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Abstract

When f : (Rn, 0) → (Rp, 0) is a surjective real analytic map with isolated critical value, we prove that the
(m)-regularity condition (in a sense we define) ensures that f

||f || is a fibration on small spheres, f induces a
fibration on the tubes and these fibrations are equivalent.

In particular, we make the statement of [12] more precise in the case of an isolated critical point and we
extend it to the case of an isolated critical value.
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Introduction

Milnor’s fibration theorem for holomorphic maps is a key-stone in singularity theory; it says that for a
given holomorphic map-germ f : (Cn, 0) → (C, 0) with an isolated critical point at the origin, the map f

||f ||
is the projection map of a locally trivial bundle

f

||f ||
: S2n−1

ϵ \ f−1(0) → S1

for a sufficiently small sphere S2n−1
ϵ centered at the origin.

Extensions of this result in different directions became an important theme of study. In particular the
extension to the case of real analytic maps has been considered by Milnor himself in [11]. He proved that if
f : (Rn, 0) → (Rp, 0) with n ≥ p ≥ 2 is real analytic with an isolated critical point at the origin, then

f

||f ||
: Sn−1

ϵ \N(f−1(0)) → S1
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is a fibration on the complement of a tubular neighborhood of f−1(0) in sufficiently small spheres. Fur-
thermore, he proved that this fibration can be extended to Sn−1

ϵ \ f−1(0). However this extension may not
be given by the natural map f

||f || . He actually gave an example where this natural map does not induce a
fibration in the sphere.

Many authors started investigating conditions to ensure that a real analytic map induces a fibration on
small spheres.

In this work we will be concerned with the (c) and (m)-regularity conditions introduced by K. Bekka in
[3].

M. Ruas and R.A. dos Santos, proved in [12], that if a real analytic map f : (Rn, 0) → (R2, 0) with
an isolated critical point is (c)-regular (in a certain sense they define), then f

||f || : S
n−1
ϵ \ f−1(0) → S1 is a

fibration. However they noticed that the (c) condition is too strong.
We prove here that for a real analytic map f : (Rn, 0) → (Rp, 0) with an isolated critical point and

p ≤ n, the map f
||f || is a fibration on small spheres if and only if the map f satisfies the weaker regularity

condition (m).
We also prove that, for a surjective real analytic map f : (Rn, 0) → (Rp, 0) with an isolated critical

value, the (m)-regularity condition (in a certain sense we make precise here) ensures not only that f
||f || is a

fibration on small spheres but also that f induces a fibration on the tube

f : Bϵ ∩ f−1(∂Dδ \ {0}) → ∂Dδ \ {0}

where δ is sufficiently small with respect to a sufficiently small ϵ; Bϵ and Dδ being respectively balls in Rn

and Rp. In this case these two fibrations will be equivalent.
Actually what we prove here is that the (m)-regularity condition with control function distance to the

origin is equivalent to (d)-regularity, and (m)-regularity with control function distance to the special fiber is
equivalent to the transversality of fibers, near the special fiber, with sufficiently small spheres. In other words,
we show that the arguments behind (m)-regularity that ensure Milnor fibrations are the ones introduced in
[5], namely (d)-regularity and transversality of fibers near the special one with small spheres.

1. A view of some classical regularity conditions

Many of the regularity criteria we use in this work, include some stratification condition.
Let us state, very briefly, the main stratification concepts we use.
Consider an analytic or semi-analytic subspace X ⊂ U ⊂ Rn, where U is an open set of Rn. A semi-

analytic stratification ofX (resp. U), is a locally finite partition ofX (resp. U) into locally closed, connected,
non singular, semi-analytic spaces Xα (resp. Uα). Such a stratification of U is adapted to X if X is a union
of strata.

A stratification X = ∪Xα satisfies the frontier condition when for each pair of indices α and β we have
Xα ∩Xβ ̸= ∅ ⇒ Xβ ⊂ Xα.

Whitney’s conditons a and b: For a locally finite stratification satisfying the frontier condition, H.
Whitney introduced the following two conditions:

Definition 1.1. Whitney (a)-condition: A pair (Xα, Xβ) with Xβ ⊂ Xα is (a)-regular at y ∈ Xβ if,
whenever {xi} ∈ Xα is a sequence converging to y such that the sequence of tangent spaces {TxiXα} has a
limit T , then TyXβ ⊂ T.

Whitney (b)-condition: The pair (Xα, Xβ), with Xβ ⊂ Xα, is (b)-regular at y ∈ Xβ, if whenever we have
sequences of points {xi} ∈ Xα and {yi} ∈ Xβ both converging to y and such that {TxiXα} has a limit T ,
and the sequence of lines xiyi has a limit ℓ, then ℓ ⊂ T.
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It is well known that condition (b) implies condition (a), see for example [16].
A stratification is called a Whitney stratification, or Whitney regular, if it satisfies condition (b) for all

pairs of strata at every point of the small stratum.
Given an arbitrary (U,X) as above, there exist Whitney stratifications of U adapted to X. This was

proved by Whitney in [17] in the complex analytic setting, and by Hironaka in [8] in general.
An important consequence of Whitney conditions is topological triviality. In fact, if (Xβ, Xα) are two

regular strata with Xα ⊂ Xβ, then Xβ is homeomorphic to a product of Xα with a section of Xβ of suitable
dimension.

We now let f : X → Y be an analytic map between analytic spaces. The map f is said to be stratified
if there exist Whitney stratifications Σ = {Sα} and σ = {sβ} of X and Y respectively, such that f induces
an analytic submersion on each stratum of Σ into a stratum of σ.

Thom’s first isotopy lemma says that a proper smooth stratified map is the projection of a smooth
fiber bundle (see for instance [10]). This generalizes to the case of singular varieties, the classical fibration
theorem of Ehresmann.

Thom’s af -condition: Assume now that f : (U, 0) ⊂ (Rn, 0) → (Rp, 0), n > p, is a real analytic map.
A point x ∈ U is critical for f when the derivative of f at x has rank less than p. A point y ∈ Rp is a critical
value of f when it is the image of a critical point.

Definition 1.2. Let f : X → Y be a stratified real analytic map between real analytic Whitney stratified
spaces X = ∪Xα and Y = ∪Yβ. Let x ∈ Xα1 ⊂ Xα2 .

The map f satisfies the Thom af -condition at x, if for every sequence of points xn ∈ Xα2 converging
to x, for which the sequence of tangent spaces Txn(f

−1(f(xn)) ∩Xα2) converges to a space T , we have
Tx(f

−1(f(x)) ∩Xα1) ⊂ T .
The map f is said to satisfy the Thom af -condition, if it satisfies it at each point x ∈ Xα for any pair

of strata Xα ⊂ Xβ.
We say that a real analytic map f : X → Y has the Thom property when there exist Whitney stratifi-

cations of X and Y , for which f satisfies Thom’s af -condition.

In particular, let f : (U, 0) ⊂ (Rn, 0) → (Rp, 0) be a real analytic map with an isolated critical value at

the origin. Let V = f−1(0) and consider a Whitney stratification V = ∪Vα. The stratification (U \ V )
⋃
α

Vα

is a Whitney regular stratification of U adapted to V . In order to check Thom’s af -property for f with
respect to that stratification, it is enough to check it for the pairs of strata of the form (U \ V, Vα).

We know by the conical structure theorem ([4, lemma 3.2]) that for a sufficiently small positive integer
ϵ, the sphere Sϵ centered at the origin with radius ϵ is transversal to every stratum of a Whitney regular
stratification of V . So Thom’s af condition ensures the following property:

Proposition 1.3. Let f : (U, 0) ⊂ (Rn, 0) → (Rp, 0) be an analytic map-germ as above with the Thom
property.

There exists ϵ0 > 0 such that for every 0 < ϵ ≤ ϵ0, there exists δ > 0 such that for every t ∈ Rp with
∥t∥ ≤ δ, the fiber f−1(t) intersects the sphere Sϵ transversally.

We summarize this property by saying that in a sufficiently small ball, every sphere is transversal to
fibers sufficiently close to the special fiber.

Bekka’s c-regularity condition: Consider a smooth analytic space M and a pair of strata (X,Y )
with Y ⊂ X. Let ρ : M → R+ be a non-negative smooth function with ρ−1(0) = Y . We say that ρ is a
control function for the pair in M with respect to Y .

Definition 1.4 ((c)-regularity). The pair (X,Y ) is (c)-regular at y ∈ Y with respect to the control function
ρ if, for any sequence of points in X, {xi} → y such that the sequence of planes {ker(dρ(xi))

⋂
TxiX}

converges to a plane T in the Grassmann space of (dimX − 1)-planes, then TyY ⊂ T.
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The pair (X,Y ) is (c)-regular with respect to the control function ρ if it is (c)-regular for every point
y ∈ Y with respect to the function ρ.

The c-regularity condition for a pair of strata (X,Y ) with respect to a control function ρ is equivalent
to Thom’s aρ condition for these strata.

Bekka proved in [3, theorem 1], that the (c)-regularity condition ensures topological triviality. This
makes it a weaker condition than the (b)-condition for getting topological triviality. This is the main reason
for using it in [12].

The m-regularity condition: Assume that the manifoldM has a Riemannian metric. Consider a pair
of strata (X,Y ) with Y ⊂ X.

Let (TY , π, ρ) be a tubular neighborhood of Y in M together with a projection π : TY → Y , associated
to a smooth non-negative control function ρ such that ρ−1(0) = Y and ▽ρ(x) ∈ ker(dπ(x)).

Definition 1.5 ((m)-regularity). The pair of strata (X,Y ) satisfies condition (m) if there exists a positive
real number ϵ > 0 such that

(π, ρ) |X∩T ϵ
Y
: X ∩ T ϵ

Y → Y × [0, ϵ)

x 7−→ (π(x), ρ(x))

is a submersion, where T ϵ
Y := {x ∈ TY , ρ(x)<ϵ}. When this happens we say that (X,Y ) is (m)-regular with

respect to the control function ρ.

The following can be found in [3].

Proposition 1.6. If a pair (X,Y ) is (c)-regular with respect to a control function ρ, then this pair is
Whitney (a) regular and (m)-regular with respect to ρ.

If (X,Y ) is (a) regular and also (m)-regular with respect to a control function ρ, it is not yet known
whether this implies (X,Y ) is (c)-regular.

The (d)-regularity for map-germs:
Consider an analytic map f : (Rn, 0) → (Rp, 0).
Following [14, 13, 12, 5], we associate to f a family of varieties: For each line L through the origin in Rp

we define:
XL := {x ∈ Rn | f(x) ∈ L}.

Definition 1.7. The family of analytic spaces XL, as L varies in RP p−1, is called the canonical pencil
associated to f.

This pencil was first introduced in [14] for a certain family of maps into R2, to show that these have
Milnor open-book fibrations. This was later used in [12] in relation with (c)-regularity (see Theorem 3.2
below).

The union of all XL is the whole Rn and their intersection is V . It is in this sense that this family forms
a pencil with axis V . In particular, when f has an isolated critical value, these analytic varieties are all
smooth away from V .

The following concept was introduced in [6, definition 5.4] and [5, definition 2.4].

Definition 1.8. Let f : U → Rp be a locally surjective real analytic map with isolated critical value at 0.
We say that f is d-regular if there exists ϵ0 > 0 such that for any ϵ ≤ ϵ0 and for any line 0 ∈ L ⊂ Rp the
sphere Sn−1

ϵ and the space XL are transverse.

In other words, d−regularity means transversality of sufficiently small spheres with every element of the
canonical pencil.

The following important characterization of d-regularity comes from [5, proposition 3.2]:
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Proposition 1.9. The following statements are equivalent:

• The map-germ f is d-regular.

• The map ϕ = f
∥f∥ : S

n−1
η \Kη −→ Sp−1 is a submersion for every sufficiently small sphere Sn−1

η .

2. Milnor fibrations

Consider a real analytic map f : Rn → Rp, n ≥ p, with an isolated critical value. The critical points of
f are then concentrated in the fiber f−1(0). a natural question is to ask to what extend does f induce a
fibration outside f−1(0).

Following J. Milnor’s pioneer work in [11], one looks for two possible types of fibrations:
Fibration in the tube: Intuitively, we refer to the situation where the map f induces a fibration in

the space made of nearby fibers to f−1(0) still in a small neighborhood of the origin. More precisely:

Definition 2.1. We say that f : (Rn, 0) → (Rp, 0) induces a fibration in the tube if there exists ϵ0 > 0 such
that for every 0 < ϵ ≤ ϵ0 there exists 0 < δ such that the restriction map:

f : Bϵ ∩ f−1(Bp
δ \ {0}) → Bp

δ \ {0}

is a fibration, where Bϵ (resp. Bp
δ) is the open ball of Rn (resp. of Rp) centered at the origin with radius ϵ

(resp. δ).

When f has an isolated critical point, Milnor showed in [11] that one always has a fibration in a tube.
Another classical case is when p = 2, n is even and f is holomorphic. In this situation, we have an isolated
critical value and D.T. Lê proved in [15] that such an f induces a fibration in the tube.

In the general setting, J.L. Cisneros-Molina, together with the first and third authors, proved in [5,
Proposition 5.1 and Remark 5.7], the following:

Theorem 2.2. Let f : (Rn, 0) → (Rp, 0), n ≥ p, be a locally surjective real analytic map with isolated critical
value. If there exists ϵ0 > 0 such that for every 0 < ϵ ≤ ϵ0 there exists δ > 0 such that for any y ∈ Rp with
0 < ∥y∥ < δ one has f−1(y) is transversal to Sϵ, then the map f induces a Milnor fibration in a tube; where
Sϵ ⊂ Rn is the sphere centered at the origin with radius ϵ.

In particular, one obtains from proposition 1.3, that a locally surjective map germ with isolated critical
value that satisfies Thom property induces a fibration in a tube.

Fibration in the sphere: This comes from the holomorphic case of maps from Cn → C, and it refers to
the fact that the argument of f restricted to a sufficiently small sphere of R2n is a fibration. More precisely
and in a more general setting we mean:

Definition 2.3. Let f : (Rn, 0) → (Rp, 0) be a locally surjective real analytic map with an isolated critical
value, with n ≥ p. We say that f induces a fibration in the sphere if there exists ϵ0 > 0 such that for any
0 < ϵ ≤ ϵ0 the map

f

∥f∥
: Sϵ \ f−1(0) → Sp−1

is a fibration.

For holomorphic functions with isolated critical points, J. Milnor proved that they always induce a
fibration in a sphere. This was extended to holomorphic functions on a singular variety X → C with
isolated critical value in [6].

Many authors got interested in the general case of real analytic maps, see for example [9, 7, 14, 1, 2].
In particular, Ruas and Dos Santos, in [12], related the (c)-regularity condition to the fibration in the

sphere in a particular case; this will be discussed in the next section.
In [5, Theorem 5.3 and Remark 5.7], the following result is achieved:
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Theorem 2.4. Let f : (Rn, 0) → (Rp, 0) be a locally surjective analytic map with an isolated critical value
with n ≥ p. Assume f is d-regular and there exists ϵ0 > 0 such that for every 0 < ϵ ≤ ϵ0 there exists δ > 0
such that for any y ∈ Rp with ∥y∥ < δ the fiber f−1(y) is transversal to the sphere Sϵ. Then the map f
induces a fibration in the sphere and a fibration in the tube, and these are equivalent.

In the particular case of a map with an isolated critical point, since the transversality of the nearby
fibers with the spheres is always achieved, theorem 2.4 can be reduced to the following:

Corollary 2.5. Let f : (Rn, 0) → (Rp, 0) be an analytic map with an isolated critical point, n ≥ p. It
induces a fibration in the sphere if and only if it is d-regular.

3. Milnor fibrations and c-regularity

In this section we explain briefly the main result in [12] relating c-regularity to Milnor fibrations for real
analytic map-germs. The statement and proof in [12] use something similar to what we call the canonical
pencil.

The situation considered in [12] is the one of a germ of real analytic map from Rn to R2 with an isolated
critical point. Since our goal is to make their statement more precise and to extend it to a more general
situation, we will start in the following setting.

Consider an analytic map

f : (Rn, 0) → (Rp, 0)
x = (x1, · · · , xn) 7→ (f1(x), · · · , fn(x))

with an isolated critical value, n ≥ p.
Call V := f−1(0) the special fiber of f . The critical points of f are then all contained in V .
Consider the map

ϕ : Rn \ V → RPp−1

x 7→ (f1(x) : · · · : fp(x))

Note that the fibers of the map ϕ together with the subspace V are the elements of the canonical pencil
associated to f .

We define the blow-up of V in Rn, or more precisely, of the ideal (f1, · · · , fp) as follows:
Consider the subspace X ⊂ Rn × RPp−1 defined by the equations

fitj − fjti = 0, 0 < i < j ≤ p

where (t1 : · · · : tp) is a system of homogeneous coordinates in RPp−1.
The restriction of the first projection to X induces an analytic map

e : X → Rn

that we will call the blow-up of V in Rn.
The map e induces an isomorphism X \ e−1(V ) ∼= Rn \ V .
The inverse image of V by e is e−1(V ) = V × RPp−1.
The second projection of Rn × RPp−1 induces a map

ψ : X → RPp−1

that extends ϕ in the sense that ϕ ◦ e = ψ.
We want to consider a stratification of X compatible with Y := V × RPp−1.
Consider a decomposition V = ∪αVα into semi-analytic smooth connected varieties all adherent to 0.

The corresponding stratification of Y is given by Y = ∪αYα, where Yα = Vα × RPp−1.
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Similarly, consider a decomposition X \ Y = ∪βXβ into semi-analytic smooth and connected varieties
all adherent to 0. Note that X \ Y being smooth, this decomposition can be taken as the decomposition of
X \ Y into connected components.

We may choose these decompositions minimal with that property.
Notice that some strata Vα may not be contained in the closure of X. The reason is that the blow-up of

V may not coincide with the closure of the graph of the map ϕ in Rn × RPp−1.

Example 3.1. Consider the map
f : R3 → R2

(x, y, z) 7→ (xy, xz)

V = (x = 0) ∪ (y = z = 0). The component defined by the hyperplane (x = 0)× RP1 in not in the closure
of X which has the same dimension.

By abuse of language, and in order to simplify the statements, in what follows we will call a pair of
strata (X,Y ) any pair of strata (Xβ, Yα) with the frontier condition: Yα ⊂ Xβ.

Let us now go toward (c)-regularity.
Define the control function

ρ0 : X → R+

(x1, · · · , xn, t1 : · · · : tp) 7→
n∑

i=1

x2i

The inverse image ρ−1
0 (0) = {0}×RPp−1. We can admit it as a stratum in Y . Let us call it Y0. We have

Y0 ⊂ Xβ, for any β. We can then consider them as admissible strata.

Theorem 3.2. [12, Theorem 3]
Assume f has an isolated critical point at 0 and suppose p = 2. If the above pair (Xβ \ Y0, Y0) is (c)-

regular with respect to the control function ρ0 (distance to Y0), then the map f induces a Milnor fibration
in the sphere.

In the same work, M. Ruas and R.A. dos Santos gave an example showing that (c)-regularity in this
context is strictly stronger than Milnor fibration in the sphere. More precisely, their example consists in a
map for which the considered strata do not satisfy Whitney’s condition (a) and however the map induces a
fibration in the sphere. In the following section we will clarify this situation.

4. Milnor fibrations and m-regularity

Let f = (f1, · · · , fp) : Rn → Rp be a real analytic map with isolated critical value. Define V , X, Y , Y0
and ρ0 as in the previous section.

Definition 4.1. We say that the map f is m0-regular if the strata (Xα \ Y0, Y0) are m-regular with respect
to the control function ρ0.

In this case the contraction π is the natural map Rn × RPp−1 → {0} × RPp−1.

Lemma 4.2. The map f is m0-regular if and only if it is (d)-regular.

Proof. Recall that Y0 := {0} × RPp−1. A tubular neighborhood of Y0 in the ambient space Rn × RPp−1 is
of the form T ϵ

Y0
:= Bn

(0,ϵ) × RPp−1 where Bn
(0,ϵ) is the open ball of Rn centered at the origin with radius ϵ.

Consider the map

(π0, ρ0) : T
ϵ
Y0

→ Y0 × [0, ϵ)

(x1, · · · , xn, t1 : · · · : tp) 7→ ((0, t1 : · · · : tp), ρ0(x1, · · · , xn))
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Following definition 1.5, m0-regularity means that the restriction of (π0, ρ0) to X ∩ T ϵ
Y0

is a submersion.
Since the map (π0, ρ0) is a submersion, m0-regularity is equivalent to transversality of the stratum Xα

with the fibers of (π0, ρ0).
Consider the projection map:

ψ : X → RPp−1

induced by the second factor projection on Rn ×RPp−1. The fibers of the map ψ are precisely the elements
XL of the canonical pencil associated to f , expanded along the projective space RPp−1.

Let (0, ξ, δ) ∈ {0} × RPp−1 × [0, ϵ). The fiber (π0, ρ0)
−1(0, ξ, δ) is Sδ × {ξ}. This fiber is transversal to

Xα at a point of the form (x, ξ) ∈ Rn × RPp−1 if and only if the fiber ψ−1(ξ) is transversal to Sδ × {ξ};
equivalently, the sphere Sδ is transversal to the elements of the canonical pencil. This last statement is the
d-regularity condition.

In [12, Theorem 3], it is proved that, for maps with isolated critical points, (c)-regularity implies Milnor
Fibration in the sphere. We know that (c)-regularity implies (a) and (m)-regularity. We also know from
[5] that for such maps, Milnor fibration in the sphere is equivalent to d-regularity. Therefore, Lemma 4.2
makes Ruas and dos Santos’s result more precise:

Corollary 4.3. Let f : (Rn, 0) → (Rp, 0) be analytic with an isolated critical point. The map f induces
Milnor Fibration in the sphere if and only if it is m0-regular.

Let us now explore the isolated critical value situation.
Let f be as in the beginning of this section. Recall that V = f−1(0) and Y = V × RPp−1.
V may have many irreducible components, each of them can be expressed as a union of strata. since all

the strata are adherent to the origin, any tubular neighborhood of any of these strata will intersect all the
other strata. In the definition of m-regularity, we need a control function whose zero set inside a tubular
neighborhood of a stratum Yα is precisely Yα. If we keep this definition we will not be able to use it in
the case where V has more than one irreducible component. That is why we need to modify slightly the
definition of m-regularity, making it point-wise.

Definition 4.4. Let (Xβ, Yα) be a pair of strata with Yα ⊂ Y , Xβ ⊂ X \ Y and Yα ⊂ X̄β. Let Tα be a
tubular neighborhood of Yα and π : Tα → Yα a C1 retraction. Consider a non-negative function ρ : Tα → R+.
Let y0 ∈ Yα.

We say that the pair (Xβ, Yα) is m-regular at y0 if there exist a neighborhood U of y0 in the ambient
space, and a positive number δ0 such that for any δ ≤ δ0 we have:

- ρ−1(0) ∩ U = Yα ∩ U
- and the restriction of (π, ρ) : T δ

α → Yα × [0, δ) to Xβ ∩ T δ
α is a submersion

where T δ
α = Tα ∩ ρ−1([0, δ)).

We will say that the pair (Xβ, Yα) is m-regular if it is m-regular at every point of Yα.

Note that if a pair of strata is m-regular in the sense of definition 1.5, then it is still m-regular in the
sense of definition 4.4. When the small stratum is just a point, they obviously coincide.

The difference between these two definitions appears clearly in the case of different strata adherent to
the same one, and all of them in ρ−1(0).

From now on, when we refer to m-regularity, we mean definition 4.4
Let us consider a stratum Vα of V and call Yα = Vα ×RPp−1. We will say that Yα is a maximal stratum

of Y if it is not contained in the closure of any other stratum Vβ×RPp−1. Let Tα be a tubular neighborhood
of Yα in Rn × RPp−1. Let π : Tα → Yα be a C1 retraction and

ρ : Tα → R+

ρ(x1, · · · , xn, t1 : · · · : tp) =
p∑

i=1

f2i (x1, · · · , xn)
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a control function such that ∇ρp ∈ TpKerπ at any point p. Recall that X is the real blow-up of V in Rn

and (Xα) is a stratification of X \ Y .

Theorem 4.5. Let f : (Rn, 0) → (Rp, 0) be a surjective analytic map, with isolated critical value and n ≥ p.
and let Yα = Vα × RPp−1 be any maximal stratum of Y and Xβ a stratum of X \ Y adherent to Yα. If
the pair (Xβ, Yα) is m-regular for any C1 the retraction π : Tα → Yα and for the previously defined control
function ρ, then the map f induces a Milnor fibration on the tube.

Remark 4.6. In case of non maximal strata, it does not make sense to talk about m-regularity because, a
tubular neighborhood of such a stratum will necessarily intersect another stratum of V × RPp−1.

Proof. Following theorem 2.2, we are going to prove that for sufficiently small spheres, a fiber over a point
with sufficiently small norm is transversal to the given sphere. We claim that the m-regularity statement,
for different retraction maps, implies this property.

In order to prove that, let us explore the meaning of m-regularity on strata Xβ and Yα of our situation.
First of all, since Yα = Vα×RPp−1, a tubular neighborhood Tα in Rn×RPp−1 is of the form Tα×RPp−1,

where Tα is a tubular neighborhood of Vα in Rn. A retraction π : Tα → Yα decomposes into (τ, Id) :
Tα × RPp−1 → Vα × RPp−1.

Consider a positive real number δ0 such that

(π, ρ) : X ∩ T δ0
α → Yα × [0, δ0)

is a submersion near a point y ∈ Yα. This is equivalent to saying that the fibers of (π, ρ), before intersecting
with X, are transversal to X.

So let y = (v, t) ∈ Y = V × RPp−1. Let δ ∈ [0, δ0). Recall that ρ =
∑
f2i . The fiber (π, ρ)−1(y, δ) is

(f−1(∂Dδ1/2) ∩ τ−1(v))× {t}. This fiber is transversal to X if and only if, for every z ∈ Rp with ∥z∥2 = δ,
the fiber f−1(z) is transversal to τ−1(v) in Rn.

Consider a sufficiently small real number 0 < ϵ and Sϵ ⊂ Rn the sphere centered at the origin with
radius ϵ. For every point in Sϵ ∩ Vα and for every stratum Vα, we have a positive integer δ0 given by the
m-regularity statement. Since the intersection V ∩ Sϵ is compact and the number of strata of V is finite, we
can choose a value δ0 valid for all the intersection points.

Consider 0 < δ < δ0 and z ∈ Rp with ∥z∥ = δ. Let x ∈ f−1(z)∩ Sϵ. We are going to prove that this last
intersection is transversal.

We can choose a C1 retraction for which the tangent space Txπ
−1(π(x)) is contained in the tangent

space TxSϵ to the sphere. The transversality property between f−1(z) and π−1(π(x)), consequence of the
m-regularity, ensures transversality between the fiber f−1(z) and the sphere Sϵ at the point x.

This is precisely the condition required in theorem 2.2, to have a fibration in the tube.

Combining Theorem 4.5, Lemma 4.2 with Theorem 2.4, we obtain:

Theorem 4.7. Let f : Rn → Rp be a locally surjective real analytic map with an isolated critical value.
If f is m0-regular and the pair (Xβ, Yα) is m-regular for any C1 retraction π : Tα → Yα, for any maximal

stratum Yα of V = f−1(0), any adherent stratum Xβ of X \ Y , and for the control function ρ =
∑
i

f2i , then

the map f induces a Milnor fibration on the tube and on the sphere, and these fibrations are equivalent.
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