuits, for arbitrary $f \geq 2$. The main result of this investigation is to prove the central limit tendency:

$$
\frac{L_{n}-\frac{1}{f+1} n}{\sqrt{n}} \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}\left(0, \frac{f^{2}}{(2 f+1)(f+1)^{2}}\right) .
$$

This central limit theorem is derived in Section 2 via a matingale difference theorem.

2. Central Limit Law

There are $F=\min \left\{f, L_{n-1}\right\}$ ways for choosing f parents for the nth insertion from the nodes of $R C_{n-1}$ which may be numbered from 1 to F. For the k th way, the k parents of the nth insertion are outputs in $R C_{n-1}$, and the other $f-k$ parents for n are not. Let $I_{k, n}$ be the indicator of this event (the k th way). In this case, k outputs of $R C_{n-1}$ are turned into non-output nodes, and a new output appears in $R C_{n}$, a net gain of $-k+1$. The change in the number of outputs can be written conditionally as

$$
\begin{equation*}
L_{n}=L_{n-1}-\sum_{k=0}^{\min \left\{f, L_{n-1}\right\}} k I_{k, n}+1 \tag{1}
\end{equation*}
$$

If we let \mathcal{F}_{n} be the sigma filed generated by the first n steps, we have the conditional expectation

$$
\begin{equation*}
\mathbf{E}\left[L_{n} \mid \mathcal{F}_{n-1}\right]=L_{n-1}-\sum_{k=0}^{\min \left\{f, L_{n-1}\right\}} k \mathbf{E}\left[I_{k, n} \mid \mathcal{F}_{n-1}\right]+1 \tag{2}
\end{equation*}
$$

According to the definition of the indicators, we have

$$
\begin{equation*}
\mathbf{E}\left[I_{k, n} \mid \mathcal{F}_{n-1}\right]=\frac{\binom{L_{n-1}}{k}\binom{n+a-1-L_{n-1}}{f-k}}{\binom{n+a-1}{f}}, 0 \leq k \leq \min \left\{f, L_{n-1}\right\} \tag{3}
\end{equation*}
$$

Plugging (3) into the conditional equation (2),

$$
\begin{equation*}
\mathbf{E}\left[L_{n} \mid \mathcal{F}_{n-1}\right]=\frac{n+a-f-1}{n+a-1} L_{n-1}+1 \tag{4}
\end{equation*}
$$

The recurrence (4) can be "martingalized:" Appropriate factors b_{n} and c_{n} can be chosen so that $b_{n} L_{n}+c_{n}$ is a martingale. We develop this useful lead next.

We let $M_{n}=b_{n} L_{n}+c_{n}$ and seek b_{n} and c_{n} so as to satisfy

$$
\mathbf{E}\left[M_{n} \mid \mathcal{F}_{n-1}\right]=M_{n-1} .
$$

Lemma 1. The random variable

$$
\begin{aligned}
M_{n}= & \frac{(a-f)!}{a!}(n+a-1)(n+a-2) \cdots(n+a-f) L_{n}-(a-f) \\
& -\frac{(a-f)!}{a!} \sum_{k=1}^{n}(k+a-1)(k+a-2) \cdots(k+a-f),
\end{aligned}
$$

is a martingale with respect to the sigma fields \mathcal{F}_{n}.
Proof. Let $M_{n}=b_{n} L_{n}+c_{n}$, for yet-to-be-determined constants b_{n} and c_{n}, that render M_{n} a martingale sequence, with respect to the sigma fields \mathcal{F}_{n}. These constants must then satisfy

$$
b_{n} \mathbf{E}\left[L_{n} \mid \mathcal{F}_{n-1}\right]+c_{n}=\mathbf{E}\left[M_{n} \mid \mathcal{F}_{n-1}\right]=M_{n-1}=b_{n-1} L_{n-1}+c_{n-1} .
$$

Using the recurrence (4), we obtain

$$
\begin{equation*}
b_{n}\left(\frac{n+a-f-1}{n+a-1} L_{n-1}+1\right)+c_{n}=b_{n-1} L_{n-1}+c_{n-1} \tag{5}
\end{equation*}
$$

for every $n \geq 1$. This is possible, if

$$
b_{n}=\frac{n+a-1}{n+a-f-1} b_{n-1},
$$

which unwinds in

$$
b_{n}=\frac{(a-f)!b_{1}}{a!}(n+a-1)(n+a-2) \cdots(n+a-f),
$$

for arbitrary constant b_{1}. Equating the free terms in (5), we get

$$
c_{n}=c_{n-1}-b_{n}
$$

yielding
$c_{n}=c_{0}-\sum_{k=1}^{n} b_{k}=c_{0}-\frac{(a-f)!b_{1}}{a!} \sum_{k=1}^{n}(k+a-1)(k+a-2) \cdots(k+a-f)$.
We also want $\mathbf{E}\left[M_{1}\right]=0$, requiring that $c_{0}=(f-a) b_{1},\left(\mathbf{E}\left[L_{1}\right]=a-f+1\right)$. Hence, for arbitrary b_{1},

$$
\begin{aligned}
M_{n}= & \frac{(a-f)!b_{1}}{a!}(n+a-1)(n+a-2) \cdots(n+a-f) L_{n}-b_{1}(a-f) \\
& -\frac{(a-f)!b_{1}}{a!} \sum_{k=1}^{n}(k+a-1)(k+a-2) \cdots(k+a-f)
\end{aligned}
$$

is a martingale.
The main result of this section is presented next.

Theorem 2. Let L_{n} be the number of outputs in a random f-ary recursive circuit after the insertion of n nodes. The outputs follow the central limit law:

$$
\frac{L_{n}-\frac{1}{f+1} n}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, \frac{f^{2}}{(f+1)^{2}} \cdot \frac{1}{2 f+1}\right) .
$$

Proof. The expected number of outputs after n random insertions is immediate from Lemma 1, as the associated martingale has 0 mean. That is,

$$
\begin{align*}
\mathbf{E}\left[L_{n}\right]= & \frac{1}{(n+a-1)(n+a-2) \cdots(n+a-f)}\left[\frac{a!}{(a-f-1)!}\right. \\
& \left.+\sum_{k=1}^{n}(k+a-1)(k+a-2) \cdots(k+a-f)\right] . \tag{6}
\end{align*}
$$

On the other hand

$$
\begin{aligned}
\sum_{k=f+1}^{n} & (k+a-1)(k+a-2) \cdots(k+a-f) \\
& =f!\sum_{k=f+1}^{n}\binom{k+a-1}{f} \\
& =f!\sum_{k=f+1}^{n}\left[\binom{k+a}{f+1}-\binom{k+a-1}{f+1}\right] \\
& =f!\binom{n+a}{f+1}-f!\binom{f+a}{f+1} \\
& =\frac{(n+a)(n+a-1) \cdots(n+a-f)}{f+1}-f!\binom{f+a}{f+1} .
\end{aligned}
$$

Therefore for large values of n,

$$
\begin{align*}
\sum_{k=1}^{n}(k+ & a-1)(k+a-2) \cdots(k+a-f) \\
& \sim \sum_{k=f+1}^{n}(k+a-1)(k+a-2) \cdots(k+a-f) \\
& \sim \frac{(n+a)(n+a-1) \cdots(n+a-f)}{f+1} \tag{7}
\end{align*}
$$

From which we conclude that

$$
\begin{equation*}
\sum_{k=1}^{n} k^{f} \sim \sum_{k=1}^{n}(k+a-1)(k+a-2) \cdots(k+a-f) \sim \frac{n^{f+1}}{f+1} . \tag{8}
\end{equation*}
$$

It is immediate from (6) and (7), that

$$
\begin{equation*}
\mathbf{E}\left[L_{n}\right] \sim \frac{1}{f+1} n \tag{9}
\end{equation*}
$$

Now we obtain the growth rate of the variance. Starting with squaring both sides of the recurrence in (1), one derives

$$
\begin{align*}
& \mathbf{E}\left[L_{n}^{2} \mid \mathcal{F}_{n-1}\right]=L_{n-1}^{2}+1+2 L_{n-1} \\
& \min \left\{f, L_{n-1}\right\} \\
& +\sum_{k=0}^{\min }\left(k^{2}-2 k L_{n-1}-2 k\right) \mathbf{E}\left[I_{k, n} \mid \mathcal{F}_{n-1}\right] \\
& =L_{n-1}^{2}+1+2 L_{n-1} \\
& +\frac{f L_{n-1}}{n+a-1}\left(\frac{n+a-1-L_{n-1}-f+f L_{n-1}}{n+a-2}\right) \\
& -2 L_{n-1} \frac{f L_{n-1}}{n+a-1}-2 \frac{f L_{n-1}}{n+a-1} \text {, } \tag{10}
\end{align*}
$$

where the relations $I_{k, n}^{2}=I_{k, n}$, for all k, and $I_{k, n} I_{j, n}=0$, for all $k \neq j$ are applied. Take expectations and simplify to get

$$
\begin{align*}
\mathbf{E}\left[L_{n}^{2}\right] & =\frac{(n+a-f-1)(n+a-f-2)}{(n+a-1)(n+a-2)} \mathbf{E}\left[L_{n-1}^{2}\right] \\
& +\frac{(n+a-f-1)(2(n+a-2)+f)}{(n+a-1)(n+a-2)} \mathbf{E}\left[L_{n-1}\right]+1 . \tag{11}
\end{align*}
$$

Taking expectations, then squaring of the recurrence (4), we get

$$
\begin{equation*}
\mathbf{E}^{2}\left[L_{n}\right]=\left(\frac{n+a-f-1}{n+a-1}\right)^{2} \mathbf{E}^{2}\left[L_{n-1}\right]+2\left(\frac{n+a-f-1}{n+a-1}\right) \mathbf{E}\left[L_{n-1}\right]+1 \tag{12}
\end{equation*}
$$

Subtracting (12) from (11), we obtain

$$
\begin{align*}
& \operatorname{Var}\left[L_{n}\right]=\frac{(n+a-f-1)(n+a-f-2)}{(n+a-1)(n+a-2)} \operatorname{Var}\left[L_{n-1}\right] \\
& \quad+\frac{f(n+a-f-1)}{n+a-2}\left(\frac{\mathbf{E}\left[L_{n-1}\right]}{n+a-1}\right)\left(1-\frac{\mathbf{E}\left[L_{n-1}\right]}{n+a-1}\right) \tag{13}
\end{align*}
$$

From (13), one can recursively conclude

$$
\begin{aligned}
\operatorname{Var}\left[L_{n}\right]= & \sum_{k=1}^{n-1} \frac{f(k+a-f)}{k+a-1}\left(\frac{\mathbf{E}\left[L_{k}\right]}{k+a}\right)\left(1-\frac{\mathbf{E}\left[L_{k}\right]}{k+a}\right) \\
& \times \prod_{j=k+1}^{n-1} \frac{(j+a-f)(j+a-f-1)}{(j+a)(j+a-1)}
\end{aligned}
$$

where the product is interpreted as 1 when the range of j is empty.

However, $L_{k} \leq k+a$, and by (9) there exist a positive constant C such that for all k

$$
1-\frac{\mathbf{E}\left[L_{k}\right]}{k+a}-\frac{f}{f+1} \leq\left|1-\frac{\mathbf{E}\left[L_{k}\right]}{k+a}-\frac{f}{f+1}\right| \leq C
$$

therefore

$$
\begin{aligned}
\operatorname{Var}\left[L_{n}\right] & \leq \sum_{k=1}^{n-1} \frac{f(k+a-f)}{k+a-1}\left(C+\frac{f}{f+1}\right) \prod_{j=k+1}^{n-1} \frac{(j+a-f)(j+a-f-1)}{(j+a)(j+a-1)} \\
& \leq f(C+1) \sum_{k=1}^{n-1} \frac{k+a-f}{k+a-1}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\operatorname{Var}\left[L_{n}\right]=O(n) \tag{14}
\end{equation*}
$$

The growth rates of the mean and the variance give a concentration law. It is immediate from (9) and (14), by Chebyshev's inequality, that

$$
\frac{L_{n}}{n} \xrightarrow{P} \frac{1}{f+1}
$$

Further, let $\nabla M_{k}=M_{k}-M_{k-1}$. For any constant factors $A_{n}, A_{n} \nabla M_{k}$ is a martingale difference sequence, with respect to the sigma fields \mathcal{F}_{k}. The factor $A_{n}=n^{-(2 f+1) / 2}$ suits our purpose. We verify martingale central limit theorem for the martingale difference $n^{-(2 f+1) / 2} \nabla M_{k}$. It suffices to check the conditional Lindeberg condition and the conditional variance condition on the martingale differences (see [3]). The conditional Lindeberg condition requires that, for all $\varepsilon>0$,

$$
U_{n} \stackrel{\text { def }}{=} \sum_{k=1}^{n} \mathbf{E}\left[\left.\left(\frac{\nabla M_{k}}{n^{(2 f+1) / 2}}\right)^{2} \mathbf{1}_{\left\{\left|n^{-(2 f+1) / 2} \nabla M_{k}\right|>\varepsilon\right\}} \right\rvert\, \mathcal{F}_{n-1}\right] \xrightarrow{P} 0
$$

We have

$$
\begin{array}{r}
\nabla M_{k}=\frac{(a-f)!}{a!}(k+a-2)(k+a-3) \cdots(k+a-f) \\
\times\left[(k+a-1)\left(L_{k}-L_{k-1}-1\right)+f L_{k-1}\right]
\end{array}
$$

However, $L_{k-1}-f+1 \leq L_{k} \leq L_{k-1}+1$, and $L_{k} \leq k+a$; therefore

$$
\left|\nabla M_{k}\right| \leq \frac{2 f(a-f)!}{a!}(k+a-1)(k+a-2) \cdots(k+a-f)
$$

The square differences $\left(\nabla M_{k}\right)^{2}$ are therefore $O\left(k^{2 f}\right)$, and it follows that the sets $\left\{\left|\nabla M_{k}\right|^{2}>\varepsilon^{2} n^{2 f+1}\right\}$ are empty for large n, and every $k \leq n$. Deterministically, $U_{n} \longrightarrow 0$; the conditional Lindeberg condition has been verified.

A Z - conditional variance condition requires that

$$
V_{n} \stackrel{\text { def }}{=} \sum_{k=1}^{n} \mathbf{E}\left[\left.\left(\frac{\nabla M_{k}}{n^{(2 f+1) / 2}}\right)^{2} \right\rvert\, \mathcal{F}_{n-1}\right] \xrightarrow{P} Z,
$$

for the random variable Z. In our case, it will turn out that $Z=\left(\frac{(a-f)!}{a!}\right.$. $\left.\frac{f}{f+1}\right)^{2} \cdot \frac{1}{2 f+1}$. According to the martingale formulation of Lemma 1 , we have

$$
\begin{aligned}
& \mathbf{E}\left[\left(\nabla M_{k}\right)^{2} \mid \mathcal{F}_{n-1}\right] \\
= & {\left[\frac{(a-f)!}{a!}(k+a-2)(k+a-3) \cdots(k+a-f)\right]^{2} \mathbf{E}\left[(k+a-1)^{2} L_{k}^{2}\right.} \\
+ & (k+a-f-1)^{2} L_{k-1}^{2}+(k+a-1)^{2}-2(k+a-1)(k+a-f-1) L_{k} L_{k-1} \\
- & \left.2(k+a-1)^{2} L_{k}+2(k+a-1)(k+a-f-1) L_{k-1} \mid \mathcal{F}_{n-1}\right] .
\end{aligned}
$$

Substituting (4) and (10), one derives

$$
\begin{gather*}
\mathbf{E}\left[\left(\nabla M_{k}\right)^{2} \mid \mathcal{F}_{n-1}\right]=\left[\frac{(a-f)!}{a!}(k+a-2)(k+a-3) \cdots(k+a-f)\right]^{2} \\
\times \frac{k+a-f-1}{k+a-2}\left[\left(f+O\left(\frac{1}{k}\right)\right) k L_{k-1}-f L_{k-1}^{2}\right] . \tag{15}
\end{gather*}
$$

From the asymptotics of the variance we have

$$
\begin{equation*}
\mathbf{E}\left[\left(L_{k}-\frac{k}{f+1}\right)^{2}\right]=\operatorname{Var}\left[L_{k}\right]+\left(\mathbf{E}\left[L_{k}\right]-\frac{k}{f+1}\right)^{2}=O(k) \tag{16}
\end{equation*}
$$

so, from the Cauchy-Schwartz inequality one derives

$$
\mathbf{E}\left[\left|L_{k}-\frac{k}{f+1}\right| \cdot 1\right] \leq \sqrt{E\left[\left(L_{k}-\frac{k}{f+1}\right)^{2}\right]}=O(\sqrt{k}) .
$$

The latter inequality gives

$$
\begin{equation*}
L_{k}=\frac{k}{f+1}+O_{\mathcal{L}_{1}}(\sqrt{k}) . \tag{17}
\end{equation*}
$$

Further, by the Cauchy-Schwartz inequality we have

$$
\begin{aligned}
\mathbf{E}\left[\left|L_{k}^{2}-\frac{k^{2}}{(f+1)^{2}}\right|\right] & =\mathbf{E}\left[\left|L_{k}+\frac{k}{f+1}\right|\left|L_{k}-\frac{k}{f+1}\right|\right] \\
& \leq \sqrt{\mathbf{E}\left[\left(L_{k}+\frac{k}{f+1}\right)^{2}\right] \mathbf{E}\left[\left(L_{k}-\frac{k}{f+1}\right)^{2}\right]}
\end{aligned}
$$

We can use (16) to bound $\sqrt{\mathbf{E}\left[\left(L_{k}-\frac{k}{f+1}\right)^{2}\right]}$ by $O(\sqrt{k})$, and use the obvious $O(k)$ bound $L_{k}+k /(f+1)$, to obtain

$$
\mathbf{E}\left[\left|L_{k}^{2}-\frac{k^{2}}{(f+1)^{2}}\right|\right]=O\left(k^{3 / 2}\right)
$$

We thus have

$$
\begin{equation*}
L_{k}^{2}=\frac{k^{2}}{(f+1)^{2}}+O_{\mathcal{L}_{1}}\left(k^{3 / 2}\right) \tag{18}
\end{equation*}
$$

In view of (17) and (18), (15) can be rewritten as

$$
\begin{aligned}
& \mathbf{E}\left[\left(\nabla M_{k}\right)^{2} \mid \mathcal{F}_{n-1}\right] \\
&= {\left[\frac{(a-f)!}{a!}(k+a-3)(k+a-4) \cdots(k+a-f)\right]^{2}(k+a-2)(k+a-f-1) } \\
& \quad \times\left[f k\left(\frac{k-1}{f+1}+O_{\mathcal{L}_{1}}\left(k^{1 / 2}\right)\right)+O(k)-f\left(\left(\frac{k-1}{f+1}\right)^{2}+O_{\mathcal{L}_{1}}\left(k^{3 / 2}\right)\right)\right] \\
&= {\left[\frac{(a-f)!}{a!}(k+a-3)(k+a-4) \cdots(k+a-f)\right]^{2}(k+a-2)(k+a-f-1) } \\
& \quad \times\left[\frac{f^{2}}{(f+1)^{2}} k^{2}+O_{\mathcal{L}_{1}}\left(k^{3 / 2}\right)\right] \\
&=\left(\frac{(a-f)!}{a!} \cdot \frac{f}{f+1}\right)^{2} k^{2 f}+O\left(k^{2 f-1}\right)+O_{\mathcal{L}_{1}}\left(k^{\frac{4 f-1}{2}}\right) \\
&=\left(\frac{(a-f)!}{a!} \cdot \frac{f}{f+1}\right)^{2} k^{2 f}+O_{\mathcal{L}_{1}}\left(k^{\frac{4 f-1}{2}}\right) .
\end{aligned}
$$

When this is summed from 1 to n and normed by $n^{-(2 f+1)}$, by (8), the conditional variance V_{n} approaches $\left(\frac{(a-f)!}{a!} \cdot \frac{f}{f+1}\right)^{2} \cdot \frac{1}{2 f+1}$ in \mathcal{L}_{1}, and the Z conditional variance has been verified.

Finally, by martingale central limit theorem,

$$
\sum_{k=1}^{n} \frac{\nabla M_{k}}{n^{(2 f+1) / 2}}=\frac{M_{n}}{n^{(2 f+1) / 2}} \xrightarrow{\mathcal{D}} \mathcal{N}\left(0,\left(\frac{(a-f)!}{a!} \cdot \frac{f}{f+1}\right)^{2} \cdot \frac{1}{2 f+1}\right) .
$$

References

[1] J. Balcázar, J. Diaz, J. Gabarró: Structural complexity I, Springer-Verlag, Berlin, 1995.
[2] K. Balinska, L. Quintas, J. Szymanski: Random recursive forests, Random Structures Algorithms 5(1994), 3-12.
[3] P. Hall, C. Heyde: Martingale Limit Theory and Its Applications, Academic Press, New York, 1980.
[4] H. Mahmoud, T. Tsukiji: On the internal structure of random recursive circuits, Journal of Computatinoal and Applied Mathematics 142(2002), 155-171.
[5] R. Smythe, H. Mahmoud: A survey of recursive trees, Theory of Probability and Mathematical Statistics 51(1996), 1-29.
[6] T. Tsukiji, H. Mahmoud: A limit law for outputs in random circuits, Algorithmica 31(2001), 403-412.
[7] L. Valiant: Circuits of the Mind, Oxford University Press, Oxford, 1994.

[^0]: ${ }^{1}$ Department of Statistics, Zanjan University, Zanjan, Iran. Email: javanian_m@yahoo.com
 ${ }^{2}$ Department of Statistics, Shahid Beheshti University, Tehran, Iran. Email: mvahidi@sbu.ac.ir.

