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CONTINUITY ESTIMATE OF THE OPTIMAL EXERCISE
BOUNDARY WITH RESPECT TO VOLATILITY FOR THE

AMERICAN FOREIGN EXCHANGE PUT OPTION

NASIR REHMAN1, SULTAN HUSSAIN2, MALKHAZ SHASHIASHVILI3

Abstract. In this paper we consider the Garman-Kohlhagen model for
the American foreign exchange put option in one-dimensional diffusion
model where the volatility and the domestic and foreign currency risk-free
interest rates are constants. First we make preliminary estimate regard-
ing the optimal exercise boundary of the American foreign exchange put
option and then the continuity estimate with respect to volatility for the
value functions of the corresponding options. Finally we establish the con-
tinuity estimate for the optimal exercise boundary of the American foreign
exchange put option with respect to the volatility parameter.
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1. Introduction

Let (Ω,F ,P) be a probability space and (Wt), 0 ≤ t ≤ T , a one-dimensional
standard Brownian motion on it. We denote by (Ft)0≤t≤T the P -completion
of the natural filtration of (Wt), 0 ≤ t ≤ T . Throughout the paper we shall
assume that the time horizon T is finite.
On the filtered probability space (Ω,F ,Ft,P), 0 ≤ t ≤ T , we consider a finan-
cial market with two currencies domestic and foreign with their corresponding
non-negative constant interest rates rd and rf satisfying the following:

0 < rd ≤ r, 0 ≤ rf ≤ r. (1)

1Department of Mathematics and Statistics, Allama Iqbal Open University, Islam-
abad, Pakistan. Email: nasirzainy1@hotmail.com.
2Department of Mathematics, COMSATS Institute of Information Technology, Abbotabad,
Pakistan. Email: tausef775650@yahoo.co.in.
3Andrea Razmadze Mathematical Institute, Tbilisi, Georgia. Email:
mshashiashvili@yahoo.com.

85



86 Nasir Rehman, Sultan Hussain, Malkhaz Shashiashvili

Consider the volatilities σ0, σ1 and σ2 which satisfy:

0 < σ0 ≤ σ1 ≤ σ2 ≤ σ. (2)

We consider American put option problem written on the foreign exchange
rate (Q(i)

t ,Ft), 0 ≤ t ≤ T , i = 0, 1, 2 (where Q
(i)
t gives the units of domestic

currency per unit of foreign currency at time t) with the payoff function

g(x) = (K − x)+, x ≥ 0, (3)

where the exchange rate processes Q
(i)
t satisfy the following stochastic differ-

ential equation

dQ
(i)
t = Q

(i)
t ·(rd−rf )dt+Q

(i)
t ·σi ·dWt, Q

(i)
0 = Q0 > 0, i = 0, 1, 2, 0 ≤ t ≤ T.

(4)
Denote the American put value functions by v0(t, x), v1(t, x) and v2(t, x),
0 ≤ t ≤ T, x ≥ 0, corresponding to volatilities σ = σ0, σ = σ1 and σ = σ2.
It is well-known (section 2.7 of Karatzas and Shreve [6] and section 8.4 of
Shreve [9]) that American option valuation problem is related to the cor-
responding optimal stopping problem of a diffusion process in the following
manner

vi(t, x) = sup
t≤τ≤T

E

(
e−rd(τ−t)

(
K −Q(i)

τ (t, x)
)+

)
, 0 ≤ t ≤ T, x ≥ 0, i = 0, 1, 2,

(5)
where the supremum is taken over all (Fu)0≤u≤T− stopping times τ such that
t ≤ τ ≤ T and the family of stochastic processes Q

(i)
u (t, x), t ≤ u ≤ T, x ≥ 0

satisfies the same stochastic differential equation

dQ(i)
u (t, x) = Q(i)

u (t, x)(rd−rf )du+Q(i)
u (t, x) ·σi ·dWu, Q

(i)
t (t, x) = x, i=0, 1, 2,

(6)
t ≤ u ≤ T.
According to this relationship the optimal exercise boundary for the holder
of the option is the same as the optimal stopping curve of the latter optimal
stopping problem.
Let us introduce the optimal exercise boundaries bσ0(t), bσ1(t), bσ2(t), 0 ≤ t <
T corresponding to American put option problem with volatilities σ0, σ1 and
σ2.
It is well-known (see, section 2.7, Karatzas and Shreve, [6]) that

lim
t↑T

bσi(t) = min
(

rd

rf
·K, K

)
, i = 0, 1, 2. (7)

We know from the same section of [6] that the optimal exercise boundaries
bσ0(t), bσ1(t), bσ2(t), 0 ≤ t < T are nondecreasing continuous functions of time.
The remarkable fact holds true (Ekstrom [2], El-Karoui et al. [3], Hobson [4])
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that increasing the volatility, the value function of the American option with
convex payoff also increases, therefore we have

v0(t, x) ≤ v1(t, x) ≤ v2(t, x), 0 ≤ t ≤ T, x ≥ 0. (8)

We recall the definition of the optimal exercise boundaries

bσi(t) = inf{x ≥ 0 : vi(t, x) > (K − x)+}, 0 ≤ t < T, i = 0, 1, 2. (9)

From this definition and the inequality (8) it is evident that

bσ0(t) ≥ bσ1(t) ≥ bσ2(t), 0 ≤ t < T. (10)

Our objective in this paper is to estimate the distance between the optimal
exercise boundaries bσ2(t) and bσ1(t) in terms of the distance between the
volatilities σ2 and σ1. For this we need some preliminary estimates regarding
the optimal exercise boundary and the value function of the American foreign
exchange put option. Some other properties of the optimal exercise boundary
can be found in the works of Lamberton and Villeneuve [7], Rehman and
Shashiashvili [8] and Villeneuve [10]. Since volatility is a major ingredient
in option pricing, so these continuity estimates are important from practical
viewpoint too.

2. Preliminary Results

Let us introduce the critical level

x0 = min
(

rd

rf
·K, K

)
. (11)

As the optimal exercise boundary bσ0(t) is nondecreasing, we have the following
bound from the limit relation (7)

bσ0(t) ≤ x0, 0 ≤ t < T.

Here we need to prove the strict inequality.
The following lemma is crucial for the objective of this paper.

Lemma 2.1. Let σ0 > 0 be arbitrary positive constant, then for the optimal
exercise boundary bσ0(t), 0 ≤ t < T, the following inequality is valid

bσ0(t) < x0, 0 ≤ t < T. (12)

Proof. For rf ≤ rd we have x0 = K and from lemma 2.2 of [8] we get

bσ0(t) < x0, 0 ≤ t < T.

For rf > rd > 0, we have x0 = rd

rf ·K.

It is easy to see that bσ0(t) < x0 is equivalent to v0(t, x0) > (K − x0)+.
Fix t, 0 ≤ t < T and consider the value function at (t, x0)

v0(t, x0) = sup
t≤τ≤T

E[e−rd(τ−t)
(
K −Q(0)

τ (t, x0)
)+], 0 ≤ t ≤ T, (13)
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where the supremum is taken over all (Fu)0≤u≤T−stopping times τ such that
t ≤ τ ≤ T.

By time homogeneity of the stochastic process Q
(0)
u (t, x0), t ≤ u ≤ T we have

v0(t, x0) = sup
0≤τ≤T−t

E[e−rdτ
(
K −Q(0)

τ (x0)
)+], (14)

where Q
(0)
u (x0) is the solution of the following stochastic differential equation

dQ(0)
u (x0) =

(
rd−rf

)
Q(0)

u (x0)du+σ0·Q(0)
u (x0)·dWu, Q

(0)
0 (x0) = x0, 0 ≤ u ≤ T−t.

(15)
Writing the stochastic process Q

(0)
u (x0) in the explicit form we get

Q(0)
u (x0) = x0 · e(rd−rf− 1

2
σ2
0)u+σ0Wu , 0 ≤ u ≤ T − t. (16)

Denote the discounted payoff process e−rdu
(
K − Q

(0)
u (x0)

)+ by Xu(x0), 0 ≤
u ≤ T − t.
Then by applying the Tanaka-Meyer formula we have the following integral
representation for the process Xu(x0) (see, section 4 of [8])

Xu(x0) =
(
K−x0

)++M̃u(x0)+1/2
∫ u

0
e−rdvdL0

v(K−Q(0))+

+
∫ u

0
e−rdv · I

(Q
(0)
v (x0)<K)

[
Q(0)

v (x0) · rf −K · rd
]
dv, 0 ≤ u ≤ T − t, (17)

where
(
M̃u(x0),Fu

)
, 0 ≤ u ≤ T − t, is a square-integrable martingale with

M̃0(x0) = 0.
For arbitrary τ, 0 ≤ τ ≤ T − t, we get

EXτ (x0) ≥
(
K−x0

)++e−rdT E

∫ τ

0
I
(Q

(0)
v (x0)<K)

[
Q(0)

v (x0)·rf−K ·rd
]
dv. (18)

Hence by the definition of the value function we have

v0(t, x0) ≥
(
K−x0

)++e−rdT E

∫ τ

0
I
(Q

(0)
v (x0)<K)

[
Q(0)

v (x0)·rf−K ·rd
]
dv. (19)

Now let us introduce the following stopping time

τU = inf{s ≥ 0 : Ws 6∈ U}∧(T−t), where U =
(
− 1

σ0
ln

rf

rd
,

1
σ0

ln
rf

rd

)
.

Inserting explicit expression (16) to the latter inequality and replacing τ by
τ ∧ τU we get
v0(t, x0) ≥
(
K−x0

)++e−rdT E

∫ τ∧τU

0
I
(Q

(0)
v (x0)<K)

[
x0 ·rf ·e(rd−rf− 1

2
σ2
0)v+σ0·Wv−K ·rd

]
dv.

(20)
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Let us check that Q
(0)
v (x0) < K for all v such that 0 ≤ v < τ ∧ τU .

Indeed if 0 ≤ v < τ ∧ τU then v < τU and as rf − rd > 0, we shall have

− 1
σ0

ln
rf

rd
< Wv <

1
σ0

ln
rf

rd
<

1
σ0

ln
rf

rd
+

1
σ0

(rf − rd +
1
2
σ2

0)v.

Therefore

σ0Wv < ln
rf

rd
+ (rf − rd +

1
2
σ2

0)v,

from which we easily obtain

Q(0)
v (x0) = x0 · e(rd−rf− 1

2
σ2
0)v+σ0·Wv < K.

So under the integral in (20) we can replace the indicator function by 1 to get

v0(t, x0) ≥
(
K−x0

)++K ·rd ·e−rdT E

∫ τ∧τU

0

[
e(rd−rf− 1

2
σ2
0)v+σ0·Wv−1]dv, (21)

where 0 ≤ τ ≤ T − t.

Introduce the function

g(v, y) = e(rd−rf− 1
2
σ2
0)v+σ0·y−1, 0 ≤ v ≤ T−t, y ∈

(
− 1

σ0
ln

rf

rd
,

1
σ0

ln
rf

rd

)
.

We have
∂g(v, y)

∂y
= σ0 · e(rd−rf− 1

2
σ2
0)v+σ0·y.

Therefore g(0, 0) = 0 and ∂g(0,0)
∂y = σ0 > 0.

By lemma 3.1 of Villeneuve [10], there exists such a stopping time τ, τ ≤ τU ,
for which

E

∫ τ∧τU

0
g(v, Wv)dv > 0.

Hence we have the strict inequality

v0(t, x0) > (K − x0)+,

from which we ultimately get the desired result (12). ¤
Now we state and prove the continuity estimate for the value functions

v1(t, x) and v2(t, x) with respect to volatilities σ1 and σ2 respectively which
we will need in our main theorem (3.1). For a more general result see section
4 of Achdou [1]. The proof is standard but it has been written for the sake of
completeness.

Lemma 2.2. For the difference of American put value functions v2(t, x) and
v1(t, x), 0 ≤ t ≤ T, x ≥ 0, the following estimate does hold

| v2(t, x)− v1(t, x) |≤ c1 · x | σ2 − σ1 |, 0 ≤ t ≤ T, x ≥ 0, (22)

where the constant c1 depends only on r, σ and T.
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Proof. Let us consider the difference of value functions v2(t, x) and v1(t, x),
| v2(t, x)− v1(t, x) |

≤ sup
t≤τ≤T

E

(
e−rd(τ−t)

∣∣∣∣
(
K −Q(2)

τ (t, x)
)+

−
(
K −Q(1)

τ (t, x)
)+

∣∣∣∣
)

≤ sup
t≤τ≤T

E
∣∣∣Q(2)

τ (t, x)−Q(1)
τ (t, x)

∣∣∣

≤ E

(
sup

t≤u≤T

∣∣∣Q(2)
u (t, x)−Q(1)

u (t, x)
∣∣∣
)

.

For arbitrary random variable X(ω) we have E|X(ω)| ≤
(
E

(
X(ω)

)2
)1/2

.

Hence

|v2(t, x)− v1(t, x)| ≤

E

(
sup

t≤u≤T

∣∣∣Q(2)
u (t, x)−Q(1)

u (t, x)
∣∣∣
)2




1/2

. (23)

Now we will bound the right hand side of the latter inequality.
Denote by Q̂u(t, x) the difference of the stochastic processes Q

(2)
u (t, x) and

Q
(1)
u (t, x)

Q̂u = Q(2)
u −Q(1)

u , t ≤ u ≤ T, Q̂t = 0. (24)

Then we have

Q̂s =
∫ s

t
Q̂v ·

(
rd−rf

)
dv+

∫ s

t
[Q(1)

v ·(σ2−σ1)+Q̂v ·σ2]dWv, t ≤ s ≤ T. (25)

From here we can write

sup
t≤s≤u

Q̂2
s ≤ 2

(
rd−rf

)2·T
∫ u

t
Q̂2

vdv+2 sup
t≤s≤u

(∫ s

t
[Q(1)

v ·(σ2−σ1)+Q̂v ·σ2]dWv

)2
.

Taking mathematical expectation on both sides of the latter inequality to-
gether with the use of Doob’s classical maximal inequality we get

E sup
t≤s≤u

Q̂2
s ≤ 2

(
rd− rf

)2 ·T
∫ u

t
EQ̂2

vdv +8
∫ u

t
E[Q(1)

v · (σ2−σ1)+ Q̂v ·σ2]2dv.

(26)
Denote φ(u) = E sup

t≤s≤u
Q̂2

s, t ≤ u ≤ T,

then from the latter inequality and assumptions (1),(2) we obtain
φ(u) ≤

2·r2·T
∫ u

t
φ(v)dv+16·σ2

∫ u

t
φ(v)dv+16(σ2−σ1)2

∫ u

t
E(Q(1)

v )2dv, t ≤ u ≤ T.
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Now we use the standard bound (see, for example theorem 2.9, chapter 5
of Karatzas, Shreve [5] )

E(Q(1)
v )2 ≤ b · x2, t ≤ v ≤ T,

where constant b depends on r, σ and T.
Therefore the previous inequality becomes

φ(u) ≤ (
2 · r2 ·T +16 ·σ2

) ∫ u

t
φ(v)dv +16(σ2−σ1)2 · b ·x2 ·T, t ≤ u ≤ T.

(27)
Now applying the classical Gronwall inequality we get

φ(u) ≤ c2 · x2 · (σ2 − σ1)2, t ≤ u ≤ T,

where the constant c2 depends on r, σ and T.
From here we can write

E
(

sup
t≤u≤T

| Q(2)
u (t, x)−Q(1)

u (t, x) | )2 ≤ c2 · x2 · (σ2 − σ1)2. (28)

Finally using the latter inequality in (23) we get the required estimate

| v2(t, x)− v1(t, x) |≤ c1 · x | σ2 − σ1 |, 0 ≤ t ≤ T, x ≥ 0,

where the constant c1 depends only on r, σ and T. ¤

3. The Main Result

In this section we will establish a bound for the difference of the optimal
exercise boundaries of the American foreign exchange put option for two dis-
tinct values of the volatility parameter.
We remind that by x0 we denote the following critical level

x0 = min
(

rd

rf
·K, K

)
.

Theorem 3.1. For the optimal exercise boundaries bσ2(t) and bσ1(t), 0 ≤ t <
T of the corresponding American put option problem (5), the following esti-
mates are valid:

If 0 ≤ rf ≤ rd, then
(
rd ·K − rd · bσ0(t)

)1/2
· |bσ2(t)− bσ1(t)| ≤ c ·K3/2 · |σ2 − σ1|1/2 , 0 ≤ t < T.

(29)
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If rf > rd > 0, then
(
rd ·K − rf · bσ0(t)

)1/2
· |bσ2(t)− bσ1(t)| ≤ c ·K3/2 · |σ2 − σ1|1/2 , 0 ≤ t < T,

(30)
where the constant c depends only on r, σ and T and bσ0(t) denotes the optimal
exercise boundary for the same problem when volatility σ = σ0.

Proof. Consider the domain consisting of points (t, x), 0 ≤ t < T, 0 < x < ∞
for which bσ2(t) < x < min

(
rd

rf ·K, K
)

.

The value function v2(t, x) of the corresponding optimal stopping problem (5)
satisfies in this domain the following partial differential equation (section 2.7
of Karatzas and Shreve [6])

∂v2(t, x)
∂t

+
σ2

2 · x2

2
·∂

2v2(t, x)
∂x2

+(rd−rf )·x·∂v2(t, x)
∂x

−rd·v2(t, x) = 0, 0 ≤ t < T.

(31)
Let us denote

u(t, x) = v2(t, x)− (K − x), 0 ≤ t < T, bσ2(t) ≤ x < x0. (32)

Then u(t, x) ≥ 0, and we have the following properties:

u(t, bσ2(t)) = 0 (continuous-fit property), (33)

∂u

∂x
(t, bσ2(t)) = 0 (smooth-fit property). (34)

By writing the Taylor formula for the function u(t, x) with respect to argument
x at x = bσ2(t) we get

u(t, x) = (x− bσ2(t)) ·
∂u

∂x
(t, bσ2(t)) +

1
2
· (x− bσ2(t))

2 · ∂2u

∂x2
(t, x̂), (35)

where x̂ is some point such that bσ2(t) < x̂ < x.
Using the smooth-fit property we come to the equality

v2(t, x)− (K − x) =
1
2
· (x− bσ2(t))

2 · ∂
2v2

∂x2
(t, x̂), where bσ2(t) < x̂ < x. (36)

Now let us consider two cases: either 0 ≤ rf ≤ rd or rf > rd > 0.
Consider at first the case when 0 ≤ rf ≤ rd.
We know that v2(t, x) is non-increasing in t, i.e.

∂v2(t, x)
∂t

≤ 0, 0 ≤ t < T, bσ2(t) < x < min
(

rd

rf
·K,K

)
. (37)

Also it is well-known (see, section 2.7 of [6]) that

−1 ≤ ∂v2(t, x)
∂x

≤ 0.
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So from the partial differential equation (31) we deduce

σ2 ·K2

2
· ∂2v2(t, x)

∂x2
≥ σ2

2 · x2

2
· ∂2v2(t, x)

∂x2

≥ rd · v2(t, x)

≥ rd(K − x),

If bσ2(t) < x ≤ bσ0(t) then from the latter inequality we get

∂2v2(t, x)
∂x2

≥ 2 · rd

σ2 ·K2
· (K − bσ0(t)) . (38)

Using the above estimate in the equality (36) we obtain

v2(t, x)− (K − x) ≥ rd · (K − bσ0(t))
σ2 ·K2

· (x− bσ2(t))
2 . (39)

Let us take x = bσ1(t) in the latter inequality then we shall have

v2(t, bσ1(t))− v1(t, bσ1(t)) ≥
(
rd ·K − rd · bσ0(t)

)

σ2 ·K2
· (bσ1(t)− bσ2(t))

2 . (40)

Using lemma 2.2 we can write

| v2(t, bσ1(t))− v1(t, bσ1(t)) |≤ c1 ·K | σ2 − σ1 |, (41)

and hence from the previous inequality we obtain

(rd ·K − rd · bσ0(t)) (bσ2(t)− bσ1(t))
2 ≤ c1 · σ2 ·K3 |σ2 − σ1| , (42)

otherwise

(rd ·K − rd · bσ0(t))
1/2 |bσ2(t)− bσ1(t)| ≤ c ·K3/2 |σ2 − σ1|1/2 , (43)

where c is a constant dependent on r, σ and T .
We move to consider the second case when rf > rd > 0.
From the partial differential equation (31) we have

σ2 ·K2

2
· ∂2v2(t, x)

∂x2
≥ σ2

2 · x2

2
· ∂2v2(t, x)

∂x2

≥ rd ·K − rf · x
> rd ·K − rf · bσ0(t),

that is
∂2v2(t, x)

∂x2
≥ 2

σ2 ·K2

(
rd ·K − rf · bσ0(t)

)
. (44)

Therefore we get from equality (36)

v2(t, x)− (K − x) ≥ rd ·K − rf · bσ0(t)
σ2 ·K2

(x− bσ2(t))
2 . (45)
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Take x = bσ1(t) in the latter inequality then we shall have

v2(t, bσ1(t))− v1(t, bσ1(t)) ≥
rd ·K − rf · bσ0(t)

σ2 ·K2
(bσ1(t)− bσ2(t))

2 . (46)

Using bound (41) once again we get(
rd ·K − rf · bσ0(t)

)
(bσ2(t)− bσ1(t))

2 ≤ c1 · σ2 ·K3 |σ2 − σ1| , (47)

i.e. (
rd ·K − rf · bσ0(t)

)1/2
|bσ2(t)− bσ1(t)| ≤ c ·K3/2 |σ2 − σ1|1/2 , (48)

where the constant c depends on r, σ and T . ¤
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