BOYD INDICES FOR QUASI-NORMED REARRANGEMENT INVARIANT SPACES

G. E. KARADZHOV ${ }^{1}$

Abstract

We calculate the Boyd indices for the sum and intersection of two quasi-normed rearrangement invariant spaces. An application to Lorentz type spaces is also given.

Key words: rearrangement invariant function spaces, Boyd indices, interpolation spaces.
AMS subject: Primary 46E30, 47B38.

1. Introduction

Let $L_{l o c}$ be the space of all locally integrable functions f on \mathbf{R}^{n} with the Lebesgue measure and let L be the cone of all locally integrable functions $g \geq 0$ on $(0, \infty)$ with the Lebesgue measure.

Let f^{*} be the decreasing rearrangement of f, given by

$$
f^{*}(t)=\inf \left\{\lambda>0: \mu_{f}(\lambda) \leq t\right\}, t>0
$$

where μ_{f} is the distribution function of f, defined by

$$
\mu_{f}(\lambda)=\left|\left\{x \in \mathbf{R}^{n}:|f(x)|>\lambda\right\}\right|_{n}
$$

and $|\cdot|_{n}$ denotes Lebesgue's n-measure. If $g \in L$ we define g^{*} analogously. We use the notations $a_{1} \preceq a_{2}$ or $a_{2} \succeq a_{1}$ for nonnegative functions or functionals to mean that the quotient a_{1} / a_{2} is bounded; also, $a_{1} \approx a_{2}$ means that $a_{1} \preceq a_{2}$ and $a_{1} \succeq a_{2}$. We say that a_{1} is equivalent to a_{2} if $a_{1} \approx a_{2}$.

We consider rearrangement invariant quasi-normed spaces E, consisting of all $f \in L_{l o c}$, such that $\|f\|_{E}:=\rho_{E}\left(f^{*}\right)<\infty$, where ρ_{E} is a quasi-norm, defined on L with values in $[0, \infty]$. In this way equivalent quasi-norms ρ_{E} give

[^0]the same space E. We suppose that $L^{1} \cap L^{\infty} \hookrightarrow E \hookrightarrow L^{1}+L^{\infty}$, i.e. E is an intermediate space for the couple $\left(L^{1}, L^{\infty}\right)$. There is an equivalent quasi-norm $\rho_{p} \approx \rho_{E}$ that satisfies the triangle inequality $\rho_{p}^{p}\left(g_{1}+g_{2}\right) \leq \rho_{p}^{p}\left(g_{1}\right)+\rho_{p}^{p}\left(g_{2}\right)$, $g_{1}, g_{2} \in L$, for some $p \in(0,1]$ that depends only on the space E (see [9]). We say that the quasi-norm ρ_{E} is K-monotone (cf. [4], Definition 1.16, p. 305) if
\[

$$
\begin{equation*}
g_{1}^{* *} \leq g_{2}^{* *} \text { implies } \rho_{E}\left(g_{1}^{*}\right) \preceq \rho_{E}\left(g_{2}^{*}\right), g_{1} \in L, g_{2} \in L, \tag{1}
\end{equation*}
$$

\]

where $g^{* *}(t)=\frac{1}{t} \int_{0}^{t} g^{*}(s) d s$, and we say that ρ_{E} is monotone if $g_{1} \leq g_{2}$ implies $\rho_{E}\left(g_{1}^{*}\right) \leq \rho_{E}\left(g_{2}^{*}\right)$.

We say that the quasi-norm ρ_{E} satisfies Minkowski's inequality if for the equivalent quasi-norm ρ_{p},

$$
\begin{equation*}
\rho_{p}^{p}\left(\sum g_{j}\right) \preceq \sum \rho_{p}^{p}\left(g_{j}\right), g_{j} \in L . \tag{2}
\end{equation*}
$$

For example, if E is a rearrangement invariant Banach function space as in [4], then by the Luxemburg representation theorem $\|f\|_{E}=\rho_{E}\left(f^{*}\right)$ for some norm ρ_{E} satisfying (1), (2). More general example is given by the Riesz-Fischer monotone spaces as in [4], p. 304, 305.

We recall some basic definitions of the real interpolation for quasi-normed spaces [5]. Let $\left(A_{1}, A_{2}\right)$ be a couple of two quasi-normed spaces, such that both are continuously embedded in some quasi-normed space (see [5]) and let

$$
K(t, f)=K\left(t, f ; A_{1}, A_{2}\right)=\inf _{f=f_{1}+f_{2}}\left\{\left\|f_{0}\right\|_{A_{1}}+t\left\|f_{2}\right\|_{A_{2}}\right\}, f \in A_{1}+A_{2},
$$

be the K-functional of Peetre (see [5]). By definition, the K-interpolation space $A_{\Phi}=\left(A_{1}, A_{2}\right)_{\Phi}$ has a quasi-norm

$$
\|f\|_{A_{\Phi}}=\|K(., f)\|_{\Phi}
$$

where Φ is a quasi-normed function space with a monotone quasi-norm on $(0, \infty)$ with the Lebesgue measure and such that $\min \{1, t\} \in \Phi$. Then (see [5])

$$
A_{1} \cap A_{2} \hookrightarrow A_{\Phi} \hookrightarrow A_{1}+A_{2} .
$$

where by $X \hookrightarrow Y$ we mean that X is continuously embedded in Y. If

$$
\|g\|_{\Phi}=\left(\int_{0}^{\infty}\left[w(t) t^{-\theta} g(t)\right]^{q} d t / t\right)^{1 / q}, 0 \leq \theta \leq 1,0<q \leq \infty, w \in L
$$

we write $\left(A_{1}, A_{2}\right)_{w t^{-\theta}, q}$ instead of $\left(A_{1}, A_{2}\right)_{\Phi}$ (see [5]).
By definition,

$$
\|f\|_{A_{1} \cap A_{2}}=\|f\|_{A_{1}}+\|f\|_{A_{2}},\|f\|_{A_{1}+A_{2}}=K\left(1, f ; A_{1}, A_{2}\right) .
$$

Denote by $\operatorname{Int}\left(L^{1}, L^{\infty}\right)$ the class of all quasi-normed interpolation spaces E for the couple (L^{1}, L^{∞}). This means that E is an intermediate space for the couple (L^{1}, L^{∞}) and if T is a bounded linear operator in both L^{1} and L^{∞},
then T is also bounded in E. Note that if E is an intermediate space, ρ_{E} is K-monotone and $f_{1}^{* *} \leq f_{2}^{* *}, f_{2} \in E$ implies $f_{1} \in E$, then $E \in \operatorname{Int}\left(L^{1}, L^{\infty}\right)$.

For example, consider the Gamma spaces $\Gamma^{q}(w), 0<q \leq \infty$, w - positive weight, i.e. a positive function from L, with a quasi-norm $\|f\|_{\Gamma^{q}(w)}:=\rho_{w, q}\left(f^{*}\right)$, where

$$
\begin{aligned}
\rho_{w, q}(g):= & \left(\int_{0}^{\infty}\left[g^{* *}(t) w(t)\right]^{q} d t / t\right)^{1 / q}, g \in L, 0<q<\infty \\
& \rho_{w, \infty}(g):=\operatorname{vraisup}_{t>0} g^{* *}(t) w(t)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{\infty} \min \left(1, t^{-q}\right) w^{q}(t) d t / t<\infty, 0<q<\infty \\
& \text { vraisup }_{t>0} \min \left(1, t^{-1}\right) w(t)<\infty, q=\infty
\end{aligned}
$$

Then $\Gamma^{q}(w)=\left(L^{1}, L^{\infty}\right)_{w(t) / t, q}$. The space $E=\Gamma^{q}(w)$ with $\rho_{E}=\rho_{w, q}$ satisfies the conditions (1), (2).

The Lorentz spaces $\Lambda^{q}(w), 0<q \leq \infty, w$ - positive weight, $w(2 t) \approx w(t)$, are defined with a quasi-norm

$$
\|f\|_{\Lambda^{q}(w)}:=\left(\int_{0}^{\infty}\left[w(t) f^{*}(t)\right]^{q} d t / t\right)^{1 / q}, 0<q<\infty
$$

and

$$
\|f\|_{\Lambda^{\infty}(w)}:=\text { vraisup }_{t>0} w(t) f^{*}(t)
$$

We suppose that they are not trivial.
Recall the definition of the lower and upper Boyd indices α_{E} and β_{E}. Let

$$
h_{E}(u)=\sup \left\{\frac{\rho_{E}\left(g_{u}^{*}\right)}{\rho_{E}\left(g^{*}\right)}: g \in L\right\}, g_{u}(t):=g(t / u)
$$

be the dilation function generated by ρ_{E}. Then

$$
\alpha_{E}:=\sup _{0<t<1} \frac{\log h_{E}(t)}{\log t} \text { and } \beta_{E}:=\inf _{1<t<\infty} \frac{\log h_{E}(t)}{\log t}
$$

The function h_{E} is submultiplicative, increasing, $h_{E}(1)=1, h_{E}(u) h_{E}(1 / u) \geq$ 1 , hence $0 \leq \alpha_{E} \leq \beta_{E}$ and if $E \in \operatorname{Int}\left(L^{1}, L^{\infty}\right)$ then by interpolation, (analogously to [4], p. 148) we see that $h_{E}(s) \leq \max (1, s)$. Hence $\beta_{E} \leq 1$.

Using Minkowski's inequality for the equivalent quasi-norm ρ_{p} and monotonicity of f^{*}, we see that

$$
\begin{equation*}
\rho_{E}\left(f^{*}\right) \approx \rho_{E}\left(f^{* *}\right) \text { if } \beta_{E}<1 \tag{3}
\end{equation*}
$$

In particular, $\Lambda^{q}(w)=\Gamma^{q}(w)$ if $\beta_{E}<1$ for $E=\Gamma^{q}(w)$.
We need also the modified Boyd indices $\tilde{\alpha}_{E}$ and $\tilde{\beta}_{E}$, defined as follows. Let

$$
\tilde{h}_{E}(u)=\sup \left\{\frac{\rho_{E}\left((\chi g)_{u}^{*}\right)}{\rho_{E}\left((\chi g)^{*}\right)}: g \in L\right\},(\chi g)_{u}(t):=(\chi g)(t / u)
$$

be the modified dilation function, generated by ρ_{E}. Here χ is the characteristic function of the interval $(0,1)$. Then

$$
\tilde{\alpha}_{E}:=\sup _{0<t<1} \frac{\log \tilde{h}_{E}(t)}{\log t} \text { and } \tilde{\beta}_{E}:=\inf _{1<t<\infty} \frac{\log \tilde{h}_{E}(t)}{\log t} .
$$

Since $\tilde{h}_{E} \leq h_{E}$, it follows $0 \leq \alpha_{E} \leq \tilde{\alpha}_{E} \leq \tilde{\beta}_{E} \leq \beta_{E}$. For example, if $E=$ $L^{1}+L^{\infty}$, then $\alpha_{E}=0, \beta_{E}=1, \tilde{\alpha}_{E}=\tilde{\beta}_{E}=1$.

The Boyd indices are useful in various problems concerning continuity of operators acting in rearrangement invariant spaces [4] or in optimal couples of rearrangement invariant spaces [7], [2], [8], and in the problems of optimal embeddings [1], [3], [10]. The main goal of this paper is to provide formulas for the Boyd indices for intersection or sum of two quasi-normed spaces and to apply these results to the case of Lorentz type spaces.

2. Boyd Indices for the Sum of Two Quasi-normed Spaces

First we characterize the sum $E_{1}+E_{2}$ via the quasi-norm $\rho_{E_{1}+E_{2}}$.
Theorem 1. Let E_{1} and E_{2} be intermediate spaces for the couple $\left(L^{1}, L^{\infty}\right)$ and let $\rho_{E_{1}}, \rho_{E_{2}}$ be K-monotone. Then

$$
\begin{equation*}
\|f\|_{E_{1}+E_{2}} \approx \rho_{E_{1}+E_{2}}\left(f^{*}\right) \tag{4}
\end{equation*}
$$

where for $g \in L$,

$$
\begin{equation*}
\rho_{E_{1}+E_{2}}(g):=\inf \left\{\rho_{E_{1}}\left(g_{1}^{*}\right)+\rho_{E_{2}}\left(g_{2}^{*}\right): g=g_{1}+g_{2}, g_{1}, g_{2} \in L\right\}, \tag{5}
\end{equation*}
$$

where g^{*} for $g \in L$ is taken with respect to the Lebesgue measure on $(0, \infty)$.
Proof. If $f=f_{1}+f_{2}, f \in L_{\text {loc }}$, then $f^{*}(t) \leq f_{1}^{*}(t / 2)+f_{2}^{*}(t / 2)$, whence

$$
\rho_{E_{1}+E_{2}}\left(f^{*}\right) \preceq \rho_{E_{1}}\left(f_{1}^{*}\right)+\rho_{E_{2}}\left(f_{2}^{*}\right),
$$

therefore the right-hand side in (4) is majorized by the left-hand side. For the reverse, suppose that $f \in L_{l o c}$ and $f^{*}=g_{1}+g_{2}, g_{1}, g_{2} \in L$. Then by the Hardy-Littlwood inequality,

$$
f^{* *}(t) \leq \frac{1}{t} \int_{0}^{t} g_{1}^{*}(u) d u+\frac{1}{t} \int_{0}^{t} g_{2}^{*}(u) d u
$$

hence by the divisibility theorem (see [6]), there exist $f_{1}, f_{2} \in L_{\text {loc }}$ such that $f=f_{1}+f_{2}$ and

$$
f_{j}^{* *}(t) \preceq \frac{1}{t} \int_{0}^{t} g_{j}^{*}(u) d u, j=1,2 .
$$

Using K-monotonicity of $\rho_{E_{1}}$ and $\rho_{E_{2}}$, we get $\rho_{E_{j}}\left(f_{j}^{*}\right) \preceq \rho_{E_{j}}\left(g_{j}^{*}\right), j=1,2$. Hence

$$
\|f\|_{E_{1}+E_{2}} \preceq \rho_{E_{1}}\left(g_{1}^{*}\right)+\rho_{E_{2}}\left(g_{2}^{*}\right) .
$$

Taking the infimum, we obtain $\|f\|_{E_{1}+E_{2}} \preceq \rho_{E_{1}+E_{2}}\left(f^{*}\right)$.

Now we calculate the Boyd indices of the sum of two quasi-normed spaces.
Theorem 2. Let E_{1} and E_{2} be intermediate spaces for the couple $\left(L^{1}, L^{\infty}\right)$ and let $\rho_{E_{1}}, \rho_{E_{2}}$ be K-monotone. Then

$$
\begin{equation*}
\alpha_{E_{1}+E_{2}} \geq \min \left(\alpha_{E_{1}}, \alpha_{E_{2}}\right), \beta_{E_{1}+E_{2}} \leq \max \left(\beta_{E_{1}}, \beta_{E_{2}}\right) \tag{6}
\end{equation*}
$$

Proof. Since

$$
\rho_{E_{1}+E_{2}}(g):=\inf \left\{\rho_{E_{1}}\left(g_{1}^{*}\right)+\rho_{E_{2}}\left(g_{2}^{*}\right): g=g_{1}+g_{2}, g_{1}, g_{2} \in L\right\}, g \in L
$$

and $g_{u}^{*}(t) \leq g_{1 u}^{*}(t / 2)+g_{u}^{*}(t / 2)$, it follows

$$
\rho_{E_{1}+E_{2}}\left(g_{u}^{*}\right) \leq h_{E_{1}}(2 u) \rho_{E_{1}}\left(g_{1}^{*}\right)+h_{E_{2}}(2 u) \rho_{E_{2}}\left(g_{2}^{*}\right) .
$$

Therefore,

$$
\begin{equation*}
h_{E_{1}+E_{2}}(u) \preceq h_{E_{1}}(u)+h_{E_{2}}(u), u>0 . \tag{7}
\end{equation*}
$$

Then for $u>1$ and any $\varepsilon>0$,

$$
h_{E_{1}+E_{2}}(u) \preceq u^{\beta_{E_{1}}+\varepsilon}+u^{\beta_{E_{2}}+\varepsilon} \preceq u^{\max \left(\beta_{E_{1}}, \beta_{E_{2}}\right)+\varepsilon},
$$

whence the second inequality in (6) follows. The proof of the first inequality is analogous.

Theorem 3. Let $\rho_{E_{1}}, \rho_{E_{2}}$ satisfy

$$
\begin{equation*}
\rho_{E_{1}}\left(\chi_{(0,1)} g^{*}\right) \preceq \rho_{E_{2}}\left(g^{*}\right), \rho_{E_{2}}\left(\chi_{(1, \infty)} g^{*}\right) \preceq \rho_{E_{1}}\left(g^{*}\right), g \in L . \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
\|f\|_{E_{1}+E_{2}} \approx \rho_{E_{1}}\left(\chi_{(0,1)} f^{*}\right)+\rho_{E_{2}}\left(\chi_{(1, \infty)} f^{*}\right) \tag{9}
\end{equation*}
$$

Moreover, the left-hand side in (9) is always dominated by the right-hand side, even without the condition (8).

Proof. If $f=f_{1}+f_{2}$, then $f^{*}(t) \leq f_{1}^{*}(t / 2)+f_{2}^{*}(t / 2)$ and

$$
\rho_{E_{1}}\left(\chi_{(0,1)} f^{*}\right) \preceq \rho_{E_{1}}\left(\chi_{(0,1)} f_{1}^{*}\right)+\rho_{E_{1}}\left(\chi_{(0,1)} f_{2}^{*}\right),
$$

whence by (8)

$$
\rho_{E_{1}}\left(\chi_{(0,1)} f^{*}\right) \preceq \rho_{E_{1}}\left(f_{1}^{*}\right)+\rho_{E_{2}}\left(f_{2}^{*}\right),
$$

and taking the infimum, we get

$$
\rho_{E_{1}}\left(\chi_{(0,1)} f^{*}\right) \preceq\|f\|_{E_{1}+E_{2}} .
$$

We have

$$
\rho_{E_{2}}\left(\chi_{(1, \infty)} f^{*}\right) \preceq \rho_{E_{2}}\left(\chi_{(1 / 2, \infty)} f_{1}^{*}\right)+\rho_{E_{2}}\left(\chi_{(1 / 2, \infty)} f_{2}^{*}\right),
$$

whence by (8)

$$
\rho_{E_{2}}\left(\chi_{(1, \infty)} f^{*}\right) \preceq \rho_{E_{2}}\left(\chi_{(1 / 2,1)}\right) f_{1}^{*}(1 / 2)+\rho_{E_{1}}\left(f_{1}^{*}\right)+\rho_{E_{2}}\left(f_{2}^{*}\right)
$$

hence, using also $\rho_{E_{1}}\left(f_{1}^{*}\right) \geq \rho_{E_{1}}\left(\chi_{(0,1 / 2)} f_{1}^{*}\right) \succeq f_{1}^{*}(1 / 2)$, we obtain

$$
\rho_{E_{2}}\left(\chi_{(1, \infty)} f^{*}\right) \preceq\|f\|_{E_{1}+E_{2}} .
$$

Thus one inequality in the equivalence (9) is proved. For the reverse, let $f \in L^{1}+L^{\infty}$. Define $f_{1}(x)=\operatorname{signf}(x)|f(x)| \chi_{e}(x), e=\left\{x:|f(x)|>f^{*}(1)\right\}$ and $f_{2}=f-f_{1}$. Then

$$
f_{1}^{*}(u) \leq \chi_{(0,1)}(u) f^{*}(u), f_{2}^{*}(u) \leq \min \left(f^{*}(u), f^{*}(1)\right) .
$$

Therefore, $\rho_{E_{1}}\left(f_{1}^{*}\right) \leq \rho_{E_{1}}\left(\chi_{(0,1)} f^{*}\right)$ and $\rho_{E_{2}}\left(f_{2}^{*}\right) \leq \rho_{E_{2}}\left(\chi_{(0,1)}\right) f^{*}(1)+\rho_{E_{2}}\left(\chi_{(1, \infty)} f^{*}\right)$.
Since $f^{*}(1) \preceq \rho_{E_{1}}\left(\chi_{(0,1)} f^{*}\right)$, it follows

$$
\left\|f_{1}\right\|_{E_{1}}+\left\|f_{2}\right\|_{E_{2}} \preceq \rho_{E_{1}}\left(\chi_{(0,1)} f^{*}\right)+\rho_{E_{2}}\left(\chi_{(1, \infty)} f^{*}\right) .
$$

Thus the second inequality in (9) is proved without the condition (8).

Theorem 4. Let E_{1} and E_{2} be intermediate spaces for the couple $\left(L^{1}, L^{\infty}\right)$ and let $\rho_{E_{1}}, \rho_{E_{2}}$ be K-monotone, satisfying (8). If $\alpha_{E_{1}} \geq \alpha_{E_{2}}, \beta_{E_{1}} \geq \beta_{E_{2}}$ and

$$
\begin{equation*}
\rho_{E_{1}}\left(\chi_{(0,1)}(t) t^{\varepsilon-\beta_{E_{1}}}\right)<\infty, \quad \rho_{E_{2}}\left(\chi_{(1, \infty)}(t) t^{-\varepsilon-\alpha_{E_{2}}}\right)<\infty, \tag{10}
\end{equation*}
$$

for some small $\varepsilon \in\left(0, \beta_{E_{1}}\right)$, then

$$
\begin{equation*}
\alpha_{E_{1}+E_{2}}=\alpha_{E_{2}}, \beta_{E_{1}+E_{2}}=\beta_{E_{1}} . \tag{11}
\end{equation*}
$$

Proof. We have for $g(t)=\chi_{(1, \infty)}(t) t^{-\varepsilon-\alpha_{E_{2}}}$,

$$
h_{E_{1}+E_{2}}(u) \succeq \rho_{E_{2}}\left(\chi_{(1, \infty)}(t) g_{u}^{*}(t)\right) \succeq u^{\alpha_{E_{2}}+\varepsilon},
$$

whence $\alpha_{E_{1}+E_{2}} \leq \alpha_{E_{2}}$. Analogously $\beta_{E_{1}+E_{2}} \geq \beta_{E_{1}}$. It remains to use (6).

Theorem 5. Let E_{1} and E_{2} be intermediate spaces for the couple $\left(L^{1}, L^{\infty}\right)$ and let $\rho_{E_{1}}, \rho_{E_{2}}$ be K-monotone, satisfying (8). Then

$$
\begin{equation*}
\tilde{\alpha}_{E_{1}+E_{2}}=\tilde{\alpha}_{E_{1}}, \tilde{\beta}_{E_{1}+E_{2}}=\tilde{\beta}_{E_{1}} . \tag{12}
\end{equation*}
$$

Proof. We have $\rho_{E_{1}+E_{2}}\left(f^{*}\right) \approx \rho_{E_{1}}\left(\chi_{(0,1)} f^{*}\right)+\rho_{E_{2}}\left(\chi_{(1, \infty)} f^{*}\right)$, whence

$$
\rho_{E_{1}+E_{2}}\left(g_{u}^{*}\right) \approx \rho_{E_{1}}\left(\chi_{(0,1)} g_{u}^{*}\right)+\rho_{E_{2}}\left(\chi_{(1, \infty)} g_{u}^{*}\right), g \in L .
$$

Since $\left(\chi_{(0,1)} g\right)^{*} \leq \chi_{(0,1)} g^{*}, g \in L$, we have

$$
\rho_{E_{1}+E_{2}}\left(\left(\chi_{(0,1)} g\right)_{u}^{*}\right) \approx \rho_{E_{1}}\left(\chi_{(0,1)}\left(\chi_{(0,1)} g\right)_{u}^{*}\right) \approx \rho_{E_{1}}\left(\left(\chi_{(0,1)} g\right)_{u}^{*}\right),
$$

whence $\tilde{h}_{E_{1}+E_{2}} \approx \tilde{h}_{E_{1}}$. Therefore $\tilde{\alpha}_{E_{1}+E_{2}}=\tilde{\alpha}_{E_{1}}, \tilde{\beta}_{E_{1}+E_{2}}=\tilde{\beta}_{E_{1}}$.

Recall that the positive weight w is slowly varying on $(1, \infty)$ (in the sense of Karamata [11]), if for all $\varepsilon>0$ the function $t^{\varepsilon} w(t)$ is equivalent to a nondecreasing function, and the function $t^{-\varepsilon} w(t)$ is equivalent to a non-increasing function. By symmetry, we say that w is slowly varying on $(0,1)$ if the function $t \mapsto w(1 / t)$ is slowly varying on $(1, \infty)$. Finally, w is slowly varying if it is slowly varying on $(0,1)$ and $(1, \infty)$.

Now we give examples.
Example 1. If $E=\Lambda^{q}\left(t^{a} w\right)$ or $E=\Gamma^{q}\left(t^{a} w\right), 0 \leq a \leq 1,0<q \leq \infty$, where w is slowly varying, then $\alpha_{E}=\beta_{E}=\tilde{\alpha}_{E}=\tilde{\beta}_{E}=a$.
Proof. We give a proof for $E=\Lambda^{q}\left(t^{a} w\right)$ and $0<q<\infty$, the other cases being analogous. We have

$$
\rho_{E}\left(g_{u}^{*}\right)=\left(\int_{0}^{\infty}\left[g^{*}(t / u) t^{a} w(t)\right]^{q} d t / t\right)^{1 / q}
$$

and by a change of variables,

$$
\begin{equation*}
\rho_{E}\left(g_{u}^{*}\right)=\left(\int_{0}^{\infty}\left[g^{*}(t)(t u)^{a} w(t u)\right]^{q} d t / t\right)^{1 / q} \tag{13}
\end{equation*}
$$

It follows from the definition of a slowly varying function that for every $\varepsilon>0$, we have $t^{-\varepsilon} w(t) \approx d(t)$, where d is a decreasing function. If $u>1$, then $d(t u) \leq d(t)$, thus

$$
\begin{aligned}
t^{-\varepsilon} w(t) & \succeq d(t u) \\
& \approx u^{-\varepsilon} t^{-\varepsilon} w(t u)
\end{aligned}
$$

which gives

$$
\begin{equation*}
w(t u) \preceq u^{\varepsilon} w(t) \tag{14}
\end{equation*}
$$

Inserting this estimate in (13), we arrive at

$$
\rho_{E}\left(g_{u}^{*}\right) \preceq u^{a+\varepsilon} \rho_{E}\left(g^{*}\right), u>1
$$

which yields $h_{E}(u) \preceq u^{a+\varepsilon}, u>1$. Then it follows $\beta_{E} \leq a+\varepsilon$. Analogously, $\alpha_{E} \geq a-\varepsilon$. Since $\varepsilon>0$ is arbitrary, we obtain $\alpha_{E}=\beta_{E}=a$.

Further,

$$
\rho_{E}\left((\chi g)_{u}^{*}\right)=\left(\int_{0}^{\infty}\left[(\chi g)^{*}(t / u) t^{a} w(t)\right]^{q} d t / t\right)^{1 / q}
$$

and by a change of variables,

$$
\begin{equation*}
\rho_{E}\left((\chi g)_{u}^{*}\right)=\left(\int_{0}^{\infty}\left[(\chi g)^{*}(t)(t u)^{a} w(t u)\right]^{q} d t / t\right)^{1 / q} \tag{15}
\end{equation*}
$$

or

$$
\rho_{E}\left((\chi g)_{u}^{*}\right) \preceq u^{a+\varepsilon} \rho_{E}\left((\chi g)^{*}\right), u>1
$$

which yields $\tilde{h}_{E}(u) \preceq u^{a+\varepsilon}, u>1$. Then it follows $\tilde{\beta}_{E} \leq a+\varepsilon$ and analogously $\tilde{\alpha}_{E} \geq a-\varepsilon$. Since $\varepsilon>0$ is arbitrary, we obtain $\tilde{\alpha}_{E}=\tilde{\beta}_{E}=a$.

Example 2. If $E=E_{1}+E_{2}, E_{j}=\Gamma^{q_{j}}\left(t^{a_{j}} w_{j}\right), 1 \geq a_{1}>a_{2} \geq 0,0<q_{j} \leq \infty$, $j=1,2$, where w_{1} and w_{2} are slowly varying, then applying Theorem 4 and Theorem 5, and the results of the previous example, we obtain $\alpha_{E}=a_{2}, \beta_{E}=$ $\tilde{\beta}_{E}=\tilde{\alpha}_{E}=a_{1}$.

3. Boyd Indices for Intersection of Two Quasi-normed Spaces

Theorem 6. Let $E_{j} \in \operatorname{Int}\left(L^{1}, L^{\infty}\right), j=1,2$. Then

$$
\begin{equation*}
\alpha_{E_{1} \cap E_{2}} \geq \min \left(\alpha_{E_{1}}, \alpha_{E_{2}}\right), \beta_{E_{1} \cap E_{2}} \leq \max \left(\beta_{E_{1}}, \beta_{E_{2}}\right) \tag{16}
\end{equation*}
$$

Also,

$$
\begin{equation*}
h_{E_{1} \cap E_{2}}(u) \succeq \rho_{E_{1}}\left(\chi_{(0, u)}\right)+\rho_{E_{2}}\left(\chi_{(0, u)}\right) . \tag{17}
\end{equation*}
$$

Proof. We have $\|f\|_{E_{1} \cap E_{2}}=\rho_{E_{1} \cap E_{2}}\left(f^{*}\right)$, where by definition,

$$
\rho_{E_{1} \cap E_{2}}(g)=\rho_{E_{1}}(g)+\rho_{E_{2}}(g), g \in L
$$

Since $\rho_{E_{1} \cap E_{2}}\left(g_{u}^{*}\right) \leq h_{E_{1}}(u) \rho_{E_{1}}\left(g^{*}\right)+h_{E_{2}}(u) \rho_{E_{2}}\left(g^{*}\right)$, it follows

$$
\begin{equation*}
h_{E_{1} \cap E_{2}}(u) \leq h_{E_{1}}(u)+h_{E_{2}}(u), u>0 . \tag{18}
\end{equation*}
$$

Then for $u>1$ and any $\varepsilon>0$,

$$
h_{E_{1} \cap E_{2}}(u) \preceq u^{\beta_{E_{1}}+\varepsilon}+u^{\beta_{E_{2}}+\varepsilon} \preceq u^{\max \left(\beta_{E_{1}}, \beta_{E_{2}}\right)+\varepsilon},
$$

whence the second inequality in (16) follows. The proof of the first inequality is analogous.

For (17) we use the test function $g=\chi_{(0,1)}$. Then $h_{E_{1} \cap E_{2}}(u) \succeq \rho_{E_{1}}\left(g_{u}^{*}\right)+$ $\rho_{E_{2}}\left(g_{u}^{*}\right)$ and (17) follows.

Theorem 7. Let $E_{j} \in \operatorname{Int}\left(L^{1}, L^{\infty}\right), j=1,2$ satisfy

$$
\begin{equation*}
\rho_{E_{1}}\left(\chi_{(0,1)} g^{*}\right) \preceq \rho_{E_{2}}\left(\chi_{(0,1)} g^{*}\right), \rho_{E_{2}}\left(\chi_{(1, \infty)} g^{*}\right) \preceq \rho_{E_{1}}\left(\chi_{(1 / 2, \infty)} g^{*}\right) . \tag{19}
\end{equation*}
$$

Then

$$
\begin{equation*}
\|f\|_{E_{1} \cap E_{2}} \approx \rho_{E_{1}}\left(\chi_{(1, \infty)} f^{*}\right)+\rho_{E_{2}}\left(\chi_{(0,1)} f^{*}\right) \tag{20}
\end{equation*}
$$

The proof follows immediately from the definitions.
Theorem 8. If $E_{j} \in \operatorname{Int}\left(L^{1}, L^{\infty}\right), j=1,2$ satisfy (19), then

$$
\begin{equation*}
\tilde{\alpha}_{E_{1} \cap E_{2}}=\tilde{\alpha}_{E_{2}}, \tilde{\beta}_{E_{1} \cap E_{2}}=\tilde{\beta}_{E_{2}} \tag{21}
\end{equation*}
$$

Proof. Since the condition (19) is satisfied, it follows

$$
\rho_{E_{1} \cap E_{2}}\left(g^{*}\right) \approx \rho_{E_{2}}\left(\chi_{(0,1)} g^{*}\right)+\rho_{E_{1}}\left(\chi_{(1, \infty)} g^{*}\right)
$$

and since $\left(\chi_{(0,1)} g\right)^{*} \leq \chi_{(0,1)} g^{*}, g \in L$, we have

$$
\rho_{E_{1} \cap E_{2}}\left(\left(\chi_{(0,1)} g\right)_{u}^{*}\right) \approx \rho_{E_{2}}\left(\chi_{(0,1)}\left(\chi_{(0,1)} g\right)_{u}^{*}\right) \approx \rho_{E_{2}}\left(\left(\chi_{(0,1)} g\right)_{u}^{*}\right)
$$

whence $\tilde{h}_{E_{1} \cap E_{2}} \approx \tilde{h}_{E_{2}}$. Therefore $\tilde{\alpha}_{E_{1} \cap E_{2}}=\tilde{\alpha}_{E_{2}}, \tilde{\beta}_{E_{1} \cap E_{2}}=\tilde{\beta}_{E_{2}}$.

Example 3. If $E=E_{1} \cap E_{2}, E_{j}=\Gamma^{q_{j}}\left(t^{a_{j}} w_{j}\right), 1 \geq a_{1}>a_{2} \geq 0,0<q_{j} \leq \infty$, $j=1,2$, where w_{1} and w_{2} are slowly varying, then applying Theorem 6 and Theorem 8 we obtain $\beta_{E}=a_{1}, \alpha_{E}=\tilde{\beta}_{E}=\tilde{\alpha}_{E}=a_{2}$.

References

[1] Ahmed, I., Karadzhov, G. E., Optimal embeddings of generalized homogeneous Sobolev spaces, Colloq. Math., 123(2011), 1-20.
[2] Ahmed, I., Karadzhov, G. E., Nazeer, W., Optimal couples of rearrangement invariant spaces for the fractional maximal operator, C.r. de l'Acad. bulgare des Sci., 64(2011),
[3] Bashir, Z., Karadzhov, G. E., Optimal embeddings of generalized Besov spaces, Eurasian Math. J., 2(2011), 5-31.
[4] Bennett, C., Sharpley, R., Interpolation of operators, Academic Press, New York, 1988.
[5] Berg, J., Löfström, J., Interpolation spaces. An introduction, Springer-Verlag, New York, 1976.
[6] Brudnyi, Ju. A., Krugliak, N. Ja., Interpolation spaces and interpolation functors, NorthHolland, Amsterdam, 1991.
[7] Capone, C., Fiorenza, A., Karadhov, G. E., Nazeer, W., Optimal couples of rearrangement invariant spaces for the Riesz potential operator, Z. Anal. Anwendungen, 30(2011), 219-236.
[8] Karadzhov, G. E., Nazeer, W., Optimal couples of rearrangement invariant spaces for the Bessel potential, C.r. de l'Acad. bulgare des Sci., 64(2011), 767-774.
[9] Köthe, G., Topol. lineare Räume, Springer, Berlin, 1966.
[10] Vybiral, J., Optimality of function spaces for boundedness of integral operators and Sobolev embeddings, Faculty of Math. and Physics, Charles University, Prague, 2002.
[11] A. Zygmund, Trigonometric Series, second edition, Cambridge, 1958.

[^0]: ${ }^{1}$ Insitute of Mathematics and Informatics, Bulgarian Academy of Sciences and Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan. Email: geremika@yahoo.com.
 Research partially supported by the Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan and by a grant from HEC, Pakistan.

