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RATIONAL CUBIC SPIRALS

AYESHA SHAKEEL1, MARIA HUSSAIN2 AND MALIK ZAWWAR HUSSAIN3

Abstract. A parametric rational cubic approximation scheme is pre-
sented to preserve the monotone curvature profile of the given curve. The
rational cubic curve has four control points and two free parameters. Val-
ues of control points are attained by C1-approximation. Simple sufficient
data dependent constraints are obtained on the free parameters to preserve
the monotonicity of curvature of given curve. Devised curvature-preserving
approximation scheme is simple and robust.
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1. Introduction

Designing of visually pleasing fair curves is a fundamental issue in computer
aided design (CAD), especially for automobiles and other consumer goods such
as household appliances where sales largely depend on the appearance of the
products. A curve is fair if it has monotone curvature profile [3, 9] and spirals
are best for fitting fair curves. Well known spirals like Cornu spirals, loga-
rithmic spirals, generalized Cornu spirals (GCS) are defined in terms of arc
length parameter. CAD system is based on parametric curves. Thus these
spirals cannot be directly used in CAD. Therefore approximation of spirals by
parametric curves has been in focus of the researchers [2, 4, 5, 6, 10].

Generalized Cornu spirals (GCSs) [1] are a family of spirals which can be
characterized as straight lines, circles, Cornu spirals and logarithmic spirals.
GCS [1] has rational linear curvature given by

k(s) =
(a + bs)
(S + rs)

, 0 ≤ s ≤ S. (1)

Here s and S are arc length parameters, a and b are real constants and r ≥ −1
is the shape factor. For different values of a, b and r in (1), GCS reduces to
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Cornu spiral and logarithmic spiral. Cornu spiral is a well-known elegant curve
with monotone curvature profile. This property made Cornu spiral a perfect
adequate transition curve for connecting the circles and straight lines in rail-
way and highway design [7].

Efforts have been put by many authors and researchers for fair curve design-
ing. Ali et al. [1] used generalized Cornu spiral (1) for span generation with
given values of end points and end unit tangents of curves. End curvatures
(k0, k1), arc length (S) and shape factor (r) were treated as free parameters.
Firstly, arbitrary values were assigned to these free parameters. Then these
values were readjusted to obtain a GCS that matched the given end points
and end unit tangents of span to obtain desired curve. Baumgarten and Farin
[2] described a method for approximating logarithmic spiral segments by ra-
tional cubic spline curves. Burchard et al. [3] had discussed about the relation
between aesthetic and monotonicity of curvature. Ling and Ali [7] discussed
the application of generalized Cornu spiral in aesthetic design. Aim of us-
ing GCS in aesthetic design is because it has excellent curvature properties.
Cripps et al. [4] proposed a method of constructing an approximation to a
generalized Cornu spiral. Zhu [10] developed the non-rational (quartic and
quintic) and rational (cubic, quartic and quintic) Bézier G2-approximation
schemes for GCS. The G2-constraints introduced length of end tangents as
free parameters. Optimized values of length of end tangents were obtained
by minimizing the relative curvature error of these approximation schemes.
Numerical experiments proved G2 non-rational quintic Bézier curve approx-
imation scheme better than the other approximation schemes discussed in [10].

In this research paper, a parametric rational cubic curve is used to preserve
the monotonicity of curvature of given curves. The rational cubic curve has
four control points and two free parameters. These free parameters are used to
change the shape and curvature profile of curve without changing the data. Al-
though the computation of non-rational curves is easy but rational curves are
preferred over non-rational curves due to presence of free parameters and their
ability to model functions with poles. In this research paper, the control points
are evaluated by C1-constraints i.e. by matching end points and end tangents
of the parametric rational cubic curve and given curve with monotone curva-
ture. Substituting the values of these control points in (1), a C1-parametric
rational cubic curve with two free parameters is obtained. Curvature kP (t)
of C1-parametric rational cubic curve is differentiated w.r.t. arc length pa-
rameter s. Simple sufficient data dependent constraints are derived on free
parameter to guarantee dkP

ds > 0 over the whole domain. Constraints are
also derived on free parameters to guarantee dkP

ds < 0 over the whole domain
for curves with monotonically decreasing curvature profile. Substituting these
values of free parameter in (2) and (5), the C1-parametric rational cubic curve
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preserving the monotonicity of curvature profile of the given curve is obtained.

Parametric curvature-preserving scheme developed in this research paper has
many advantages over the existing schemes. The details are as follows:

• In [1], GCS was used for span generation. End curvatures of the GCS,
arc length and shape factor r were used as free parameters. Values of
these free parameters were repeatedly adjusted by a subroutine to ob-
tain the desired curve. Parametric curvature-preserving scheme devel-
oped in this research paper works for the given values of end curvatures
and arc length. Therefore, unlike [1] it does not require the modifi-
cation of end curvatures and arc length. Moreover, for a given data
set a fixed value of free parameters (α, β) is obtained which guarantee
monotone curvature profile of the parametric rational cubic curve (2).
On the other hand, in [1] the value of shape factor is adjusted to obtain
the perceived result.

• In [10], optimized values of the free parameters were obtained by mini-
mizing the relative curvature error of the concerned G2-approximation
scheme through well- known numerical search algorithm known as Fast
Evolutionary Programming technique(FEP). Use of optimization tech-
nique increased the complexity and decreased efficiency of the G2-
approximation scheme [10]. The curvature-preserving scheme intro-
duced in this research paper does not involve any optimization tech-
nique for the finding the values of free parameters. Thus it is robust
and simpler than [10].

The rest of the paper is schemed as follows. In the Section 2, the parametric
rational cubic curve with two free parameters is introduced. In Section 3,
constraints are developed on free parameters to preserve monotone curvature
profile of the given curve. Section 4 concludes the paper.

2. C1 parametric rational cubic curve

The parametric form of rational cubic curve [8] is given by

P (t) =
∑3

i=0(1− t)3−itipi

α + β(1− t)(t)
, t ∈ [0, 1], pi ∈ <2. (2)

Here, pi, i = 0, 1, 2, 3, are the control points and α, β, are the free parameters.
Let C(s) be a given curve with arc length parameter s. Let two end points of
C(s) be ci, i = 0, 1 and two end tangents of C(s) be Ti, i = 0, 1. If S is the
total arc length of the given curve then

C(0) = c0, C(S) = c1, C
′
(0) = T0, C

′
(S) = T1. (3)
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The C1-approximation of the given curve C(s), by the parametric rational
cubic curve (2) is attained by the following end conditions:

P (0) = C(0), P (1) = C(S), P
′
(0) = C

′
(0), P

′
(1) = C

′
(S). (4)

Applying the end conditions (4) to (2), the following values of the control
points of the parametric rational cubic curve (2) are obtained:

p0 = α(x0, y0), p1 = ((3α + β)x0 + αt0, (3α + β)y0 + αt1),
p2 = ((3α + β)x3 − αt2, (3α + β)y3 − αt3), p3 = α(x3, y3). (5)

with
c0 = (x0, y0), c1 = (x3, y3), T0 = (t0, t1), T1 = (t2, t3).

3. Preserving monotone curvature profile using C1 parametric
rational cubic curve

In this section, constraints are developed on the free parameters α and β
to preserve the monotonicity of curvature of the given curve.

Suppose that the planar curve considered in (3) is a fair curve i.e. it has
monotone curvature profile w.r.t arc length. Let kC(s) be the curvature of the
considered curve C(s). By our supposition, the following end condition holds:

k
′
C(0) > 0 and k

′
C(S) > 0,

k
′
C(0) < 0 and k

′
C(S) < 0. (6)

For the control points given in (5), the parametric equations of the parametric
rational cubic curve (2), P (t) = (x(t), y(t)), are defined as:

x(t) =
f1(t)
g(t)

and y(t) =
f2(t)
g(t)

. (7)

Here,

f1(t) = αx0(1− t)3 + ((3α + β)x0 + αt0)(1− t)2t + ((3α + β)x3 − αt2)×
(1− t)t2 + αx3t

3,

f2(t) = αy0(1− t)3 + ((3α + β)y0 + αt1)(1− t)2t + ((3α + β)y3 − αt3)×
(1− t)t2 + αy3t

3,

g(t) = α + β(1− t)t.

The curvature of the parametric curve, P (t) = (x(t), y(t)), is given by

kP (t) =
dx
dt

d2y
dt2

− dy
dt

d2x
dt2

{(dx
dt )

2 + (dy
dt )

2} 3
2

(8)

The C1-parametric rational cubic curve (2), preserves the monotone curvature
profile of the given curve C(s), if the curvature kP (t) is also monotone function
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of arc length s. The desired condition is expressed mathematically as:

dkP

ds
> 0 (9)

Here, dkP
ds , is obtained by the chain rule as follows:

dkP

ds
=

dkP (t)
dt

.
dt

ds
(10)

The parameter t and the arc length s of the C1-parametric rational cubic curve
(2), are related as:

s =
∫ t

0

√
(
dx

dt
)2 + (

dy

dt
)2 dt (11)

A simple computation can reproduce the following:

dkP (t)
dt

=
(dx

dt
d3y
dt3

− dy
dt

d3x
dt3

)((dx
dt )

2 + (dy
dt )

2)− 3(dx
dt

d2y
dt2

− dy
dt

d2x
dt2

)(dx
dt

d2x
dt2

+ dy
dt

d2y
dt2

)

{(dx
dt )

2 + (dy
dt )

2} 5
2

,

(12)
and

ds

dt
=

√
(
dx

dt
)2 + (

dy

dt
)2. (13)

Substituting the values from (12) and (13) in (10), we have

dkP

ds
=

(dx
dt

d3y
dt3

− dy
dt

d3x
dt3

)

((dx
dt )

2 + (dy
dt )

2)2
− 3(dx

dt
d2x
dt2

+ dy
dt

d2y
dt2

)

((dx
dt )

2 + (dy
dt )

2)3
.(

dx

dt

d2y

dt2
− dy

dt

d2x

dt2
). (14)

It follows from above expression that dkP
ds > 0, if

dx

dt
> 0,

dy

dt
> 0,

d3x

dt3
< 0,

d3y

dt3
> 0,

d2x

dt2
< 0,

d2y

dt2
< 0, (

dx

dt

d2y

dt2
−dy

dt

d2x

dt2
) > 0,

(15)
with

t0 > ∆1 > t2, t1 > ∆2 > t3, t0 > 0, t1 > 0, t2 > 0, t3 > 0,∆1 > 0, ∆2 > 0,

∆1 = x3 − x0, ∆2 = y3 − y0.

Now, to preserve the monotonicity of curvature of the given curve by the
parametric rational cubic curve (2), we shall determine the constraint on free
parameters for which the inequalities in (15) hold.
The first, second and third order derivatives of the parametric rational cubic
curve (2), are given by

dx

dt
=

A(t)
(g(t))2

,
dy

dt
=

B(t)
(g(t))2

,
d2x

dt2
=

C(t)
(g(t))3

,
d2y

dt2
=

D(t)
(g(t))3

,
d3x

dt3
=

E(t)
(g(t))4

,

d3y

dt3
=

F (t)
(g(t))4

. (16)
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Here,

A(t) =
4∑

i=0

(1− t)4−itiAi, (17)

A0 = α2t0,

A1 = 2α{(3α + β)∆1 − αt2},
A2 = 3α2∆1 + (3α + β){(3α + β)∆1 − αt2 − αt0},
A3 = 2α{(3α + β)∆1 − αt0},
A4 = α2t2.

B(t) =
4∑

i=0

(1− t)4−itiBi, (18)

B0 = α2t1,

B1 = 2α{(3α + β)∆2 − αt3},
B2 = 3α2∆2 + (3α + β){(3α + β)∆2 − αt3 − αt1},
B3 = 2α{(3α + β)∆2 − αt1},
B4 = α2t3.

C(t) =
5∑

i=0

(1− t)5−itiCi, (19)

C0 = 2α2{(3α + β)∆1 − αt2 − (2α + β)t0},
C1 = 2α2{7α(∆1 − t0) + 2β(∆1 − t0) + 2α(∆1 − t2)},
C2 = 2α{(6α2 + αβ)∆1 − (8α2 + αβ)t0 + 2α2t2},
C3 = 2α{(−6α2 − αβ)∆1 + (8α2 + αβ)t2 − 2α2t0},
C4 = 2α2{7α(t2 −∆1) + 2β(t2 −∆1)− 2α(∆1 − t0)},
C5 = 2α2{−(3α + β)∆1 + αt0 + (2α + β)t2}.

D(t) =
5∑

i=0

(1− t)5−itiDi, (20)

D0 = 2α2{(3α + β)∆2 − αt3 − (2α + β)t1},
D1 = 2α2{7α(∆2 − t1) + 2β(∆2 − t1) + 2α(∆2 − t3)},
D2 = 2α{(6α2 + αβ)∆2 − (8α2 + αβ)t1 + 2α2t3},
D3 = 2α{(−6α2 − αβ)∆2 + (8α2 + αβ)t3 − 2α2t1},
D4 = 2α2{7α(t3 −∆2) + 2β(t3 −∆2)− 2α(∆2 − t1)},
D5 = 2α2{−(3α + β)∆2 + αt1 + (2α + β)t3}.
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E(t) =
6∑

i=0

(1− t)6−itiEi, (21)

E0 = 6α2{−(2α2 + 4αβ + β2)∆1 + (α2 + 3αβ + β2)t0 + (α2 + αβ)t2},
E1 = 12α2{(3α2 + 2αβ)(t2 −∆1)− (3α2 + 7αβ)(∆1 − t0)− 2β2(∆1 − t0)},
E2 = 2α2{(45α2 + 13αβ)(t2 −∆1)− (45α2 + 83αβ + 16β2)(∆1 − t0)},
E3 = 12α2{−(20α2 + 10αβ + β2)∆1 + (10α2 + 10αβ + β2)t0 + 10α2t2},
E4 = 6α2{−(30α2 − β2)∆1 + 5α(3α + β)t0 + 5α(3α− β)t2},
E5 = 12α2{(3α2 − 2αβ)(t2 −∆1)− (3α2 − αβ)(∆1 − t0)− β2(t2 −∆1)},
E6 = 6α2{−(2α2 − 4αβ − β2)∆1 + (α2 − αβ)t0 + (α2 − αβ − β2)t2}.

F (t) =
6∑

i=0

(1− t)6−itiFi, (22)

F0 = 6α2{−(2α2 + 4αβ + β2)∆2 + (α2 + 3αβ + β2)t1 + (α2 + αβ)t3},
F1 = 12α2{(3α2 + 2αβ)(t3 −∆2)− (3α2 + 7αβ)(∆2 − t1)− 2β2(∆2 − t1)},
F2 = 2α2{(45α2 + 13αβ)(t3 −∆2)− (45α2 + 83αβ + 16β2)(∆2 − t1)},
F3 = 12α2{−(20α2 + 10αβ + β2)∆2 + (10α2 + 10αβ + β2)t1 + 10α2t3},
F4 = 6α2{−(30α2 − β2)∆2 + 5α(3α + β)t1 + 5α(3α− β)t3},
F5 = 12α2{(3α2 − 2αβ)(t3 −∆2)− (3α2 − αβ)(∆2 − t1)− β2(t3 −∆2)},
F6 = 6α2{−(2α2 − 4αβ − β2)∆2 + (α2 − αβ)t1 + (α2 − αβ − β2)t3}.
From (17), dx

dt > 0 if

Ai > 0, i = 0, 1, 2, 3, 4 and (g(t))2 > 0.

(g(t))2 is always positive so dx
dt > 0 if

α > 0, β > 0, Ai > 0, i = 0, 1, 2, 3, 4.

Obviously, A0 > 0 and A4 > 0, from the necessary conditions of monotonicity
of curvature.
Moreover, A1 > 0 if

β >
αt2
∆1

. (23)

A2 > 0 if

β >
α(t0 + t2)

∆1
. (24)

A3 > 0 if

β >
αt0
∆1

. (25)
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From (23),(24) and (25), Ai > 0, i = 0, 1, 2, 3, 4 if

α > 0,

and

β > max{0,
αt0
∆1

,
α(t0 + t2)

∆1
,
αt2
∆1

}.
dy
dt > 0 if

Bi > 0, i = 0, 1, 2, 3, 4 and (g(t))2 > 0.

Obviously, B0 > 0 and B4 > 0, from the necessary conditions of monotonicity
of curvature.
Moreover, B1 > 0 if

β >
αt3
∆2

. (26)

B2 > 0 if

β >
α(t1 + t3)

∆2
. (27)

B3 > 0 if

β >
αt1
∆2

. (28)

From (26),(27) and (28), Bi > 0, i = 0, 1, 2, 3, 4 if

α > 0,

and

β > max{0,
αt1
∆2

,
α(t1 + t3)

∆2
,
αt3
∆2

}.
d2x
dt2

< 0 if

C̃i > 0, i = 0, 1, 2, 3, 4, 5 and (g(t))3 > 0.

Here, C̃i = −Ci, i = 0, 1, 2, 3, 4, 5. C ′
is are already defined in (19).

(g(t))3 > 0 if
α > 0, β > 0.

C̃0, C̃1 > 0 if

β >
(t2 −∆1)α

t0 −∆1
. (29)

C̃2 > 0 if

β >
2(t2 − t0)α

t0 −∆1
. (30)

C̃3 > 0 if

β >
2(t2 − t0)α

∆1 − t2
. (31)
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C̃4, C̃5 > 0 if

β >
(t0 −∆1)α

∆1 − t2
. (32)

From (29),(30),(31) and (32), C̃i > 0, i = 0, 1, 2, 3, 4, 5, if

α > 0,

and

β > max{0,
(t2 −∆1)α

t0 −∆1
,
2(t2 − t0)α

t0 −∆1
,
2(t2 − t0)α

∆1 − t2
,
(t0 −∆1)α

∆1 − t2
}.

d2y
dt2

< 0 if
D̃i > 0, i = 0, 1, 2, 3, 4, 5 and (g(t))3 > 0.

Here, D̃i = −Di, i = 0, 1, 2, 3, 4, 5. D′
is are already defined in (20).

(g(t))3 > 0 if
α > 0, β > 0.

D̃0, D̃1 > 0 if

β >
(∆2 − t3)α

t1 −∆2
. (33)

D̃2 > 0 if

β >
2(t3 − t1)α

t1 −∆2
. (34)

D̃3 > 0 if

β >
2(t3 − t1)α

∆2 − t3
. (35)

D̃4, D̃5 > 0 if

β >
(t1 −∆2)α

∆2 − t3
. (36)

From (33),(34),(35) and (36), D̃i > 0, i = 0, 1, 2, 3, 4, 5, if

α > 0,

and

β > max{0,
(∆2 − t3)α

t1 −∆2
,
2(t3 − t1)α

t1 −∆2
,
2(t3 − t1)α

∆2 − t3
,
(t1 −∆2)α

∆2 − t3
}.

d3x
dt3

< 0 if
Ẽi > 0, i = 0, 1, 2, 3, 4, 5, 6 and (g(t))4 > 0.

Here, Ẽi = −Ei, i = 0, 1, 2, 3, 4, 5, 6. E′
is are already defined in (21).

(g(t))4 > 0 is always positive.
Ẽ0, Ẽ1 > 0 if

β >
(t2 −∆1)α

∆1 − t0
. (37)
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Ẽ2 > 0 if

β >
13(t2 −∆1)α
16(∆1 − t0

. (38)

Ẽ3 > 0 if

β >
(t2 −∆1)α

∆1 − t0
. (39)

Ẽ4 if

β >
3(t0 + t2)α

t2 − t0
. (40)

Ẽ5, Ẽ6 > 0 if

β >
(∆1 − t0)α

t2 −∆1
. (41)

From (37)-(41), Ẽi > 0, i = 0, 1, 2, 3, 4, 5, 6, if

α > 0,

and

β > max{0,
(t2 −∆1)α

∆1 − t0
,
13(t2 −∆1)α
16(∆1 − t0

,
(t2 −∆1)α

∆1 − t0
,
3(t0 + t2)α

t2 − t0
,
(∆1 − t0)α

t2 −∆1
}.

d3y
dt3

> 0 if
Fi > 0, i = 0, 1, 2, 3, 4, 5, 6 and (g(t))4 > 0

F0, F1 > 0 if

β >
(t3 −∆2)α

∆2 − t1
. (42)

F2 > 0 if

β >
13(t3 −∆2)α
16(∆2 − t1

. (43)

F3 > 0 if

β >
(t1 − 2(∆2) + t3)α

∆2 − t1
. (44)

F4 > 0 if

β >
5(t3 − t1)α

t3 −∆2
. (45)

F5, F6 > 0 if

β >
(∆2 − t1)α

t3 −∆2
. (46)

From (42)-(46), Fi > 0, i = 0, 1, 2, 3, 4, 5, 6, if

α > 0,

and

β > max{0,
(t3 −∆2)α

∆2 − t1
,
13(t3 −∆2)α
16(∆2 − t1

,
(t1 − 2∆2 + t3)α

∆2 − t1
,
5(t3 − t1)α

t3 −∆2
,
(∆2 − t1)α

t3 −∆2
}.
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dx
dt

d2y
dt2

− dy
dt

d2x
dt2

> 0 if

β > max{0,
(t0t3 − t1t2)α
∆2t0 −∆1t1

,
(t0t3 − t1t2)α
∆1t3 −∆2t2

}.

The above discussion can be summarized in the following theorem.

Theorem 1. The parametric rational cubic curve defined in (2), preserves
monotonicity of curvature of given curve if the free parameters α and β satisfy
the following constraints:

α > 0 and β > U. (47)

Here,
U = max{0,Hk, k = 1, 2, 3, ..., 22} (48)

H1 =
αt0
∆1

,H2 =
α(t0 + t2)

∆1
,H3 =

αt2
∆1

,H4 =
αt3
∆2

,H5 =
α(t1 + t3)

∆2
,

H6 =
αt1
∆2

,H7 =
(t2 −∆1)α
(t0 −∆1)

,H8 =
2(t2 − t0)α
(t0 −∆1)

,H9 =
2(t2 − t0)α
(∆1 − t2)

,

H10 =
(t0 −∆1)α
(∆1 − t2)

, H11 =
(∆2 − t3)α
(t1 −∆2)

,H12 =
2(t3 − t1)α
(t1 −∆2)

,

H13 =
2(t3 − t1)α

∆2 − t3
,H14 =

(t1 −∆2)α
∆2 − t3

,H15 =
(t2 −∆1)α

∆1 − t0
,

H16 =
13(t2 −∆1)α
16(∆1 − t0)

,H17 =
3(t0 + t2)α
(t2 − t0)

,H18 =
13(t3 −∆2)α
16(∆2 − t1)

,

H19 =
(t1 − 2∆2 + (t3)α

(∆2 − t1)
,H20 =

5(t3 − t1)α
(t3 −∆2)

,H21 =
(t0t3 − t1t2)α
∆2t0 −∆1t1

,

H22 =
(t0t3 − t1t2)α
∆1t3 −∆2t2

.

Remark 1. The Theorem 1 can only be used to preserve the monotonically
increasing curvature profile of spirals. However there are spirals with monoton-
ically decreasing curvature profile. To deal with these spirals it is necessary to
develop parametric rational cubic function (2) with monotonically decreasing
curvature. It can be easily concluded from (14) that parametric rational cubic
function (2) will have monotonically decreasing curvature profile i.e. dkP

ds < 0
if

dx

dt
> 0,

dy

dt
> 0,

d3x

dt3
> 0,

d3y

dt3
< 0,

d2x

dt2
> 0,

d2y

dt2
> 0, (

dx

dt

d2y

dt2
−dy

dt

d2x

dt2
) > 0.

(49)
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Values of these derivatives have been already defined. Substituting these val-
ues in Eqn. (49), it is observed that the conditions on derivatives given in (49)
are true if the free parameters α and β of the parametric rational cubic curve
(2) satisfy the following constraints:

α > 0, β > W (50)

where
W = max{0, Gk, k = 1, 2, 3, ..., 17},

G1 =
αt0
∆1

, G2 =
αt1
∆2

, G3 =
αt2
∆1

, G4 =
αt3
∆2

, G5 =
α(t0 + t2)

∆1
,

G6 =
α(t1 + t3)

∆2
, G7 =

(t2 −∆1)α
(∆1 − t0)

, G8 =
2(t0 − t2)α
(∆1 − t0)

, G9 =
2(t0 − t2)α
(t2 −∆1)

,

G10 =
(∆1 − t0)α
(t2 −∆1)

, G11 =
(t3 −∆2)α
(∆2 − t1)

, G12 =
2(t1 − t3)α
(∆2 − t1)

, G13 =
2(t1 − t3)α
(t3 −∆2)

,

G14 =
(∆2 − t1)α
(t3 −∆2)

, G15 =
2(t1 − t3)α
(t3 −∆2)

, G16 =
(t0t3 − t1t2)α
∆2t0 −∆1t1

,

G17 =
(t0t3 − t1t2)α
∆1t3 −∆2t2

.

Algorithm 1.
Step 1: Input end points (x0, y0, x3, y3) and end tangents (t0, t1, t2, t3)

of the given curve.
Step 2: Assign any positive value to free parameter α.
Step 3: If k

′
C(0) > 0 & k

′
C(S) > 0, then calculate the value U from

relation(47). If k
′
C(0) < 0 & k

′
C(S) < 0, then calculate the value W

from relation (50).
Step 4: If k

′
C(0) > 0 & k

′
C(S) > 0, then β = U +v1, v1 > 0. If k

′
C(0) < 0

& k
′
C(S) < 0, then β = W + v1, v1 > 0.

Step 5: Substitute the value of end points, end tangents and free pa-
rameters α and β from Steps 1, 2 and 4 in (2) and (5) to obtain a
C1-parametric rational cubic curve with monotone curvature profile.

Remark 2. In Algorithm 1, v1 is a positive real free parameter, so any positive
real value can be assigned to it. However, to avoid interval tension, it is advised
to assign small positive value to free parameter v1.

4. Conclusion

In this research paper, C1-parametric rational cubic curve with two param-
eters α and β is used to preserve the monotone curvature of the given curve.
Unlike [1], the developed approximation scheme of this research paper does
not require modification of arc length, end curvatures and free parameters. It
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does not involve any optimization technique therefore it is simpler than [10].
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