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COMBINED EFFECT OF SLIP AND RADIATION ON MHD

FLOW PAST A CONSTANTLY MOVING VERTICAL PLATE

WITH VARIABLE TEMPERATURE

M. A. IMRAN1, SHAKILA SARWAR2, M. IMRAN3, MARYAM ALEEM4

Abstract. The unsteady free convection of an MHD flow of a viscous
fluid passing a vertical plate which is constantly moving with variable
temperature is analyzed by taking slip and radiation into consideration.
The dimensionless governing equations for temperature and velocity fields
are solved using Laplace transform technique. The radiative and slip effects
are taken into consideration and the whole system is rotating as a rigid
body with a constant angular velocity about the z-axis. Exact solutions
are obtained for the two components of velocity. Some known solutions
from the literature are obtained as a limiting case. The obtained solutions
satisfy the initial and boundary conditions. Some physical aspects of flow
parameters on the fluid motion are graphically presented.
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1. Nomenclature

Cp−Specific heat at constant pressure
Ek− Ekman number
g− Gravitational acceleration
Gr− Grashof number
Im− Imaginary part of a complex number
k− Thermal conductivity
Pr− Prandtl number
Re− Real part of a complex number
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s− Laplace transform parameter
T− Fluid temperature
Tw− Wall temperature
T∞− Temperature far away from the plate
u, v−Velocity components along x and y direction
µ−Dynamic viscosity
ν− Kinematic viscosity
Ω− Angular velocity of the frame
θ− Non-dimensional temperature
Bo− External magnetic field
σ− Stefan- Boltzmann constant
qr− Radiative heat flux in the z-direction
η− Slip Parameter
H(t)−Heaviside unit step function

2. Introduction

The study of free or forced convection flow past a vertical plate has drawn
attention of many researchers considering different sets of thermal conditions
at the boundary plate, due to its industrial and technological applications.
Gupta et. all [1], studied free convection on flow past a linearly accelerated
vertical plate in the presence of viscous dissipative heat using perturbation
method. Chandran, Sacheti and Singh [2] investigated the natural convection
near the vertical plate with ramped wall temperature. In recent years, the
problems of magnetohydrodynamic free and forced convection flow in porous
and non-porous media is investigated by a number of researchers due to gen-
eration, MHD pump, flow meters and accelerators, plasma studies, nuclear
reactors using liquid metal coolant and geothermal energy extraction etc.

Among the most interesting results in this direction we remember here the
work [3-6], all investigated MHD effects on free convection and mass trans-
fer and references therein. Like magnetohydrodynamic convective flows, ra-
diative convective flows also play important role in countless industrial and
environmental processes e.g fossil fuel combustion energy processes, heating
and cooling chambers, astrophysical flows, solar power technology and space
vehicle re-entry. It also has numerous applications in engineering like nuclear
power plants, various propulsion devices for air craft, missiles and satellites
etc. Keeping in view this fact many researchers [7-14] discussed the impact
of radiations on free or forced convection flow. For the study of the fluid flow
many investigations are made by considering a large variety of the thermal
and mechanical boundary conditions.

Usually, for the velocity of the fluid the well known boundary condition is
non-slip condition. However, more experiments proved that flows with slip at
the boundary often appear into practical application [15-20]. In the present
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paper we extend the results of [21], only for velocity field with combined effect
of slip and radiation on MHD flow past a constantly moving vertical plate
with variable temperature.

3. Problem Formulation

Let us consider the unsteady MHD flow of an incompressible electrically
conducting fluid past a constantly moving vertical plate with variable temper-
ature when the fluid and the plate rotate as a rigid body with the uniform
angular velocity Ω about z-axis in the presence of an imposed uniform mag-
netic field βo normal to the plate. Initially, the temperature of the plate is
assumed to be T∞. At t > 0, the fluid and plate are in the state of rigid body

rotation with a constant angular velocity
−→
Ω = Ω

−→
k ,

−→
k being a unit vector

parallel with z-axis. The plate starts moving with a velocity U0 in its own
plane and the temperature from the plate is of the form T∞ + (Tw − T∞) t

to
.

The fluid occupies the half-space z ≥ 0, the plate starts constantly moving
in its plane along the x- axis and slip condition on the plate is considered.
Since, the plate is represented by the (x, y) - plane, all physical variables are
functions of z and t only. It is assumed that the induced magnetic field is neg-

ligible so that
−→
β 0 = (0, 0, β0). Under the usual Boussinesq’s approximation of

the temperature gradient the governing equations of the flow are [21].

∂u(z, t)

∂t
− 2Ωv(z, t) = gα(T − T∞) + ν

∂2u(z, t)

∂z2
− β2

oσ

ρ
u(z, t) (1)

∂v(z, t)

∂t
+ 2Ωu(z, t) = ν

∂2v(z, t)

∂z2
− β2

oσ

ρ
v(z, t) (2)

ρCP
∂T (z, t)

∂t
= k

∂2T (z, t)

∂z2
− ∂qr

∂z
, (3)

where (u(z, t), v(z, t)) are the velocity components along the x-axis and y-axis
respectively, g the gravitational acceleration, α coefficient of volume expan-
sion, ν kinematic viscosity, ρ the density, βo - external magnetic field, σ is the
electrical conductivity and is known as Stefan- Boltzmann constant, qr radia-
tive heat flux in the z-direction. The local radiant for the case of an optically
thin gray gas is expressed by,

∂qr
∂z

= −4a∗σ(T 4
∞ − T 4), (4)

where a∗ is absorption constant. Considering the temperature difference within
the flow sufficiently small, T 4 can be expressed as the linear function of tem-
perature. This is accomplished by expanding T 4 in a Taylor series about T∞
and neglecting higher-order terms

T 4 = 4T 3
∞T − 3T 3

∞, (5)
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Figure 1. Geometry of the Problem

Using eq. (4), and eq. (5) equation (3) becomes

ρCP
∂T (z, t)

∂t
= k

∂2T (z, t)

∂z2
+ 16a∗σT 3

∞(T∞ − T ), (6)

Cp the specific heat at constant pressure, k the coefficient of thermal con-
ductivity and T (z, t) is the temperature of the fluid. Initial and boundary
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conditions are:

u(z, 0) = 0, v(z, 0) = 0, T (z, 0) = T∞, for all z ≥ 0, (7)

u(0, t)− η
∂u(0, t)

∂z
= U0H(t), v(0, t) = 0,

T (0, t) = T∞ + (Tw − T∞)
t

to
at z = 0, t > 0, (8)

u(z, t) → 0, v(z, t) → 0, T (z, t) → T∞, as z → ∞, t > 0, (9)

where η is the slip co-efficient and H(t) is a Heaviside unit step function. We
use the following set of non-dimensional variables and functions:

u
′
=

u

U0
, v

′
=

v

U0
, t

′
=

tU0
2

ν
z
′
=

zU0

ν
, Gr =

gαν(Tw − T∞)

U3
o

,

P r =
µCp

K
, Ek =

Ων

U2
o

, θ =
T − T∞
Tw − T∞

,

R =
16a⋆ν2σT 3

∞
kU2

o

, M =
σβ2

oν

ρU2
o

and γ =
ηUo

ν
(10)

where Pr is the Prandtl number, Gr is the Grashof number, θ dimensionless
temperature, Ek is the Ekman number, R radiation parameter and M mag-
netic field parameter. Dropping prime notations, the set of non-dimensional
partial differential equations is

∂u(z, t)

∂t
− 2Ekv(z, t) = Grθ +

∂2u(z, t)

∂z2
−Mu(z, t), (11)

∂v(z, t)

∂t
+ 2Eku(z, t) =

∂2v(z, t)

∂z2
−Mv(z, t), (12)

∂θ(z, t)

∂t
=

1

Pr

∂2θ(z, t)

∂z2
− R

Pr
θ(z, t), (13)

and the associated initial and boundary conditions are:

u(z, 0) = 0, v(z, 0) = 0, θ(z, 0) = 0, for all z ≥ 0, (14)

u(0, t)− γ
∂u(0, t)

∂z
= H(t), v(0, t) = 0, θ(0, t) = t, t > 0, (15)

u(z, t) → 0, v(z, t) → 0, θ(z, t) → 0 as z → ∞. (16)

Now, we determine solution of the problem (11)-(16) by using the Laplace
transform method (R.B. Hetnarski et al (1975))[22]. Applying Laplace trans-
form to the problem (13), (14)3, (15)3, (16)3, we obtain the known expressions
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of the fluid temperature

θ(z, t) = θ1(z, t)e
−z

√
Rercf

(
z
√
Pr

2
√
t

−
√
at

)
+

+θ2(z, t)e
z
√
Rercf

(
z
√
Pr

2
√
t

+
√
at

)
, (17)

where θ1(z, t) =
(

t
2 − zPr

4
√
R

)
and θ2(z, t) =

(
t
2 + zPr

4
√
R

)
.

Introducing the complex velocity field q(z, t) = u(z, t) + iv(z, t) and with the
notation m = M + 2iEk then applying Laplace transform to the resulting
equations, we obtain the transformed problem:

∂2q(z, s)

∂z2
− (s+m)q(z, s) = −Gr

e−c
√
s+a

s2
, (18)

q(0, s)− γ
∂q(0, s)

∂z
=

1

s
, q(z, s) → 0, as z → ∞. (19)

The problem given by eqs. (18)− (19) has the solution

q(z, s) =
β

s(β +
√
s+m)

e−z
√
s+m +

G1(
√
Prs+R+ β)

s2(s− b)(β +
√
s+m)

e−z
√
s+m −

− G1

s2(s− b)
e−z

√
Prs+R, (20)

In order to find the inverse Laplace transform eq. (20) can be written in
suitable form

q(z, s) =
β

β2 −m

[
β

s
− β

s− (β2 −m)
+

√
s+m

s− (β2 −m)
−

√
s+m

s

]
e−z

√
s+m+

+G1βA

√
s+m

s
e−z

√
s+m +G1βB

√
s+m

s2
e−z

√
s+m −G1βC

√
s+m

s− b
e−z

√
s+m+

+G1βD

√
s+m

s− (β2 −m)
e−z

√
s+m −

√
Prs+R

s2(s− b)(β +
√
s+m)

e−z
√
s+m,

(21)

where β = 1
γ , G1 = Gr

1−Pr , b = R−m
1−Pr , Pr ̸= 1, A = b+(β2−m)

b2(β2−m)2
,

B = 1
b(β2−m)

, C = 1
b2[b−(β2−m)]

, D = − 1
(β2−m)2[b−(β2−m)]

. Using the

technique to find the inverse Laplace transform of exponential form [22], we
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have the solution of eq. (21)

q(z, t) = β1e
−z

√
merfc

(
z

2
√
t
−

√
mt

)
+ β2e

z
√
merfc

(
z

2
√
t
+

√
mt

)
+

+β3e
zβerfc

(
z

2
√
t
+ β

√
t

)
− p7(z, t)e

z
√
Rerfc

(
z
√
Pr

2
√
t

+
√
at

)
+

−p8(z, t)e
−z

√
Rerfc

(
z
√
Pr

2
√
t

−
√
at

)
− G1e

bt

2b2

[
e−c

√
a+berfc

(
z
√
Pr

2t
−
√

(a+ b)t

)
+

+ec
√
a+berfc

(
z
√
Pr

2t
+
√

(a+ b)t

)]
+G1βK(t)− G1

√
Pr

2
√
π

∫ t

0

e−aτ

τ3/2
K(t− τ)dτ,(22)

where a = R
Pr and c = z

√
Pr, b = R−m

1−Pr , β1 = β
2(β+

√
m)

, β2 = β
2(β−

√
m)

β3 = −β2e(β2−m)t
β2−m)

,

K(t) = p1(t)e
−z

√
merfc

(
z

2
√
t
−

√
mt
)
+ p2(t)e

z
√
merfc

(
z

2
√
t
+

√
mt
)
+

+ p3(t)e
zβerfc

(
z

2
√
t
+ β

√
t
)
+ p4(t)e

−z
√
m+berfc

(
z

2
√
t
−
√

(m+ b)t
)
+

+ p5(t)e
z
√
m+berfc

(
z

2
√
t
+
√

(m+ b)t
)
+ p6(t)e

− z2

4t
−mt ,

p1(t) = 1/2
{
(
√
m− β)A+B[ 1

(2
√
m)

+ (
√
m− β)t]− z

2B(1− β√
m

}
,

p2(t) = −1/2
{
(
√
m+ β)A+B[ 1

(2
√
m)

+ (
√
m+ β)t] + z

2B(1 + β√
m

}
,

p3(t) = −Dβe(β
2−m)t,

p4(t) =
C
2 (
√
m+ b− β)ebt,

p5(t) = −C
2 (
√
m+ b+ β)ebt,

p6(t) =
[
(A+ C +D) 1

πt +B
√

t
π

]
,

p7(z, t) = −G1
b

[(
t
2 + zPr

4
√
R

)
+ 1

2b

]
, p8(z, t) =

G1
b

[(
t
2 − zPr

4
√
R

)
+ 1

2b

]
,

The components of the velocity field u(z, t) and v(z, t) are given by

u(z, t) = Re[q(z, t)], v(z, t) = Im[q(z, t)]. (23)
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4. Limiting cases

a :) The solution in the absence of slip effect i.e. γ = 0.

q(z, t) = p1e
−z

√
merfc

(
z

2
√
t
−

√
mt

)
+ p2e

z
√
merfc

(
z

2
√
t
+

√
mt

)
−

−p3(t)e
z
√
Rerfc

(
z
√
Pr

2
√
t

+
√
at

)
− p4(t)e

−z
√
Rerfc

(
z
√
Pr

2
√
t

−
√
at

)
−

−G1e
bt

2b2

[
e−c

√
a+berfc

(
z
√
Pr

2t
−
√

(a+ b)t

)
+ ec

√
a+berfc

(
z
√
Pr

2t
+
√

(a+ b)t

)]

+
G1e

bt

2b2

[
e−c

√
Prerfc

(
z
√
Pr

2t
−

√
ct

)
+ ec

√
Prerfc

(
z
√
Pr

2t
+

√
ct

)]
. (24)

where c = z
√
Pr, which is identical to the solution obtained in [21, Eq. (15)].

b :) In the absence of thermal effects, the velocity is reduced to its mechanical
part only with γ ̸= 0, Gr = 0 in eq. (22)

q(z, t) = β1e
−z

√
merfc

(
z

2
√
t
−

√
mt

)
+

+β2e
z
√
merfc

(
z

2
√
t
+

√
mt

)
+ β3e

zβerfc

(
z

2
√
t
+ β

√
t

)
. (25)

c :) The solution obtained in the absence of magnetic field with γ ̸= 0, M = 0

q(z, t) = β1e
−z

√
2iEkerfc

(
z

2
√
t
−

√
2iEkt

)
+ β2e

z
√
2iEkerfc

(
z

2
√
t
+
√
2iEkt

)
+

+β3e
zβerfc

(
z

2
√
t
+ β

√
t

)
− p7(z, t)e

z
√
Rerfc

(
z
√
Pr

2
√
t

+
√
at

)
+

−p8(z, t)e
−z

√
Rerfc

(
z
√
Pr

2
√
t

−
√
at

)
− G1e

bt

2b2

[
e−c

√
a+berfc

(
z
√
Pr

2t
−
√

(a+ b)t

)
+

+ec
√
a+berfc

(
z
√
Pr

2t
+
√

(a+ b)t

)]
+G1βK(t)− G1

√
Pr

2
√
π

∫ t

0

e−aτ

τ3/2
K(t− τ)dτ, (26)

The components of the velocity field u(z, t) and v(z, t) are given by

u(z, t) = Re[q(z, t)], v(z, t) = Im[q(z, t)]. (27)
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d :) The solution obtained in the non-rotating frame, γ ̸= 0, Ek = 0

q(z, t) = β1e
−z

√
Merfc

(
z

2
√
t
−

√
Mt

)
+ β2e

z
√
Merfc

(
z

2
√
t
+

√
Mt

)
+

+β3e
zβerfc

(
z

2
√
t
+ β

√
t

)
− p7(z, t)e

z
√
Rerfc

(
z
√
Pr

2
√
t

+
√
at

)
+

−p8(z, t)e
−z

√
Rerfc

(
z
√
Pr

2
√
t

−
√
at

)
− G1e

bt

2b2

[
e−c

√
a+berfc

(
z
√
Pr

2t
−
√

(a+ b)t

)
+

+ec
√
a+berfc

(
z
√
Pr

2t
+
√

(a+ b)t

)]
+G1βK(t)− G1

√
Pr

2
√
π

∫ t

0

e−aτ

τ3/2
K(t− τ)dτ,(28)

The components of the velocity field u(z, t) and v(z, t) are given by

u(z, t) = Re[q(z, t)], v(z, t) = 0. (29)

5. Numerical discussion and results

In this paper free convection of unsteady MHD flow of a viscous fluid passing
by a constantly moving vertical plate with variable temperature is analyzed
by taking slip and radiation into consideration. The dimensionless governing
equations for temperature and velocity fields have been solved using Laplace
transform technique. The radiative effects are taken into consideration and
the whole system is rotating as a rigid body with a constant angular velocity
about the z-axis. Exact solutions are obtained for the two components of
velocity. Some physical aspects of flow parameters on the fluid motion are
graphically presented. The graphical results of our solution are as follows:

In figure 2, the velocity field given by equation (22) is plotted against z
at different values of time by fixing the other parameters like Gr = 0.15,
Pr = 0.7, M = 0.5 and γ = 0.9. It is observed that by increasing the value of
time the fluid’s velocity also increases. In figure 3, the influence of radiation
parameter R is examined for particular values of t = 0.15, Pr = 0.7, Gr = 0.2,
M = 0.5 and γ = 0.8, the velocity seems to be decreasing with increasing value
of R . Figure 4 illustrates that the fluid’s velocity decreases with increasing
values of Grashof number Gr when plotted by setting the other parameters
constant like t = 0.15, Pr = 0.1, R = 3, M = 0.9 and γ = 0.8 .

Fluid started flowing with greater velocity as magnetic parameter M in-
creases as shown in figure 5, when graph was plotted against particular values
of fluid parameters like t = 0.15, R = 7, Gr = 0.015 and γ = 0.9. In figure
6, the velocity field is plotted against different values of t = 0.2, Gr = 0.15,
Pr = 0.7, R = 7 and M = 0.5. It can be seen that with decreasing values of
γ the fluid’s velocity decreases. The velocity field is plotted against different
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values of Prandtl number Pr are replicated in figure 7. Pr is plotted by keep-
ing the other parameters constant like t = 0.15, Gr = 0.2, R = 7, M = 0.5
and γ = 0.9. It can be seen clearly that by increasing the values of Pr the
fluid velocity decreases.

6. Conclusion

In this paper a theoretical analysis has been done to study the influence
of the combined effects of slip and radiation on MHD flow of fluid passing
a vertical plate which is constantly moving with variable temperature. The
dimensionless governing equations along with imposed initial and boundary
conditions are solved by using Laplace transform technique. The radiative and
slip effects are taken into consideration and the whole system is rotating as a
rigid body with a constant angular velocity about the z-axis. Exact solutions
are obtained for the two components of velocity. Some conclusions of the study
are as below

Real part of the velocity increases with the increase in time t as shown in
Fig. 2.

Figs. 3, 4 and 5 depicted for different values of R, Gr and M respectively
which show that the velocity of the fluid increases with the increase in R, Gr
and M .

Figs. 6 and 7 show that the Real part of the velocity is a decreasing function
of Prandtl number Pr and slip parameter γ.
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Figure 2. Profiles of the velocity field u(z, t) for Gr =
0.15, P r = 0.7, R = 7, M = 0.5, γ = 0.9 and different values
of t
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Figure 3. Profiles of the velocity field for t = 0.15, P r =
0.7, Gr = 0.2, M = 0.5, γ = 0.8 and different values of R
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Figure 4. Profiles of the velocity field for t = 0.15, P r =
0.1, R = 3, M = 0.9, γ = 0.8 and different values of Gr
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Figure 5. Profiles of the velocity field for t = 0.15, P r =
0.7, R = 7, Gr = 0.015, γ = 0.9 and different values of M
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Figure 6. Profiles of the velocity field for t = 0.2 Gr =
0.15, P r = 0.7, R = 7, M = 0.5, and different values of γ
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Figure 7. Profiles of the velocity field for t = 0.15, Gr =
0.2, R = 7, M = 0.5, γ = 0.9 and different values of Pr


