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CONSTRUCTION OF MIDDLE NUCLEAR SQUARE LOOPS

AMIR KHAN1, MUHAMMAD SHAH2, ASIF ALI2

Abstract. Middle nuclear square loops are loops satisfying x(y(zz)) =
(xy)(zz) for all x, y and z. We construct an infinite family of nonassociative
noncommutative middle nuclear square loops whose smallest member is of
order 12.

Key words: middle nuclear square loop, construction of loop, C-loops.
AMS SUBJECT: Primary 14H50, 14H20, 32S15.

1. Introduction

A groupoid (Q, ·) is a quasigroup if, for each a, b ∈ Q, the equations ax =
b, ya = b have unique solutions where x, y ∈ Q [1]. A loop is a quasigroup
with an identity element e. The left nucleus of a loop L is Nλ = {l ∈ L :
l(xy) = (lx)y for every x, y ∈ L}. The right nucleus of a loop L is the set
Nρ = {r ∈ L : (xy)r = x(yr) for every x, y ∈ L}, and middle nucleus of L is
Nθ = {m ∈ L : (ym)x = y(mx) for every x, y ∈ L}. The nucleus of L is the
set N(L) = Nρ ∩ Nλ ∩ Nθ. A loop (L, ∗) is termed a middle nuclear square
loop if every square element, i.e., every element of the form x ∗ x, is in the
middle nucleus. In other words, the following identity is satisfied for all x, y, z
∈ L :

x ∗ ((y ∗ y) ∗ z)) = (x ∗ (y ∗ y)) ∗ z

Every C-loop is a middle nuclear square loop. In this paper we construct a
middle nuclear square loop of order 12 which belongs to an infinite family of
nonassociative noncommutative middle nuclear square loops constructed here
for the first time.
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2. Construction of middle nuclear square loop

Let H be a multiplicative group with identity element 1, and A be an
additively abelian group with identity element 0. Any map

θ : H ×H → A

satisfying
θ(1, g) = θ(g, 1) = 0 for every g ∈ H

is called a factor set. When θ : H × H → A is a factor set, we can define a
multiplication on H ×A by

(g, a)(h, b) = (gh, a + b + θ(g, h)). (1)

The resulting groupoid is clearly a loop with neutral element (1, 0). It will
be denoted by (H, A, θ). Additional properties of (H, A, θ) can be enforced by
additional requirements on θ.

Lemma. Let θ : H ×H → A be a factor set. Then (H,A, θ) is a middle
nuclear square loop if and only if

θ
(
h2, k

)
+ θ

(
g, h2k

)
= θ

(
g, h2

)
+ θ

(
gh2, k

)
for every g, h, k ∈ H. (2)

Proof. By definition the loop (H, A, θ) is middle nuclear square loop if and
only if

(g, a)[((h, b)(h, b))(k, c)] = [(g, a)((h, b)(h, b))](k, c)

⇐⇒ (g, a) [(h2, 2b + θ(h, h))(k, c)] = [(g, a)(h2, 2b + θ(h, h)](k, c)

⇐⇒ (g, a)[(h2k, 2b+c+θ(h, h)+θ
(
h2, k

)
] = [(gh2, a+2b+θ(h, h)+θ(g, h2)](k, c)

⇐⇒ [g(h2k), a + 2b + c + θ(h, h) + θ
(
h2, k

)
+ θ

(
g, h2k

)
] =

[[(gh2)k, a + 2b + c + θ(h, h) + θ(g, h2) + θ(gh2, k)]
comparing both sides we get

θ
(
h2, k

)
+ θ

(
g, h2k

)
= θ

(
g, h2

)
+ θ

(
gh2, k

)

We call a factor set θ satisfying (2) a middle nuclear square factor set. ¤

Proposition. Let A be an abelian group of order n where n > 2, and
β ∈ A an element of order bigger than 2. Let H = {1, x, x2, x3} be a cyclic
group with identity element 1. Define

θ : H ×H → A

by

θ(a, b) = β, if (a, b) = (x3, x2), (x2, x2)
= −β, if (a, b) = (x2, x), (x3, x), (x3, x3), (x2, x3)
= 0, otherwise
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then L = (H,A, θ) is a nonassociative and noncommutative middle nuclear
square loop with nucleus N (L) = {(1, a) : a ∈ A}.
Proof. The map θ is clearly a factor set. It can be shown as follows

θ 1 x x2 x3

1 0 0 0 0
x 0 0 0 0
x2 0 −β β −β
x3 0 −β β −β

To show that L = (H, A, θ) is middle nuclear square loop, we verify equation
(2) as follows.

Case i : Since θ is a factor set there is nothing to prove when g, h, k = 1
Case ii : when g = x, (2) becomes

θ
(
h2, k

)
+ θ

(
x, h2k

)
= θ

(
x, h2

)
+ θ

(
xh2, k

)
(3)

put h = x in (3) we get θ
(
x2, k

)
+ θ

(
x, x2k

)
= θ

(
x, x2

)
+ θ

(
x3, k

)
k = 1 ⇒ θ

(
x, x2

)
= θ

(
x, x2

)
k = x ⇒ θ

(
x2, x

)
+ θ

(
x, x3

)
= θ

(
x, x2

)
+ θ

(
x3, x

) ⇐⇒ −β = −β

k = x2 ⇒ θ
(
x2, x2

)
+ θ (x, 1) = θ

(
x, x2

)
+ θ

(
x3, x2

) ⇐⇒ β = β

k = x3 ⇒ θ
(
x2, x3

)
+ θ (x, x) = θ

(
x, x2

)
+ θ

(
x3, x3

) ⇐⇒ −β = −β

Put h = x2 in (3) we get θ (1, k) + θ (x, k) = θ (x, 1) + θ (x, k)
⇒ θ (x, k) = θ (x, k)

put h = x3 in (3) we get θ
(
x2, k

)
+ θ

(
x, x2k

)
= θ

(
x, x2

)
+ θ

(
x3, k

)
k = 1 ⇒ θ

(
x, x2

)
= θ

(
x, x2

)
k = x ⇒ θ

(
x2, x

)
+ θ

(
x, x3

)
= θ

(
x, x2

)
+ θ

(
x3, x

) ⇐⇒ β = β

k = x2 ⇒ θ
(
x2, x2

)
+ θ (x, 1) = θ

(
x, x2

)
+ θ

(
x3, x2

) ⇐⇒ −β = −β

k = x3 ⇒ θ
(
x2, x3

)
+ θ (x, x) = θ

(
x, x2

)
+ θ

(
x3, x3

) ⇐⇒ β = β
which all are true.
Case iii : when g = x2, (2) becomes

θ
(
h2, k

)
+ θ

(
x2, h2k

)
= θ

(
x2, h2

)
+ θ

(
x2h2, k

)
(4)

put h = x in (4) we get θ
(
x2, k

)
+ θ

(
x2, x2k

)
= θ

(
x2, x2

)
+ θ (1, k)

k = 1 ⇒ θ
(
x2, x2

)
= θ

(
x2, x2

)
k = x ⇒ θ

(
x2, x

)
+ θ

(
x2, x3

)
= θ

(
x2, x2

) ⇐⇒ β = β

k = x2 ⇒ θ
(
x2, x2

)
+ θ

(
x2, 1

)
= θ

(
x2, x2

) ⇐⇒ −β = −β

k = x3 ⇒ θ
(
x2, x3

)
+ θ

(
x2, x

)
= θ

(
x2, x2

) ⇐⇒ β = β

put h = x2 in (4) we get θ (1, k) + θ
(
x2, k

)
= θ

(
x2, 1

)
+ θ

(
x2, k

)
⇒ θ

(
x2, k

)
= θ

(
x2, k

)
put h = x3 in (4) we get θ

(
x2, k

)
+ θ

(
x2, x2k

)
= θ

(
x2, x2

)
+ θ (1, k)

k = 1 ⇒ θ
(
x2, x2

)
= θ

(
x2, x2

)
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k = x ⇒ θ
(
x2, x

)
+ θ

(
x2, x3

)
= θ

(
x2, x2

) ⇐⇒ β = β

k = x2 ⇒ θ
(
x2, x2

)
+ θ

(
x2, 1

)
= θ

(
x2, x2

) ⇐⇒ −β = −β

k = x3 ⇒ θ
(
x2, x3

)
+ θ

(
x2, x

)
= θ

(
x2, x2

) ⇐⇒ β = β
which all are true.
Case iv : when g = x3, (2) becomes

θ
(
h2, k

)
+ θ

(
x3, h2k

)
= θ

(
x3, h2

)
+ θ

(
x3h2, k

)
(5)

put h = x in (5) we get θ
(
x2, k

)
+ θ

(
x3, x2k

)
= θ

(
x3, x2

)
+ θ (x, k)

k = 1 ⇒ θ
(
x3, x2

)
= θ

(
x3, x2

)
k = x ⇒ θ

(
x2, x

)
+ θ

(
x3, x3

)
= θ

(
x3, x2

)
+ θ (x, x) ⇐⇒ β = β

k = x2 ⇒ θ
(
x2, x2

)
+ θ

(
x3, 1

)
= θ

(
x3, x2

)
+ θ

(
x, x2

) ⇐⇒ −β = −β

k = x3 ⇒ θ
(
x2, x3

)
+ θ

(
x3, x

)
= θ

(
x3, x2

)
+ θ

(
x, x3

) ⇐⇒ β = β

put h = x2 in (5) we get θ (1, k) + θ
(
x3, k

)
= θ

(
x3, 1

)
+ θ

(
x3, k

)
⇒ θ

(
x3, k

)
= θ

(
x3, k

)
put h = x3 in (5) we get θ

(
x2, k

)
+ θ

(
x3, x2k

)
= θ

(
x3, x2

)
+ θ (x, k)

k = 1 ⇒ θ
(
x3, x2

)
= θ

(
x3, x2

)
k = x ⇒ θ

(
x2, x

)
+ θ

(
x3, x3

)
= θ

(
x3, x2

)
+ θ (x, x) ⇐⇒ β = β

k = x2 ⇒ θ
(
x2, x2

)
+ θ

(
x3, 1

)
= θ

(
x3, x2

)
+ θ

(
x, x2

) ⇐⇒ −β = −β

k = x3 ⇒ θ
(
x2, x3

)
+ θ

(
x3, x

)
= θ

(
x3, x2

)
+ θ

(
x, x3

) ⇐⇒ β = β
which all are true.
Now we show that L = (H, A, θ) is not associative. For this consider b ∈ A,

As
(
x3, b

) (
(x, b)

(
x3, b

))
=

(
x3, b

)
(1, 2b) =

(
x3, 3b

) 6= (
x3, 3b− β

)
= (1, 2b −

β)(x3, b) =
(
(x3, b

)
(x, b))(x3, b) it follows that L = (H, A, θ) is nonassociative

middle nuclear square loop.
Also L is not commutative because

(
x3, b

) (
x2, b

)
= (x, b + β) 6= (x, b− β) =(

x2, b
) (

x3, b
)
.

Now it remains to show that N (L) = {(1, a) : a ∈ A}. For this consider

((g, b) (1, a)) (h, c) = (g, b) ((1, a) (h, c))
⇐⇒ (g, b + a + θ (g, 1)) (h, c) = (g, b) (h, a + c + θ (1, h))
⇐⇒ (g, b + a + 0) (h, c) = (g, b) (h, a + c + 0)
⇐⇒ (gh, b + a + c + θ (g, h)) = (gh, a + b + c + θ (g, h))

Which is true, so
(1, a) ∈ Nθ (L)

Also

((1, a) (g, b)) (h, c) = (1, a) ((g, b) (h, c))
⇐⇒ (g, a + b + θ (1, g)) (h, c) = (1, a) (gh, b + c + θ (g, h))
⇐⇒ (g, a + b + 0) (h, c) = (1, a) (gh, b + c + 0)
⇐⇒ (gh, a + b + c + θ (g, h)) = (gh, a + b + c + θ (g, h))
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⇒ (1, a) ∈ Nλ (L)

Finally

((g, b) (h, c)) (1, a) = (g, b) ((h, c) (1, a))
⇐⇒ (gh, b + c + θ (g, h)) (1, a) = (g, b) (h, a + c + θ (h, 1))
⇐⇒ (gh, a + b + c + θ (g, h) + θ (gh, 1)) = (g, b) (h, a + c + 0)
⇐⇒ (gh, a + b + c + θ (g, h)) = (gh, a + b + c + θ (g, h))

⇒ (1, a) ∈ Nρ (L)

hence

(1, a) ∈ N (L)

⇒ {(1, a) : a ∈ A} ⊂ N (L) (6)

Conversely: Let (k, a) ∈ N (L) where a ∈ A so

((g, b) (k, a)) (h, c) = (g, b) ((k, a) (h, c))

⇐⇒ (gk, a + b + θ (g, k)) (h, c) = (g, b) (kh, a + c + θ (k, h))

⇐⇒ ((gk)h, a + b + c + θ (g, k) + θ (gk, h)) =

(g(kh), a + b + c + θ (k, h) + θ (g, kh))

And this will be true only if k = 1, i.e (k, a) ∈ {(1, a) : a ∈ A}

⇒ N (L) ⊂ {(1, a) : a ∈ A} (7)

From (6) and (7) we get

N (L) = {(1, a) : a ∈ A}

Which is the required result. ¤

Example. The smallest group A satisfying the assumptions of Proposition
is the 3-element cyclic group {0, 1, 2}. Following the construction given in
Proposition and taking β = 2, we get the following nonassociative noncom-
mutative middle nuclear square loop of order 12.
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· (1, 0) (1, 1) (1, 2) (x, 0) (x, 1) (x, 2)
(1, 0) (1, 0) (1, 1) (1, 2) (x, 0) (x, 1) (x, 2)
(1, 1) (1, 1) (1, 2) (1, 0) (x, 1) (x, 2) (x, 0)
(1, 2) (1, 2) (1, 0) (1, 1) (x, 2) (x, 0) (x, 1)
(x, 0) (x, 0) (x, 1) (x, 2) (x2, 0) (x2, 1) (x2, 2)
(x, 1) (x, 1) (x, 2) (x, 0) (x2, 1) (x2, 2) (x2, 0)
(x, 2) (x, 2) (x, 0) (x, 1) (x2, 2) (x2, 0) (x2, 1)
(x2, 0) (x2, 0) (x2, 1) (x2, 2) (x3, 1) (x3, 2) (x3, 0)
(x2, 1) (x2, 1) (x2, 2) (x2, 0) (x3, 2) (x3, 0) (x3, 1)
(x2, 2) (x2, 2) (x2, 0) (x2, 1) (x3, 0) (x3, 1) (x3, 2)
(x3, 0) (x3, 0) (x3, 1) (x3, 2) (1, 1) (1, 2) (1, 0)
(x3, 1) (x3, 1) (x3, 2) (x3, 0) (1, 2) (1, 0) (1, 1)
(x3, 2) (x3, 2) (x3, 0) (x3, 1) (1, 0) (1, 1) (1, 2)

continued · · ·
· (1, 0) (x2, 1) (x2, 2) (x3, 0) (x3, 1) (x3, 2)

(1, 0) (x2, 0) (x2, 1) (x2, 2) (x3, 0) (x3, 1) (x3, 2)
(1, 1) (x2, 1) (x2, 2) (x2, 0) (x3, 1) (x3, 2) (x3, 0)
(1, 2) (x2, 2) (x2, 0) (x2, 1) (x3, 2) (x3, 0) (x3, 1)
(x, 0) (x3, 0) (x3, 1) (x3, 2) (1, 0) (1, 1) (1, 2)
(x, 1) (x3, 1) (x3, 2) (x3, 0) (1, 1) (1, 2) (1, 0)
(x, 2) (x3, 2) (x3, 0) (x3, 1) (1, 2) (1, 0) (1, 1)
(x2, 0) (1, 2) (1, 0) (1, 1) (x, 1) (x, 2) (x, 0)
(x2, 1) (1, 0) (1, 1) (1, 2) (x, 2) (x, 0) (x, 1)
(x2, 2) (1, 1) (1, 2) (1, 0) (x, 0) (x, 1) (x, 2)
(x3, 0) (x, 2) (x, 0) (x, 1) (x2, 1) (x2, 2) (x2, 0)
(x3, 1) (x, 0) (x, 1) (x, 2) (x2, 2) (x2, 0) (x2, 1)
(x3, 2) (x, 1) (x, 2) (x, 0) (x2, 0) (x2, 1) (x2, 2)

· 0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 4 5 6 7 8 9 10 11
1 1 2 0 4 5 3 7 8 6 10 11 9
2 2 0 1 5 3 4 8 6 7 11 9 10
3 3 4 5 6 7 8 9 10 11 0 1 2
4 4 5 3 7 8 6 10 11 9 1 2 0
5 5 3 4 8 6 7 11 9 10 2 0 1
6 6 7 8 10 11 9 2 0 1 4 5 3
7 7 8 6 11 9 10 0 1 2 5 3 4
8 8 6 7 9 10 11 1 2 0 3 4 5
9 9 10 11 1 2 0 5 3 4 7 8 6
10 10 11 9 2 0 1 3 4 5 8 6 7
11 11 9 10 0 1 2 4 5 3 6 7 8
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We verified the above example with the help of GAP(Group Algorithm
Program) package [4].
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