THE BANACH-SAKS INDEX OF INTERSECTION

NOVIKOVA A. I. ${ }^{1}$

Abstract

In this paper we estimate Banach-Saks index of intersection of two spaces with symmetric bases from below by indices of these spaces. We also show on example of Orlicz spaces that we can't estimate Banach-Saks index of intersection in the same way from above.

Key words: Banach-Saks index, symmetric basis, Orlicz space.
AMS subject: 46E30.

1. Introduction

Banach-Saks p-property has its origin in the classical work of Banach and Saks [3]. In the sequel a lot of works were devoted to studying of Banach-Saks p-property in rearrangement invariant spaces (see, for example, [1, 4, 10]). For sequence spaces instead of rearrangement invariance we can talk about spaces with symmetric basis. Many authors investigate Banach-Saks p-property in classic Orlicz, Marcinkiewic and Lorentz sequence spaces ($[2,8,9]$). BanachSaks p-property is closely related with other properties of Banach spaces as separability, reflexivity, p-convexity and plays an important role in geometry of Banach spaces. Intersection and sum of two spaces appear naturally in interpolation theory. This article is devoted to estimating Banach-Saks index of intersection $E \cap F$ by indices of E and F.

Definition 1. By non-increasing rearrangement of sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ from c_{0} we will mean non-increasing sequence $\left\{a_{n}^{*}\right\}_{n=1}^{\infty}$ obtained from the sequence $\left\{\left|a_{n}\right|\right\}_{n=1}^{\infty}$ by a proper permutation of natural numbers.

Definition 2. Basis $\left\{x_{n}\right\}_{n=1}^{\infty}$ of Banach space E is called symmetric if for every permutation π of natural numbers basis $\left\{x_{\pi(n)}\right\}_{n=1}^{\infty}$ is equivalent to $\left\{x_{n}\right\}_{n=1}^{\infty}$ ($[6$, p.115-136]).

[^0]It's well-known that for every separable sequence space with symmetric basis the following inclusion holds $l_{1} \subset E \subset c_{0}$ and

$$
\|x\|_{l_{\infty}} \leq\|x\|_{E} \leq\|x\|_{l_{1}}
$$

The natural basis of sequence spaces $l_{p}, 1 \leq p \leq \infty$, is symmetric.
The other examples of the spaces with symmetric basis are Orlicz sequence spaces. For convex, non-decreasing continuous function M on $[0, \infty)$, such that $M(0)=0$ and $\lim _{t \rightarrow \infty} M(t)=\infty$ (Orlicz function), Orlicz space l_{M} consists of all sequences $x=\left(x_{1}, x_{2}, \ldots\right)$ such that $\sum_{n=1}^{\infty} M\left(\frac{\left|x_{n}\right|}{\rho}\right)<\infty$ for some $\rho>0$. Conditions imposed on M make l_{M} be Banach space equipped with the norm

$$
\|x\|_{l_{M}}=\inf \left\{\rho>0: \sum_{n=1}^{\infty} M\left(\frac{\left|x_{n}\right|}{\rho}\right) \leq 1\right\}
$$

We are interested in separable part h_{M} of l_{M} that consists of all sequences $x \in l_{M}$ such that $\sum_{n=1}^{\infty} M\left(\frac{\left|x_{n}\right|}{\rho}\right)<\infty$ for any $\rho>0$. Structure of sequence Orlicz spaces were studied by many authors (see $[5,7]$).

Proposition 1. ([6, 4.a.5]). Let M_{1} and M_{2} be two Orlicz functions. Then the following statements are equivalent:
(i) $l_{M_{1}}=l_{M_{2}}$;
(ii) $\exists k>0, K>0, t_{0}>0$: $\forall 0 \leq t \leq t_{0}$

$$
K^{-1} M_{2}\left(k^{-1} t\right) \leq M_{1}(t) \leq K M_{2}(\bar{k} t)
$$

The second statement means that functions M_{1} and M_{2} are equivalent at zero. So Orlicz sequence space is determined by the behavior of its normalizing function near zero.

We will consider intersection of two spaces E and F with symmetric bases with its usual norm:

$$
\|x\|_{E \cap F}=\left\|\left(x_{1}, x_{2}, \ldots\right)\right\|_{E \cap F}=\max \left(\|x\|_{E},\|x\|_{F}\right)
$$

The natural basis of $E \cap F$ will be also symmetric. It's known that for two sequence Orlicz spaces $l_{M_{1}}$ and $l_{M_{2}}$ intersection $l_{M_{1}} \cap l_{M_{2}}=l_{M}$, where M is equivalent to $\max \left(M_{1}, M_{2}\right)[6]$.

Definition 3. We will say that a Banach space X has Banach-Saks p-property ($p-B S$ property), $p \geq 1$, and write $X \in p B S$ if every weakly null sequence $\left\{x_{n}\right\} \subset X$ contains subsequence $\left\{y_{n}\right\} \subset\left\{x_{n}\right\}$ and there is a number $0<C<$ ∞ such that

$$
\left\|\sum_{k=1}^{m} y_{k}\right\|_{X} \leq C m^{\frac{1}{p}}, m \in \mathbb{N} .
$$

Banach-Saks index of the space X is supremum of $p \geq 1$ for which X has $p-B S$ property:

$$
\gamma(X)=\sup \{p \geq 1: X \in p B S\}
$$

Clearly, every Banach space has 1-BS-property and for every non-separable space X with symmetric basis Banach-Saks index $\gamma(X)$ equals to 1 [10]. Indeed, if X is non-separable then it contains universal space l_{∞} as a subspace. Further since l_{∞} by turn also contains a subspaces without p-BS property (for any $p>1$) then l_{∞} and X does not have p-BS property.

We will use the famous Rakov criterium of p-BS property.
Theorem 2. [9, Proposition 2]. Let X be a Banach space with symmetric basis. Then X has $p-B S$ property if and only if the following is true

$$
\sup _{n} \phi_{X}(n) / n^{1 / p}<\infty
$$

where $\phi_{X}(n)$ is a lower bound of numbers c such that any weakly null sequence $\left\{x_{i}\right\}_{i}$ from X contains n elements $\left\{x_{k(i)}\right\}_{i \leq n}$, for which holds

$$
\left\|\sum_{i \leq n} x_{k(i)}\right\| \leq c \max _{i \leq n}\left\|x_{k(i)}\right\|
$$

The next theorem gives a good estimation to Banach-Saks index of Orlicz spaces in terms of delation index of normalizing Orlicz function M.

Theorem 3. [9, Theorem 4]. Let h_{M} be an Orlicz sequence space with normalizing function M. Then the following statement is true

$$
\liminf _{t \rightarrow 0} \frac{M(2 t)}{M(t)}=2 \Leftrightarrow \gamma\left(h_{M}\right)=1 \text { or } h_{M} \approx l_{1}
$$

2. Main Results

Theorem 4. Let E and F be two Banach spaces with symmetric bases. Then

$$
\gamma(E \cap F) \geq \min (\gamma(E), \gamma(F))
$$

Proof. We have to show that if both E and F have p-BS property then $E \cap F$ also has p-BS property. Using theorem 2 we have

$$
E \in p B S \Leftrightarrow \sup _{n} \frac{\phi_{E}(n)}{n^{1 / p}}<\infty
$$

where $\phi_{E}(n)$ can be calculated by formula

$$
\phi_{E}(n)=\sup _{\substack{x_{n} \xrightarrow{w} 0 \\\left\|x_{n}\right\|=1}} \inf _{\left\{x_{n_{k}}\right\}_{k=1}^{N}}\left\|\sum_{k=1}^{N} x_{n_{k}}\right\|_{E}
$$

Then observing that $\|x\|_{E \cap F} \leq\|x\|_{E}+\|x\|_{F}$, for $x \in E \cap F$, we have

$$
\begin{aligned}
& \phi_{E \cap F}(N)=\sup _{\substack{w \\
x_{n} \xrightarrow{w \cap F} 0 \\
\left\|x_{n}\right\|_{\cap}=1}} \inf _{\left.x_{n_{k}}\right\}_{k=1}^{N}}\left[\max \left(\left\|\sum_{k=1}^{N} x_{n_{k}}\right\|_{E},\left\|\sum_{k=1}^{N} x_{n_{k}}\right\|_{F}\right)\right] \leq \\
& \leq \sup _{\substack{w \\
x_{n} \xrightarrow{E \cap F} \\
\left\|x_{n}\right\| \cap=1}} \inf _{\left\{x_{n_{k}}\right\}_{k=1}^{N}}\left[\left\|\sum_{k=1}^{N} x_{n_{k}}\right\|_{E}+\left\|\sum_{k=1}^{N} x_{n_{k}}\right\|_{F}\right] \leq \\
& \leq \sup _{\substack{x_{n} \xrightarrow[w]{E \cap F} 0 \\
\left\|x_{n}\right\|_{n}=1}} \inf _{\left.x_{n_{k}}\right\}_{k=1}^{N}}\left\|\sum_{k=1}^{N} x_{n_{k}}\right\|_{E}+\sup _{\substack{w \\
x_{n} \xrightarrow[w]{E \cap F} 0 \\
\left\|x_{n}\right\|_{n}=1}} \inf _{\left.x_{n_{k}}\right\}_{k=1}^{N}}\left\|\sum_{k=1}^{N} x_{n_{k}}\right\|_{F} \leq \\
& \leq \sup _{\substack{x_{n} \xrightarrow[E]{w} 0}} \inf _{\left\{x_{n} \|_{E} \leq 1\right.}\left\|\sum_{\left.n_{k}\right\}_{k=1}^{N}}^{N} x_{k=1}\right\|_{n_{k}}\left\|_{E}+\sup _{\substack{x_{n} \underset{F}{w} 0 \\
\left\|x_{n}\right\|_{F} \leq 1}} \inf _{\left\{x_{n_{k}}\right\}_{k=1}^{N}}\right\| \sum_{k=1}^{N} x_{n_{k}} \|_{F}= \\
& =\phi_{E}(N)+\phi_{F}(N) .
\end{aligned}
$$

Thus if $E \in p B S$ and $F \in p B S$ then

$$
\begin{aligned}
& \sup _{n} \frac{\phi_{E \cap F}(n)}{n^{1 / p}} \leq \sup _{n} \frac{\phi_{E}(n)+\phi_{F}(n)}{n^{1 / p}} \leq \\
& \leq \sup _{n} \frac{\phi_{E}(n)}{n^{1 / p}}+\sup _{n} \frac{\phi_{F}(n)}{n^{1 / p}}<\infty
\end{aligned}
$$

which means that also $E \cap F \in p B S$. So we get

$$
\gamma(E \cap F) \geq \min (\gamma(E), \gamma(F))
$$

The following example shows that the opposite inequality can't be obtained.
Example 1. There exist two Orlicz functions M_{1} and M_{2} so that $\gamma\left(h_{M_{1}}\right)=$ $\gamma\left(h_{M_{2}}\right)=1$ but $h_{M_{1}} \cap h_{M_{2}}=l_{2}$ and thus $\gamma\left(h_{M_{1}} \cap h_{M_{2}}\right)=2$.
Proof. Let $u_{k}=\frac{1}{k!}\left(u_{k}=\frac{1}{k} \cdot u_{k-1}\right), k=1,2, \ldots$ Consider continuous piecewise linear function $f(t)$ so that its linear parts are tangents to $g(t)=t^{2}$ at points $\left\{u_{k}\right\}_{1}^{\infty}$, i.e.

$$
f(t)=2 u_{n} t-u_{n}^{2} \text { when } t \in\left[\frac{u_{n}+u_{n+1}}{2}, \frac{u_{n-1}+u_{n}}{2}\right], n \in \mathbb{N}
$$

(see figure 1). Denote $v_{n}=\frac{u_{n}+u_{n-1}}{2}$.
Take

$$
M_{1}(t)= \begin{cases}t^{2}, & t \in\left[u_{n+1}, u_{n}\right], n \text { is odd or } t \in[1, \infty) \\ f(t), & \text { otherwise }\end{cases}
$$

Figure 1. Graphs of $f(t)$ and $t^{2}\left(u_{1}=1, u_{2}=1 / 2, u_{3}=\right.$ $1 / 6, v_{2}=3 / 4, v_{3}=1 / 3$.)
and

$$
M_{2}(t)= \begin{cases}t^{2}, & t \in\left[u_{n+1}, u_{n}\right], n \text { is even or } t \in[1, \infty), \\ f(t), & \text { otherwise } ;\end{cases}
$$

(see figure 2).

Figure 2. Graphs of $M_{1}(t)$ and $M_{2}(t)$.
Functions M_{1} and M_{2} are continuous, increasing and convex, $\lim _{t \rightarrow 0} M_{1,2}(t)=$ 0 . We are interested in behavior of these functions when t tends to zero. Taking $t=v_{n}$ we have $\frac{t}{2} \geq u_{n}\left(u_{n}+u_{n-1} \geq 4 u_{n}, k \cdot u_{n} \geq 3 u_{n}\right), n \geq 3$. Thus

$$
\begin{gathered}
2 \leq \liminf _{t \rightarrow 0} \frac{M_{1}(2 t)}{M_{1}(t)} \leq \lim _{k \rightarrow \infty} \frac{M_{1}\left(v_{k}\right)}{M_{1}\left(\frac{k-k}{2}\right)}= \\
=\lim _{k \rightarrow \infty} \frac{u_{k} \cdot v_{k-1}}{u_{k} \cdot v_{k}-u_{k}^{2}}=\lim _{k \rightarrow \infty} \frac{2 u_{k-1}}{u_{k-1}-u_{k}}= \\
=\lim _{k \rightarrow \infty} \frac{2}{k-\operatorname{evencn}} \\
k-1 / k \\
k-\text { even }
\end{gathered}
$$

Hence by theorem 3 we have $\gamma\left(h_{M_{1}}\right)=1$ and similarly $\gamma\left(h_{M_{2}}\right)=1$. But $h_{M_{1}} \cap h_{M_{2}}=h_{\max \left(M_{1}, M_{2}\right)}=h_{t^{2}}=l_{2}$ and $\gamma\left(h_{M_{1}} \cap h_{M_{2}}\right)=\gamma\left(l_{2}\right)=2$.

References

[1] Astashkin S.V., Semenov E.M., Sukochev F.A.: The Banach-Saks p-property, Mathematische Annalen. 332(2005), 879-900.
[2] Astashkin S.V., Sukochev F.A.: Banach-Saks property in Marcinkiewicz spaces, J. Math. Anal. Appl. 336(2007), 1231-1258.
[3] Banach S., Saks S.: Sur la convergence forte dans les champs L ${ }^{p}$, Ibid. 2(1930), 51-57.
[4] Dodds P.G., Semenov E.M., Sukochev F.A.: The Banach-Saks property in rearrangement invariant spaces, Studia Math. 162, N.3(2004), 263-294.
[5] Lindberg K.J.: On subspaces of Orlicz sequence spaces, Studia Math. 45(1973), 119-146.
[6] Lindennstrauss J., Tzafriri L.: Classical Banach Spaces I: Sequence Spaces, SpringerVerlag, 1977.
[7] Lindennstrauss J., Tzafriri L.: On Orlicz sequence spaces, Israel J. Math. 10(1971), 379390.
[8] Novikova A.I., Semenov E.M., Sukochev F.A.: Banach-Saks index in spaces with symmetric basis, Doklady Mathematics 77, N.3(2008), 396-397.
[9] Rakov S.A.: On Banach-Saks index of some Banach sequence spaces, Math. notes 32, N.5(1982), 613-626.
[10] Semenov E.M., Sukochev F.A.: Banch-Saks index, Math. sbornik 195, N.2(2004), 263285.

[^0]: ${ }^{1}$ Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan. Email: novikova.anna18@gmail.ru.
 The research is supported by RFBR grant 11-01-00614-a.

