BOYD INDICES FOR QUASI-NORMED REARRANGEMENT **INVARIANT SPACES**

G. E. KARADZHOV¹

ABSTRACT. We calculate the Boyd indices for the sum and intersection of two quasi-normed rearrangement invariant spaces. An application to Lorentz type spaces is also given.

Key words: rearrangement invariant function spaces, Boyd indices, interpolation spaces.

AMS subject: Primary 46E30, 47B38.

1. INTRODUCTION

Let L_{loc} be the space of all locally integrable functions f on \mathbf{R}^n with the Lebesgue measure and let L be the cone of all locally integrable functions $g \geq 0$ on $(0, \infty)$ with the Lebesgue measure.

Let f^* be the decreasing rearrangement of f, given by

 $f^*(t) = \inf\{\lambda > 0 : \mu_f(\lambda) \le t\}, \ t > 0,$

where μ_f is the distribution function of f, defined by

$$\mu_f(\lambda) = \left| \left\{ x \in \mathbf{R}^n : \left| f(x) \right| > \lambda \right\} \right|_n,$$

and $|\cdot|_n$ denotes Lebesgue's *n*-measure. If $g \in L$ we define g^* analogously. We use the notations $a_1 \leq a_2$ or $a_2 \geq a_1$ for nonnegative functions or functionals to mean that the quotient a_1/a_2 is bounded; also, $a_1 \approx a_2$ means that $a_1 \leq a_2$ and $a_1 \succeq a_2$. We say that a_1 is equivalent to a_2 if $a_1 \approx a_2$.

We consider rearrangement invariant quasi-normed spaces E, consisting of all $f \in L_{loc}$, such that $||f||_E := \rho_E(f^*) < \infty$, where ρ_E is a quasi-norm, defined on L with values in $[0, \infty]$. In this way equivalent quasi-norms ρ_E give

¹Insitute of Mathematics and Informatics, Bulgarian Academy of Sciences and Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan. Email: geremika@yahoo.com.

Research partially supported by the Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan and by a grant from HEC, Pakistan.

the same space E. We suppose that $L^1 \cap L^{\infty} \hookrightarrow E \hookrightarrow L^1 + L^{\infty}$, i.e. E is an intermediate space for the couple (L^1, L^{∞}) . There is an equivalent quasi-norm $\rho_p \approx \rho_E$ that satisfies the triangle inequality $\rho_p^p(g_1 + g_2) \leq \rho_p^p(g_1) + \rho_p^p(g_2)$, $g_1, g_2 \in L$, for some $p \in (0, 1]$ that depends only on the space E (see [9]). We say that the quasi-norm ρ_E is K-monotone (cf. [4], Definition 1.16, p. 305) if

$$g_1^{**} \le g_2^{**} \text{ implies } \rho_E(g_1^*) \le \rho_E(g_2^*), \ g_1 \in L, \ g_2 \in L,$$
 (1)

where $g^{**}(t) = \frac{1}{t} \int_0^t g^*(s) ds$, and we say that ρ_E is monotone if $g_1 \leq g_2$ implies $\rho_E(g_1^*) \leq \rho_E(g_2^*)$.

We say that the quasi-norm ρ_E satisfies Minkowski's inequality if for the equivalent quasi-norm ρ_p ,

$$\rho_p^p\left(\sum g_j\right) \preceq \sum \rho_p^p(g_j), \ g_j \in L.$$
(2)

For example, if E is a rearrangement invariant Banach function space as in [4], then by the Luxemburg representation theorem $||f||_E = \rho_E(f^*)$ for some norm ρ_E satisfying (1), (2). More general example is given by the Riesz-Fischer monotone spaces as in [4], p. 304, 305.

We recall some basic definitions of the real interpolation for quasi-normed spaces [5]. Let (A_1, A_2) be a couple of two quasi-normed spaces, such that both are continuously embedded in some quasi-normed space (see [5]) and let

$$K(t,f) = K(t,f;A_1,A_2) = \inf_{f=f_1+f_2} \{ \|f_0\|_{A_1} + t \|f_2\|_{A_2} \}, \ f \in A_1 + A_2,$$

be the K-functional of Peetre (see [5]). By definition, the K-interpolation space $A_{\Phi} = (A_1, A_2)_{\Phi}$ has a quasi-norm

$$||f||_{A_{\Phi}} = ||K(.,f)||_{\Phi},$$

where Φ is a quasi-normed function space with a monotone quasi-norm on $(0, \infty)$ with the Lebesgue measure and such that $\min\{1, t\} \in \Phi$. Then (see [5])

$$A_1 \cap A_2 \hookrightarrow A_\Phi \hookrightarrow A_1 + A_2$$

where by $X \hookrightarrow Y$ we mean that X is continuously embedded in Y. If

$$||g||_{\Phi} = \left(\int_0^\infty [w(t)t^{-\theta}g(t)]^q dt/t\right)^{1/q}, \ 0 \le \theta \le 1, \ 0 < q \le \infty, \ w \in L,$$

we write $(A_1, A_2)_{wt^{-\theta}, q}$ instead of $(A_1, A_2)_{\Phi}$ (see [5]).

By definition,

$$||f||_{A_1 \cap A_2} = ||f||_{A_1} + ||f||_{A_2}, ||f||_{A_1 + A_2} = K(1, f; A_1, A_2).$$

Denote by $Int(L^1, L^{\infty})$ the class of all quasi-normed interpolation spaces E for the couple (L^1, L^{∞}) . This means that E is an intermediate space for the couple (L^1, L^{∞}) and if T is a bounded linear operator in both L^1 and L^{∞} ,

then T is also bounded in E. Note that if E is an intermediate space, ρ_E is K-monotone and $f_1^{**} \leq f_2^{**}$, $f_2 \in E$ implies $f_1 \in E$, then $E \in Int(L^1, L^\infty)$.

For example, consider the Gamma spaces $\Gamma^q(w)$, $0 < q \leq \infty$, w - positive weight, i.e. a positive function from L, with a quasi-norm $\|f\|_{\Gamma^q(w)} := \rho_{w,q}(f^*)$, where

$$\rho_{w,q}(g) := \left(\int_0^\infty [g^{**}(t)w(t)]^q dt/t \right)^{1/q}, \ g \in L, \ 0 < q < \infty;$$

$$\rho_{w,\infty}(g) := vraisup_{t>0}g^{**}(t)w(t)$$

and

$$\int_{0}^{\infty} \min(1, t^{-q}) w^{q}(t) dt/t < \infty, \ 0 < q < \infty;$$

$$vraisup_{t>0} \min(1, t^{-1}) w(t) < \infty, \ q = \infty.$$

Then $\Gamma^q(w) = (L^1, L^\infty)_{w(t)/t,q}$. The space $E = \Gamma^q(w)$ with $\rho_E = \rho_{w,q}$ satisfies the conditions (1), (2).

The Lorentz spaces $\Lambda^q(w)$, $0 < q \le \infty$, w - positive weight, $w(2t) \approx w(t)$, are defined with a quasi-norm

$$\|f\|_{\Lambda^q(w)} := \left(\int_0^\infty [w(t)f^*(t)]^q dt/t\right)^{1/q}, \ 0 < q < \infty$$

and

$$||f||_{\Lambda^{\infty}(w)} := vraisup_{t>0}w(t)f^{*}(t).$$

We suppose that they are not trivial.

Recall the definition of the lower and upper Boyd indices α_E and β_E . Let

$$h_E(u) = \sup\left\{\frac{\rho_E(g_u^*)}{\rho_E(g^*)} : g \in L\right\}, \ g_u(t) := g(t/u)$$

be the dilation function generated by ρ_E . Then

$$\alpha_E := \sup_{0 < t < 1} \frac{\log h_E(t)}{\log t} \text{ and } \beta_E := \inf_{1 < t < \infty} \frac{\log h_E(t)}{\log t}.$$

The function h_E is submultiplicative, increasing, $h_E(1) = 1$, $h_E(u)h_E(1/u) \ge 1$, hence $0 \le \alpha_E \le \beta_E$ and if $E \in Int(L^1, L^\infty)$ then by interpolation, (analogously to [4], p. 148) we see that $h_E(s) \le \max(1, s)$. Hence $\beta_E \le 1$.

Using Minkowski's inequality for the equivalent quasi-norm ρ_p and monotonicity of f^* , we see that

$$\rho_E(f^*) \approx \rho_E(f^{**}) \text{ if } \beta_E < 1. \tag{3}$$

In particular, $\Lambda^q(w) = \Gamma^q(w)$ if $\beta_E < 1$ for $E = \Gamma^q(w)$.

We need also the modified Boyd indices $\tilde{\alpha}_E$ and β_E , defined as follows. Let

$$\tilde{h}_E(u) = \sup\left\{\frac{\rho_E((\chi g)_u^*)}{\rho_E((\chi g)^*)} : g \in L\right\}, \ (\chi g)_u(t) := (\chi g)(t/u)$$

be the modified dilation function, generated by ρ_E . Here χ is the characteristic function of the interval (0, 1). Then

$$\tilde{\alpha}_E := \sup_{0 < t < 1} \frac{\log \tilde{h}_E(t)}{\log t} \text{ and } \tilde{\beta}_E := \inf_{1 < t < \infty} \frac{\log \tilde{h}_E(t)}{\log t}$$

Since $\tilde{h}_E \leq h_E$, it follows $0 \leq \alpha_E \leq \tilde{\alpha}_E \leq \tilde{\beta}_E \leq \beta_E$. For example, if $E = L^1 + L^\infty$, then $\alpha_E = 0$, $\beta_E = 1$, $\tilde{\alpha}_E = \tilde{\beta}_E = 1$.

The Boyd indices are useful in various problems concerning continuity of operators acting in rearrangement invariant spaces [4] or in optimal couples of rearrangement invariant spaces [7], [2], [8], and in the problems of optimal embeddings [1], [3], [10]. The main goal of this paper is to provide formulas for the Boyd indices for intersection or sum of two quasi-normed spaces and to apply these results to the case of Lorentz type spaces.

2. Boyd Indices for the Sum of Two Quasi-normed Spaces

First we characterize the sum $E_1 + E_2$ via the quasi-norm $\rho_{E_1+E_2}$.

Theorem 1. Let E_1 and E_2 be intermediate spaces for the couple (L^1, L^{∞}) and let ρ_{E_1} , ρ_{E_2} be K-monotone. Then

$$||f||_{E_1+E_2} \approx \rho_{E_1+E_2}(f^*), \tag{4}$$

where for $g \in L$,

$$\rho_{E_1+E_2}(g) := \inf\{\rho_{E_1}(g_1^*) + \rho_{E_2}(g_2^*) : g = g_1 + g_2, g_1, g_2 \in L\},$$
(5)

where g^* for $g \in L$ is taken with respect to the Lebesgue measure on $(0, \infty)$.

Proof. If $f = f_1 + f_2$, $f \in L_{loc}$, then $f^*(t) \leq f_1^*(t/2) + f_2^*(t/2)$, whence

$$\rho_{E_1+E_2}(f^*) \leq \rho_{E_1}(f_1^*) + \rho_{E_2}(f_2^*),$$

therefore the right-hand side in (4) is majorized by the left-hand side. For the reverse, suppose that $f \in L_{loc}$ and $f^* = g_1 + g_2$, $g_1, g_2 \in L$. Then by the Hardy-Littlwood inequality,

$$f^{**}(t) \le \frac{1}{t} \int_0^t g_1^*(u) du + \frac{1}{t} \int_0^t g_2^*(u) du,$$

hence by the divisibility theorem (see [6]), there exist $f_1, f_2 \in L_{loc}$ such that $f = f_1 + f_2$ and

$$f_j^{**}(t) \preceq \frac{1}{t} \int_0^t g_j^*(u) du, \ j = 1, 2.$$

Using K-monotonicity of ρ_{E_1} and ρ_{E_2} , we get $\rho_{E_j}(f_j^*) \leq \rho_{E_j}(g_j^*), j = 1, 2$. Hence

 $||f||_{E_1+E_2} \leq \rho_{E_1}(g_1^*) + \rho_{E_2}(g_2^*).$

Taking the infimum, we obtain $||f||_{E_1+E_2} \leq \rho_{E_1+E_2}(f^*)$.

G. E. Karadzhov

Now we calculate the Boyd indices of the sum of two quasi-normed spaces.

Theorem 2. Let E_1 and E_2 be intermediate spaces for the couple (L^1, L^{∞}) and let ρ_{E_1} , ρ_{E_2} be K-monotone. Then

$$\alpha_{E_1+E_2} \ge \min(\alpha_{E_1}, \alpha_{E_2}), \ \beta_{E_1+E_2} \le \max(\beta_{E_1}, \beta_{E_2}).$$
(6)

Proof. Since

 $\rho_{E_1+E_2}(g) := \inf\{\rho_{E_1}(g_1^*) + \rho_{E_2}(g_2^*): g = g_1 + g_2, g_1, g_2 \in L\}, g \in L$ and $g_u^*(t) \le g_{1u}^*(t/2) + g_u^*(t/2)$, it follows

$$\rho_{E_1+E_2}(g_u^*) \le h_{E_1}(2u)\rho_{E_1}(g_1^*) + h_{E_2}(2u)\rho_{E_2}(g_2^*).$$

Therefore,

$$h_{E_1+E_2}(u) \leq h_{E_1}(u) + h_{E_2}(u), \ u > 0.$$
 (7)

Then for u > 1 and any $\varepsilon > 0$,

$$h_{E_1+E_2}(u) \preceq u^{\beta_{E_1}+\varepsilon} + u^{\beta_{E_2}+\varepsilon} \preceq u^{\max(\beta_{E_1},\beta_{E_2})+\varepsilon}$$

whence the second inequality in (6) follows. The proof of the first inequality is analogous.

Theorem 3. Let
$$\rho_{E_1}$$
, ρ_{E_2} satisfy

$$\rho_{E_1}(\chi_{(0,1)}g^*) \preceq \rho_{E_2}(g^*), \ \rho_{E_2}(\chi_{(1,\infty)}g^*) \preceq \rho_{E_1}(g^*), \ g \in L.$$
(8)

Then

$$\|f\|_{E_1+E_2} \approx \rho_{E_1}(\chi_{(0,1)}f^*) + \rho_{E_2}(\chi_{(1,\infty)}f^*).$$
(9)

Moreover, the left-hand side in (9) is always dominated by the right-hand side, even without the condition (8).

Proof. If $f = f_1 + f_2$, then $f^*(t) \le f_1^*(t/2) + f_2^*(t/2)$ and $\rho_{E_1}(\chi_{(0,1)}f^*) \le \rho_{E_1}(\chi_{(0,1)}f_1^*) + \rho_{E_1}(\chi_{(0,1)}f_2^*),$

whence by (8)

$$\rho_{E_1}(\chi_{(0,1)}f^*) \preceq \rho_{E_1}(f_1^*) + \rho_{E_2}(f_2^*),$$

and taking the infimum, we get

$$\rho_{E_1}(\chi_{(0,1)}f^*) \preceq ||f||_{E_1+E_2}.$$

We have

$$\rho_{E_2}(\chi_{(1,\infty)}f^*) \preceq \rho_{E_2}(\chi_{(1/2,\infty)}f_1^*) + \rho_{E_2}(\chi_{(1/2,\infty)}f_2^*),$$

whence by (8)

$$\rho_{E_2}(\chi_{(1,\infty)}f^*) \leq \rho_{E_2}(\chi_{(1/2,1)})f_1^*(1/2) + \rho_{E_1}(f_1^*) + \rho_{E_2}(f_2^*)$$

40

hence, using also $\rho_{E_1}(f_1^*) \ge \rho_{E_1}(\chi_{(0,1/2)}f_1^*) \succeq f_1^*(1/2)$, we obtain

$$\rho_{E_2}(\chi_{(1,\infty)}f^*) \leq ||f||_{E_1+E_2}.$$

Thus one inequality in the equivalence (9) is proved. For the reverse, let $f \in L^1 + L^\infty$. Define $f_1(x) = signf(x)|f(x)|\chi_e(x)$, $e = \{x : |f(x)| > f^*(1)\}$ and $f_2 = f - f_1$. Then

$$f_1^*(u) \le \chi_{(0,1)}(u) f^*(u), \ f_2^*(u) \le \min(f^*(u), f^*(1)).$$

Therefore, $\rho_{E_1}(f_1^*) \leq \rho_{E_1}(\chi_{(0,1)}f^*)$ and $\rho_{E_2}(f_2^*) \leq \rho_{E_2}(\chi_{(0,1)})f^*(1) + \rho_{E_2}(\chi_{(1,\infty)}f^*)$. Since $f^*(1) \leq \rho_{E_1}(\chi_{(0,1)}f^*)$, it follows

$$||f_1||_{E_1} + ||f_2||_{E_2} \preceq \rho_{E_1}(\chi_{(0,1)}f^*) + \rho_{E_2}(\chi_{(1,\infty)}f^*).$$

Thus the second inequality in (9) is proved without the condition (8).

Theorem 4. Let E_1 and E_2 be intermediate spaces for the couple (L^1, L^{∞}) and let ρ_{E_1} , ρ_{E_2} be K-monotone, satisfying (8). If $\alpha_{E_1} \ge \alpha_{E_2}$, $\beta_{E_1} \ge \beta_{E_2}$ and

$$\rho_{E_1}(\chi_{(0,1)}(t)t^{\varepsilon-\beta_{E_1}}) < \infty, \ \rho_{E_2}(\chi_{(1,\infty)}(t)t^{-\varepsilon-\alpha_{E_2}}) < \infty,$$
(10)

for some small $\varepsilon \in (0, \beta_{E_1})$, then

$$\alpha_{E_1+E_2} = \alpha_{E_2}, \ \beta_{E_1+E_2} = \beta_{E_1}. \tag{11}$$

Proof. We have for $g(t) = \chi_{(1,\infty)}(t)t^{-\varepsilon - \alpha_{E_2}}$,

$$h_{E_1+E_2}(u) \succeq \rho_{E_2}(\chi_{(1,\infty)}(t)g_u^*(t)) \succeq u^{\alpha_{E_2}+\varepsilon},$$

whence $\alpha_{E_1+E_2} \leq \alpha_{E_2}$. Analogously $\beta_{E_1+E_2} \geq \beta_{E_1}$. It remains to use (6).

Theorem 5. Let E_1 and E_2 be intermediate spaces for the couple (L^1, L^{∞}) and let ρ_{E_1} , ρ_{E_2} be K-monotone, satisfying (8). Then

$$\tilde{\alpha}_{E_1+E_2} = \tilde{\alpha}_{E_1}, \ \tilde{\beta}_{E_1+E_2} = \tilde{\beta}_{E_1}.$$
(12)

Proof. We have $\rho_{E_1+E_2}(f^*) \approx \rho_{E_1}(\chi_{(0,1)}f^*) + \rho_{E_2}(\chi_{(1,\infty)}f^*)$, whence

 $\rho_{E_1+E_2}(g_u^*) \approx \rho_{E_1}(\chi_{(0,1)}g_u^*) + \rho_{E_2}(\chi_{(1,\infty)}g_u^*), \ g \in L.$

Since $(\chi_{(0,1)}g)^* \leq \chi_{(0,1)}g^*, g \in L$, we have

$$\rho_{E_1+E_2}((\chi_{(0,1)}g)_u^*) \approx \rho_{E_1}(\chi_{(0,1)}(\chi_{(0,1)}g)_u^*) \approx \rho_{E_1}((\chi_{(0,1)}g)_u^*),$$

whence $\tilde{h}_{E_1+E_2} \approx \tilde{h}_{E_1}$. Therefore $\tilde{\alpha}_{E_1+E_2} = \tilde{\alpha}_{E_1}, \ \tilde{\beta}_{E_1+E_2} = \tilde{\beta}_{E_1}.$

Recall that the positive weight w is slowly varying on $(1, \infty)$ (in the sense of Karamata [11]), if for all $\varepsilon > 0$ the function $t^{\varepsilon}w(t)$ is equivalent to a nondecreasing function, and the function $t^{-\varepsilon}w(t)$ is equivalent to a non-increasing function. By symmetry, we say that w is slowly varying on (0, 1) if the function $t \mapsto w(1/t)$ is slowly varying on $(1, \infty)$. Finally, w is slowly varying if it is slowly varying on (0, 1) and $(1, \infty)$.

Now we give examples.

Example 1. If $E = \Lambda^q(t^a w)$ or $E = \Gamma^q(t^a w)$, $0 \le a \le 1$, $0 < q \le \infty$, where w is slowly varying, then $\alpha_E = \beta_E = \tilde{\alpha}_E = \tilde{\beta}_E = a$.

Proof. We give a proof for $E = \Lambda^q(t^a w)$ and $0 < q < \infty$, the other cases being analogous. We have

$$\rho_E(g_u^*) = \left(\int_0^\infty [g^*(t/u)t^a w(t)]^q dt/t\right)^{1/q}$$

and by a change of variables,

$$\rho_E(g_u^*) = \left(\int_0^\infty [g^*(t)(tu)^a w(tu)]^q dt/t\right)^{1/q}.$$
(13)

It follows from the definition of a slowly varying function that for every $\varepsilon > 0$, we have $t^{-\varepsilon}w(t) \approx d(t)$, where d is a decreasing function. If u > 1, then $d(tu) \leq d(t)$, thus

$$\begin{array}{rcl} t^{-\varepsilon}w(t) & \succeq & d(tu) \\ & \approx & u^{-\varepsilon}t^{-\varepsilon}w(tu), \end{array}$$

which gives

$$w(tu) \preceq u^{\varepsilon} w(t). \tag{14}$$

Inserting this estimate in (13), we arrive at

$$\rho_E(g_u^*) \preceq u^{a+\varepsilon} \rho_E(g^*), \ u > 1,$$

which yields $h_E(u) \leq u^{a+\varepsilon}$, u > 1. Then it follows $\beta_E \leq a + \varepsilon$. Analogously, $\alpha_E \geq a - \varepsilon$. Since $\varepsilon > 0$ is arbitrary, we obtain $\alpha_E = \beta_E = a$.

Further,

$$\rho_E((\chi g)_u^*) = \left(\int_0^\infty [(\chi g)^*(t/u)t^a w(t)]^q dt/t\right)^{1/q}$$

and by a change of variables,

$$\rho_E((\chi g)_u^*) = \left(\int_0^\infty [(\chi g)^*(t)(tu)^a w(tu)]^q dt/t\right)^{1/q},$$
(15)

or

$$\rho_E((\chi g)_u^*) \preceq u^{a+\varepsilon} \rho_E((\chi g)^*), \ u > 1,$$

42

which yields $\tilde{h}_E(u) \preceq u^{a+\varepsilon}$, u > 1. Then it follows $\tilde{\beta}_E \leq a + \varepsilon$ and analogously $\tilde{\alpha}_E \geq a - \varepsilon$. Since $\varepsilon > 0$ is arbitrary, we obtain $\tilde{\alpha}_E = \tilde{\beta}_E = a$.

Example 2. If $E = E_1 + E_2$, $E_j = \Gamma^{q_j}(t^{a_j}w_j)$, $1 \ge a_1 > a_2 \ge 0$, $0 < q_j \le \infty$, j = 1, 2, where w_1 and w_2 are slowly varying, then applying Theorem 4 and Theorem 5, and the results of the previous example, we obtain $\alpha_E = a_2$, $\beta_E = \tilde{\beta}_E = \tilde{\alpha}_E = a_1$.

3. BOYD INDICES FOR INTERSECTION OF TWO QUASI-NORMED SPACES **Theorem 6.** Let $E_j \in Int(L^1, L^\infty), j = 1, 2$. Then

$$\alpha_{E_1 \cap E_2} \ge \min(\alpha_{E_1}, \alpha_{E_2}), \ \beta_{E_1 \cap E_2} \le \max(\beta_{E_1}, \beta_{E_2}).$$
 (16)

Also,

$$h_{E_1 \cap E_2}(u) \succeq \rho_{E_1}(\chi_{(0,u)}) + \rho_{E_2}(\chi_{(0,u)}).$$
(17)

Proof. We have $||f||_{E_1 \cap E_2} = \rho_{E_1 \cap E_2}(f^*)$, where by definition,

$$\rho_{E_1 \cap E_2}(g) = \rho_{E_1}(g) + \rho_{E_2}(g), \ g \in L.$$

Since $\rho_{E_1 \cap E_2}(g_u^*) \leq h_{E_1}(u)\rho_{E_1}(g^*) + h_{E_2}(u)\rho_{E_2}(g^*)$, it follows

$$h_{E_1 \cap E_2}(u) \le h_{E_1}(u) + h_{E_2}(u), \ u > 0.$$
 (18)

Then for u > 1 and any $\varepsilon > 0$,

$$h_{E_1 \cap E_2}(u) \preceq u^{\beta_{E_1} + \varepsilon} + u^{\beta_{E_2} + \varepsilon} \preceq u^{\max(\beta_{E_1}, \beta_{E_2}) + \varepsilon},$$

whence the second inequality in (16) follows. The proof of the first inequality is analogous.

For (17) we use the test function $g = \chi_{(0,1)}$. Then $h_{E_1 \cap E_2}(u) \succeq \rho_{E_1}(g_u^*) + \rho_{E_2}(g_u^*)$ and (17) follows.

Theorem 7. Let $E_j \in Int(L^1, L^\infty)$, j = 1, 2 satisfy

$$\rho_{E_1}(\chi_{(0,1)}g^*) \preceq \rho_{E_2}(\chi_{(0,1)}g^*), \ \rho_{E_2}(\chi_{(1,\infty)}g^*) \preceq \rho_{E_1}(\chi_{(1/2,\infty)}g^*).$$
(19)

Then

$$||f||_{E_1 \cap E_2} \approx \rho_{E_1}(\chi_{(1,\infty)}f^*) + \rho_{E_2}(\chi_{(0,1)}f^*).$$
(20)

The proof follows immediately from the definitions.

Theorem 8. If $E_j \in Int(L^1, L^\infty)$, j = 1, 2 satisfy (19), then

$$\tilde{\alpha}_{E_1 \cap E_2} = \tilde{\alpha}_{E_2}, \ \beta_{E_1 \cap E_2} = \beta_{E_2}. \tag{21}$$

G. E. Karadzhov

Proof. Since the condition (19) is satisfied, it follows

$$\rho_{E_1 \cap E_2}(g^*) \approx \rho_{E_2}(\chi_{(0,1)}g^*) + \rho_{E_1}(\chi_{(1,\infty)}g^*)$$

and since $(\chi_{(0,1)}g)^* \le \chi_{(0,1)}g^*, g \in L$, we have

$$\rho_{E_1 \cap E_2}((\chi_{(0,1)}g)_u^*) \approx \rho_{E_2}(\chi_{(0,1)}(\chi_{(0,1)}g)_u^*) \approx \rho_{E_2}((\chi_{(0,1)}g)_u^*),$$

whence $\tilde{h}_{E_1 \cap E_2} \approx \tilde{h}_{E_2}$. Therefore $\tilde{\alpha}_{E_1 \cap E_2} = \tilde{\alpha}_{E_2}, \ \tilde{\beta}_{E_1 \cap E_2} = \tilde{\beta}_{E_2}.$

Example 3. If $E = E_1 \cap E_2$, $E_j = \Gamma^{q_j}(t^{a_j}w_j)$, $1 \ge a_1 > a_2 \ge 0$, $0 < q_j \le \infty$, j = 1, 2, where w_1 and w_2 are slowly varying, then applying Theorem 6 and Theorem 8 we obtain $\beta_E = a_1$, $\alpha_E = \tilde{\beta}_E = \tilde{\alpha}_E = a_2$.

References

- Ahmed, I., Karadzhov, G. E., Optimal embeddings of generalized homogeneous Sobolev spaces, Colloq. Math., 123(2011), 1-20.
- [2] Ahmed, I., Karadzhov, G. E., Nazeer, W., Optimal couples of rearrangement invariant spaces for the fractional maximal operator, C.r. de l'Acad. bulgare des Sci., 64(2011),
- Bashir, Z., Karadzhov, G. E., Optimal embeddings of generalized Besov spaces, Eurasian Math. J., 2(2011), 5-31.
- [4] Bennett, C., Sharpley, R., Interpolation of operators, Academic Press, New York, 1988.
- [5] Berg, J., Löfström, J., Interpolation spaces. An introduction, Springer-Verlag, New York, 1976.
- [6] Brudnyi, Ju. A., Krugliak, N. Ja., Interpolation spaces and interpolation functors, North-Holland, Amsterdam, 1991.
- [7] Capone, C., Fiorenza, A., Karadhov, G. E., Nazeer, W., Optimal couples of rearrangement invariant spaces for the Riesz potential operator, Z. Anal. Anwendungen, 30(2011), 219-236.
- [8] Karadzhov, G. E., Nazeer, W., Optimal couples of rearrangement invariant spaces for the Bessel potential, C.r. de l'Acad. bulgare des Sci., 64(2011), 767-774.
- [9] Köthe, G., Topol. lineare Räume, Springer, Berlin, 1966.
- [10] Vybiral, J., Optimality of function spaces for boundedness of integral operators and Sobolev embeddings, Faculty of Math. and Physics, Charles University, Prague, 2002.
- [11] A. Zygmund, Trigonometric Series, second edition, Cambridge, 1958.