CONSTRUCTION OF MIDDLE NUCLEAR SQUARE LOOPS

AMIR KHAN ${ }^{1}$, MUHAMMAD SHAH ${ }^{2}$, ASIF ALI 2

Abstract. Middle nuclear square loops are loops satisfying $x(y(z z))=$ $(x y)(z z)$ for all x, y and z. We construct an infinite family of nonassociative noncommutative middle nuclear square loops whose smallest member is of order 12.

Key words: middle nuclear square loop, construction of loop, C-loops. AMS SUBJECT: Primary 14H50, 14H20, 32S15.

1. Introduction

A groupoid (Q, \cdot) is a quasigroup if, for each $a, b \in Q$, the equations $a x=$ $b, y a=b$ have unique solutions where $x, y \in Q$ [1]. A loop is a quasigroup with an identity element e. The left nucleus of a loop L is $N_{\lambda}=\{l \in L$: $l(x y)=(l x) y$ for every $x, y \in L\}$. The right nucleus of a loop L is the set $N_{\rho}=\{r \in L:(x y) r=x(y r)$ for every $x, y \in L\}$, and middle nucleus of L is $N_{\theta}=\{m \in L:(y m) x=y(m x)$ for every $x, y \in L\}$. The nucleus of L is the set $N(L)=N_{\rho} \cap N_{\lambda} \cap N_{\theta}$. A loop $(L, *)$ is termed a middle nuclear square loop if every square element, i.e., every element of the form $x * x$, is in the middle nucleus. In other words, the following identity is satisfied for all x, y, z $\in L$:

$$
x *((y * y) * z))=(x *(y * y)) * z
$$

Every C-loop is a middle nuclear square loop. In this paper we construct a middle nuclear square loop of order 12 which belongs to an infinite family of nonassociative noncommutative middle nuclear square loops constructed here for the first time.

[^0]
2. Construction of middle nuclear square loop

Let H be a multiplicative group with identity element 1 , and A be an additively abelian group with identity element 0 . Any map

$$
\theta: H \times H \rightarrow A
$$

satisfying

$$
\theta(1, g)=\theta(g, 1)=0 \text { for every } g \in H
$$

is called a factor set. When $\theta: H \times H \rightarrow A$ is a factor set, we can define a multiplication on $H \times A$ by

$$
\begin{equation*}
(g, a)(h, b)=(g h, a+b+\theta(g, h)) \tag{1}
\end{equation*}
$$

The resulting groupoid is clearly a loop with neutral element $(1,0)$. It will be denoted by (H, A, θ). Additional properties of (H, A, θ) can be enforced by additional requirements on θ.

Lemma. Let $\theta: H \times H \rightarrow A$ be a factor set. Then (H, A, θ) is a middle nuclear square loop if and only if

$$
\begin{equation*}
\theta\left(h^{2}, k\right)+\theta\left(g, h^{2} k\right)=\theta\left(g, h^{2}\right)+\theta\left(g h^{2}, k\right) \text { for every } g, h, k \in H \tag{2}
\end{equation*}
$$

Proof. By definition the loop (H, A, θ) is middle nuclear square loop if and only if

$$
\begin{gathered}
(g, a)[((h, b)(h, b))(k, c)]=[(g, a)((h, b)(h, b))](k, c) \\
\Longleftrightarrow(g, a)\left[\left(h^{2}, 2 b+\theta(h, h)\right)(k, c)\right]=\left[(g, a)\left(h^{2}, 2 b+\theta(h, h)\right](k, c)\right. \\
\Longleftrightarrow(g, a)\left[\left(h^{2} k, 2 b+c+\theta(h, h)+\theta\left(h^{2}, k\right)\right]=\left[\left(g h^{2}, a+2 b+\theta(h, h)+\theta\left(g, h^{2}\right)\right](k, c)\right.\right. \\
\Longleftrightarrow\left[g\left(h^{2} k\right), a+2 b+c+\theta(h, h)+\theta\left(h^{2}, k\right)+\theta\left(g, h^{2} k\right)\right]= \\
{\left[\left[\left(g h^{2}\right) k, a+2 b+c+\theta(h, h)+\theta\left(g, h^{2}\right)+\theta\left(g h^{2}, k\right)\right]\right.}
\end{gathered}
$$

comparing both sides we get

$$
\theta\left(h^{2}, k\right)+\theta\left(g, h^{2} k\right)=\theta\left(g, h^{2}\right)+\theta\left(g h^{2}, k\right)
$$

We call a factor set θ satisfying (2) a middle nuclear square factor set.
Proposition. Let A be an abelian group of order n where $n>2$, and $\beta \in A$ an element of order bigger than 2 . Let $H=\left\{1, x, x^{2}, x^{3}\right\}$ be a cyclic group with identity element 1 . Define

$$
\theta: H \times H \rightarrow A
$$

by

$$
\begin{aligned}
\theta(a, b) & =\beta, \text { if }(a, b)=\left(x^{3}, x^{2}\right),\left(x^{2}, x^{2}\right) \\
& =-\beta, \text { if }(a, b)=\left(x^{2}, x\right),\left(x^{3}, x\right),\left(x^{3}, x^{3}\right),\left(x^{2}, x^{3}\right) \\
& =0, \text { otherwise }
\end{aligned}
$$

then $L=(H, A, \theta)$ is a nonassociative and noncommutative middle nuclear square loop with nucleus $N(L)=\{(1, a): a \in A\}$.
Proof. The map θ is clearly a factor set. It can be shown as follows

θ	1	x	x^{2}	x^{3}
1	0	0	0	0
x	0	0	0	0
x^{2}	0	$-\beta$	β	$-\beta$
x^{3}	0	$-\beta$	β	$-\beta$

To show that $L=(H, A, \theta)$ is middle nuclear square loop, we verify equation (2) as follows.

Case i : Since θ is a factor set there is nothing to prove when $g, h, k=1$
Case $i i$: when $g=x$, (2) becomes

$$
\begin{equation*}
\theta\left(h^{2}, k\right)+\theta\left(x, h^{2} k\right)=\theta\left(x, h^{2}\right)+\theta\left(x h^{2}, k\right) \tag{3}
\end{equation*}
$$

put $h=x$ in (3) we get $\theta\left(x^{2}, k\right)+\theta\left(x, x^{2} k\right)=\theta\left(x, x^{2}\right)+\theta\left(x^{3}, k\right)$
$k=1 \Rightarrow \theta\left(x, x^{2}\right)=\theta\left(x, x^{2}\right)$
$k=x \Rightarrow \theta\left(x^{2}, x\right)+\theta\left(x, x^{3}\right)=\theta\left(x, x^{2}\right)+\theta\left(x^{3}, x\right) \Longleftrightarrow-\beta=-\beta$
$k=x^{2} \Rightarrow \theta\left(x^{2}, x^{2}\right)+\theta(x, 1)=\theta\left(x, x^{2}\right)+\theta\left(x^{3}, x^{2}\right) \Longleftrightarrow \beta=\beta$
$k=x^{3} \Rightarrow \theta\left(x^{2}, x^{3}\right)+\theta(x, x)=\theta\left(x, x^{2}\right)+\theta\left(x^{3}, x^{3}\right) \Longleftrightarrow-\beta=-\beta$
Put $h=x^{2}$ in (3) we get $\theta(1, k)+\theta(x, k)=\theta(x, 1)+\theta(x, k)$ $\Rightarrow \theta(x, k)=\theta(x, k)$
put $h=x^{3}$ in (3) we get $\theta\left(x^{2}, k\right)+\theta\left(x, x^{2} k\right)=\theta\left(x, x^{2}\right)+\theta\left(x^{3}, k\right)$
$k=1 \Rightarrow \theta\left(x, x^{2}\right)=\theta\left(x, x^{2}\right)$
$k=x \Rightarrow \theta\left(x^{2}, x\right)+\theta\left(x, x^{3}\right)=\theta\left(x, x^{2}\right)+\theta\left(x^{3}, x\right) \Longleftrightarrow \beta=\beta$
$k=x^{2} \Rightarrow \theta\left(x^{2}, x^{2}\right)+\theta(x, 1)=\theta\left(x, x^{2}\right)+\theta\left(x^{3}, x^{2}\right) \Longleftrightarrow-\beta=-\beta$
$k=x^{3} \Rightarrow \theta\left(x^{2}, x^{3}\right)+\theta(x, x)=\theta\left(x, x^{2}\right)+\theta\left(x^{3}, x^{3}\right) \Longleftrightarrow \beta=\beta$
which all are true.
Case $i i i$: when $g=x^{2},(2)$ becomes

$$
\begin{equation*}
\theta\left(h^{2}, k\right)+\theta\left(x^{2}, h^{2} k\right)=\theta\left(x^{2}, h^{2}\right)+\theta\left(x^{2} h^{2}, k\right) \tag{4}
\end{equation*}
$$

put $h=x$ in (4) we get $\theta\left(x^{2}, k\right)+\theta\left(x^{2}, x^{2} k\right)=\theta\left(x^{2}, x^{2}\right)+\theta(1, k)$
$k=1 \Rightarrow \theta\left(x^{2}, x^{2}\right)=\theta\left(x^{2}, x^{2}\right)$
$k=x \Rightarrow \theta\left(x^{2}, x\right)+\theta\left(x^{2}, x^{3}\right)=\theta\left(x^{2}, x^{2}\right) \Longleftrightarrow \beta=\beta$
$k=x^{2} \Rightarrow \theta\left(x^{2}, x^{2}\right)+\theta\left(x^{2}, 1\right)=\theta\left(x^{2}, x^{2}\right) \Longleftrightarrow-\beta=-\beta$
$k=x^{3} \Rightarrow \theta\left(x^{2}, x^{3}\right)+\theta\left(x^{2}, x\right)=\theta\left(x^{2}, x^{2}\right) \Longleftrightarrow \beta=\beta$
put $h=x^{2}$ in (4) we get $\theta(1, k)+\theta\left(x^{2}, k\right)=\theta\left(x^{2}, 1\right)+\theta\left(x^{2}, k\right)$
$\Rightarrow \theta\left(x^{2}, k\right)=\theta\left(x^{2}, k\right)$
put $h=x^{3}$ in (4) we get $\theta\left(x^{2}, k\right)+\theta\left(x^{2}, x^{2} k\right)=\theta\left(x^{2}, x^{2}\right)+\theta(1, k)$
$k=1 \Rightarrow \theta\left(x^{2}, x^{2}\right)=\theta\left(x^{2}, x^{2}\right)$

$$
\begin{aligned}
& k=x \Rightarrow \theta\left(x^{2}, x\right)+\theta\left(x^{2}, x^{3}\right)=\theta\left(x^{2}, x^{2}\right) \Longleftrightarrow \beta=\beta \\
& k=x^{2} \Rightarrow \theta\left(x^{2}, x^{2}\right)+\theta\left(x^{2}, 1\right)=\theta\left(x^{2}, x^{2}\right) \Longleftrightarrow-\beta=-\beta \\
& k=x^{3} \Rightarrow \theta\left(x^{2}, x^{3}\right)+\theta\left(x^{2}, x\right)=\theta\left(x^{2}, x^{2}\right) \Longleftrightarrow \beta=\beta
\end{aligned}
$$

which all are true.
Case $i v:$ when $g=x^{3},(2)$ becomes

$$
\begin{equation*}
\theta\left(h^{2}, k\right)+\theta\left(x^{3}, h^{2} k\right)=\theta\left(x^{3}, h^{2}\right)+\theta\left(x^{3} h^{2}, k\right) \tag{5}
\end{equation*}
$$

put $h=x$ in (5) we get $\theta\left(x^{2}, k\right)+\theta\left(x^{3}, x^{2} k\right)=\theta\left(x^{3}, x^{2}\right)+\theta(x, k)$
$k=1 \Rightarrow \theta\left(x^{3}, x^{2}\right)=\theta\left(x^{3}, x^{2}\right)$
$k=x \Rightarrow \theta\left(x^{2}, x\right)+\theta\left(x^{3}, x^{3}\right)=\theta\left(x^{3}, x^{2}\right)+\theta(x, x) \Longleftrightarrow \beta=\beta$
$k=x^{2} \Rightarrow \theta\left(x^{2}, x^{2}\right)+\theta\left(x^{3}, 1\right)=\theta\left(x^{3}, x^{2}\right)+\theta\left(x, x^{2}\right) \Longleftrightarrow-\beta=-\beta$
$k=x^{3} \Rightarrow \theta\left(x^{2}, x^{3}\right)+\theta\left(x^{3}, x\right)=\theta\left(x^{3}, x^{2}\right)+\theta\left(x, x^{3}\right) \Longleftrightarrow \beta=\beta$
put $h=x^{2}$ in (5) we get $\theta(1, k)+\theta\left(x^{3}, k\right)=\theta\left(x^{3}, 1\right)+\theta\left(x^{3}, k\right)$
$\Rightarrow \theta\left(x^{3}, k\right)=\theta\left(x^{3}, k\right)$
put $h=x^{3}$ in (5) we get $\theta\left(x^{2}, k\right)+\theta\left(x^{3}, x^{2} k\right)=\theta\left(x^{3}, x^{2}\right)+\theta(x, k)$
$k=1 \Rightarrow \theta\left(x^{3}, x^{2}\right)=\theta\left(x^{3}, x^{2}\right)$
$k=x \Rightarrow \theta\left(x^{2}, x\right)+\theta\left(x^{3}, x^{3}\right)=\theta\left(x^{3}, x^{2}\right)+\theta(x, x) \Longleftrightarrow \beta=\beta$
$k=x^{2} \Rightarrow \theta\left(x^{2}, x^{2}\right)+\theta\left(x^{3}, 1\right)=\theta\left(x^{3}, x^{2}\right)+\theta\left(x, x^{2}\right) \Longleftrightarrow-\beta=-\beta$
$k=x^{3} \Rightarrow \theta\left(x^{2}, x^{3}\right)+\theta\left(x^{3}, x\right)=\theta\left(x^{3}, x^{2}\right)+\theta\left(x, x^{3}\right) \Longleftrightarrow \beta=\beta$
which all are true.
Now we show that $L=(H, A, \theta)$ is not associative. For this consider $b \in A$, As $\left(x^{3}, b\right)\left((x, b)\left(x^{3}, b\right)\right)=\left(x^{3}, b\right)(1,2 b)=\left(x^{3}, 3 b\right) \neq\left(x^{3}, 3 b-\beta\right)=(1,2 b-$ $\beta)\left(x^{3}, b\right)=\left(\left(x^{3}, b\right)(x, b)\right)\left(x^{3}, b\right)$ it follows that $L=(H, A, \theta)$ is nonassociative middle nuclear square loop.

Also L is not commutative because $\left(x^{3}, b\right)\left(x^{2}, b\right)=(x, b+\beta) \neq(x, b-\beta)=$ $\left(x^{2}, b\right)\left(x^{3}, b\right)$.

Now it remains to show that $N(L)=\{(1, a): a \in A\}$. For this consider

$$
\begin{aligned}
((g, b)(1, a))(h, c) & =(g, b)((1, a)(h, c)) \\
& \Longleftrightarrow(g, b+a+\theta(g, 1))(h, c)=(g, b)(h, a+c+\theta(1, h)) \\
& \Longleftrightarrow(g, b+a+0)(h, c)=(g, b)(h, a+c+0) \\
& \Longleftrightarrow(g h, b+a+c+\theta(g, h))=(g h, a+b+c+\theta(g, h))
\end{aligned}
$$

Which is true, so

$$
(1, a) \in N_{\theta}(L)
$$

Also

$$
\begin{aligned}
((1, a)(g, b))(h, c) & =(1, a)((g, b)(h, c)) \\
& \Longleftrightarrow(g, a+b+\theta(1, g))(h, c)=(1, a)(g h, b+c+\theta(g, h)) \\
& \Longleftrightarrow(g, a+b+0)(h, c)=(1, a)(g h, b+c+0) \\
& \Longleftrightarrow(g h, a+b+c+\theta(g, h))=(g h, a+b+c+\theta(g, h))
\end{aligned}
$$

$$
\Rightarrow(1, a) \in N_{\lambda}(L)
$$

Finally

$$
\begin{aligned}
&((g, b)(h, c))(1, a)=(g, b)((h, c)(1, a)) \\
& \Longleftrightarrow(g h, b+c+\theta(g, h))(1, a)=(g, b)(h, a+c+\theta(h, 1)) \\
& \Longleftrightarrow(g h, a+b+c+\theta(g, h)+\theta(g h, 1))=(g, b)(h, a+c+0) \\
& \Longleftrightarrow(g h, a+b+c+\theta(g, h))=(g h, a+b+c+\theta(g, h)) \\
& \Rightarrow(1, a) \in N_{\rho}(L)
\end{aligned}
$$

hence

$$
\begin{gather*}
(1, a) \in N(L) \\
\Rightarrow\{(1, a): a \in A\} \subset N(L) \tag{6}
\end{gather*}
$$

Conversely:
Let $(k, a) \in N(L)$ where $a \in A$ so

$$
\begin{gathered}
((g, b)(k, a))(h, c)=(g, b)((k, a)(h, c)) \\
\Longleftrightarrow(g k, a+b+\theta(g, k))(h, c)=(g, b)(k h, a+c+\theta(k, h)) \\
\Longleftrightarrow((g k) h, a+b+c+\theta(g, k)+\theta(g k, h))= \\
(g(k h), a+b+c+\theta(k, h)+\theta(g, k h))
\end{gathered}
$$

And this will be true only if $k=1$, i.e $(k, a) \in\{(1, a): a \in A\}$

$$
\begin{equation*}
\Rightarrow N(L) \subset\{(1, a): a \in A\} \tag{7}
\end{equation*}
$$

From (6) and (7) we get

$$
N(L)=\{(1, a): a \in A\}
$$

Which is the required result.
Example. The smallest group A satisfying the assumptions of Proposition is the 3 -element cyclic group $\{0,1,2\}$. Following the construction given in Proposition and taking $\beta=2$, we get the following nonassociative noncommutative middle nuclear square loop of order 12 .

\cdot	$(1,0)$	$(1,1)$	$(1,2)$	$(x, 0)$	$(x, 1)$	$(x, 2)$
$(1,0)$	$(1,0)$	$(1,1)$	$(1,2)$	$(x, 0)$	$(x, 1)$	$(x, 2)$
$(1,1)$	$(1,1)$	$(1,2)$	$(1,0)$	$(x, 1)$	$(x, 2)$	$(x, 0)$
$(1,2)$	$(1,2)$	$(1,0)$	$(1,1)$	$(x, 2)$	$(x, 0)$	$(x, 1)$
$(x, 0)$	$(x, 0)$	$(x, 1)$	$(x, 2)$	$\left(x^{2}, 0\right)$	$\left(x^{2}, 1\right)$	$\left(x^{2}, 2\right)$
$(x, 1)$	$(x, 1)$	$(x, 2)$	$(x, 0)$	$\left(x^{2}, 1\right)$	$\left(x^{2}, 2\right)$	$\left(x^{2}, 0\right)$
$(x, 2)$	$(x, 2)$	$(x, 0)$	$(x, 1)$	$\left(x^{2}, 2\right)$	$\left(x^{2}, 0\right)$	$\left(x^{2}, 1\right)$
$\left(x^{2}, 0\right)$	$\left(x^{2}, 0\right)$	$\left(x^{2}, 1\right)$	$\left(x^{2}, 2\right)$	$\left(x^{3}, 1\right)$	$\left(x^{3}, 2\right)$	$\left(x^{3}, 0\right)$
$\left(x^{2}, 1\right)$	$\left(x^{2}, 1\right)$	$\left(x^{2}, 2\right)$	$\left(x^{2}, 0\right)$	$\left(x^{3}, 2\right)$	$\left(x^{3}, 0\right)$	$\left(x^{3}, 1\right)$
$\left(x^{2}, 2\right)$	$\left(x^{2}, 2\right)$	$\left(x^{2}, 0\right)$	$\left(x^{2}, 1\right)$	$\left(x^{3}, 0\right)$	$\left(x^{3}, 1\right)$	$\left(x^{3}, 2\right)$
$\left(x^{3}, 0\right)$	$\left(x^{3}, 0\right)$	$\left(x^{3}, 1\right)$	$\left(x^{3}, 2\right)$	$(1,1)$	$(1,2)$	$(1,0)$
$\left(x^{3}, 1\right)$	$\left(x^{3}, 1\right)$	$\left(x^{3}, 2\right)$	$\left(x^{3}, 0\right)$	$(1,2)$	$(1,0)$	$(1,1)$
$\left(x^{3}, 2\right)$	$\left(x^{3}, 2\right)$	$\left(x^{3}, 0\right)$	$\left(x^{3}, 1\right)$	$(1,0)$	$(1,1)$	$(1,2)$

continued ...

\cdot	$(1,0)$	$\left(x^{2}, 1\right)$	$\left(x^{2}, 2\right)$	$\left(x^{3}, 0\right)$	$\left(x^{3}, 1\right)$	$\left(x^{3}, 2\right)$
$(1,0)$	$\left(x^{2}, 0\right)$	$\left(x^{2}, 1\right)$	$\left(x^{2}, 2\right)$	$\left(x^{3}, 0\right)$	$\left(x^{3}, 1\right)$	$\left(x^{3}, 2\right)$
$(1,1)$	$\left(x^{2}, 1\right)$	$\left(x^{2}, 2\right)$	$\left(x^{2}, 0\right)$	$\left(x^{3}, 1\right)$	$\left(x^{3}, 2\right)$	$\left(x^{3}, 0\right)$
$(1,2)$	$\left(x^{2}, 2\right)$	$\left(x^{2}, 0\right)$	$\left(x^{2}, 1\right)$	$\left(x^{3}, 2\right)$	$\left(x^{3}, 0\right)$	$\left(x^{3}, 1\right)$
$(x, 0)$	$\left(x^{3}, 0\right)$	$\left(x^{3}, 1\right)$	$\left(x^{3}, 2\right)$	$(1,0)$	$(1,1)$	$(1,2)$
$(x, 1)$	$\left(x^{3}, 1\right)$	$\left(x^{3}, 2\right)$	$\left(x^{3}, 0\right)$	$(1,1)$	$(1,2)$	$(1,0)$
$(x, 2)$	$\left(x^{3}, 2\right)$	$\left(x^{3}, 0\right)$	$\left(x^{3}, 1\right)$	$(1,2)$	$(1,0)$	$(1,1)$
$\left(x^{2}, 0\right)$	$(1,2)$	$(1,0)$	$(1,1)$	$(x, 1)$	$(x, 2)$	$(x, 0)$
$\left(x^{2}, 1\right)$	$(1,0)$	$(1,1)$	$(1,2)$	$(x, 2)$	$(x, 0)$	$(x, 1)$
$\left(x^{2}, 2\right)$	$(1,1)$	$(1,2)$	$(1,0)$	$(x, 0)$	$(x, 1)$	$(x, 2)$
$\left(x^{3}, 0\right)$	$(x, 2)$	$(x, 0)$	$(x, 1)$	$\left(x^{2}, 1\right)$	$\left(x^{2}, 2\right)$	$\left(x^{2}, 0\right)$
$\left(x^{3}, 1\right)$	$(x, 0)$	$(x, 1)$	$(x, 2)$	$\left(x^{2}, 2\right)$	$\left(x^{2}, 0\right)$	$\left(x^{2}, 1\right)$
$\left(x^{3}, 2\right)$	$(x, 1)$	$(x, 2)$	$(x, 0)$	$\left(x^{2}, 0\right)$	$\left(x^{2}, 1\right)$	$\left(x^{2}, 2\right)$

\cdot	0	1	2	3	4	5	6	7	8	9	10	11
0	0	1	2	3	4	5	6	7	8	9	10	11
1	1	2	0	4	5	3	7	8	6	10	11	9
2	2	0	1	5	3	4	8	6	7	11	9	10
3	3	4	5	6	7	8	9	10	11	0	1	2
4	4	5	3	7	8	6	10	11	9	1	2	0
5	5	3	4	8	6	7	11	9	10	2	0	1
6	6	7	8	10	11	9	2	0	1	4	5	3
7	7	8	6	11	9	10	0	1	2	5	3	4
8	8	6	7	9	10	11	1	2	0	3	4	5
9	9	10	11	1	2	0	5	3	4	7	8	6
10	10	11	9	2	0	1	3	4	5	8	6	7
11	11	9	10	0	1	2	4	5	3	6	7	8

We verified the above example with the help of GAP(Group Algorithm Program) package [4].

References

[1] R. H. Bruck, A Survey of Binary Systems, Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, Volume 20, Springer, 1958.
[2] M. K. Kinyon, Kyle Pula and P. Vojtechovsky, Admissible Orders Of Jordan Loops, Journal of Combinatorial Designs 17 (2009), 2, 103-118.
[3] K. McCrimmon, A Taste of Jordan Algebras, Universitext, Springer, 2004.
[4] G. P. Nagy and P. Vojtechovsky, LOOPS: Computing with quasigroups and loops in $G A P$,version 1.0.0, computational package for GAP; http://www.math.du.edu/loops.
[5] J. D. Philips and P. Vojtechovsky, C-loops: an introduction, Publicationes Mathematicae Debrecen 68 (2006), nos. 1-2, 115-137.
[6] K.Pula, Power of elements in Jordan loops, Commentationes Mathematicae Universitatis Carolinae, to appear.
[7] J. Slaney and A. Ali, Generating loops with the inverse property, Sutcliffe G., Colton S., Schulz S. (eds.); Proceedings of ESARM 2008, pp. 55-66.
[8] J. Slaney.FINDER, finite domain enumerator: System description. In Proceedings of the twelfth Conference on Automated Deduction(CADE-12), pages 798-801,1994.
[9] W. B. Vasantha Kandasamy, Smarandache Loops, American Research Press, Rehoboth, 2002.

[^0]: ${ }^{1}$ Department of Mathematics and Statistics, University of Swat, Swat, Pakistan. Email: amir.maths@gmail.com,
 ${ }^{2}$ Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan. Email: shahmaths_problem@hotmail.com, Email: dr_asif_ali@hotmail.com.

