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Abstract

Edge irregular mapping or vertex mapping β : V (U) −→ {1, 2, 3, ..., s} is a mapping of vertices in such a way
that all edges have distinct weights. We evaluate weight of any edge by using equation wtβ(cd) = β(c)+β(d),
∀c, d ∈ V (U) and cd ∈ E(U). Edge irregularity strength denoted by es(U) is a minimum positive integer
used to label vertices to form edge irregular labeling. The aim of this paper is to determine the exact value
of edge irregularity strength of different families of snake graph.
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1. Introduction and Preliminaries

In this paper, we consider finite, simple and undirected graphs. The procedure of assignment of non-
negative integers to the elements of a graph U is termed as labeling. Vertex set V (U) and edge set E(U)
are the elements of a graph U . If we label vertices or edges, this labeling is categorized as vertex labeling
or edge labeling. If we label both vertices and edges, this labeling is termed as total labeling. Now a days,
graph labeling is widely used in various fields of life, including DNA sequence analysis, where it helps study
genetic information and relationships, as well as in image and video processing for tasks like object detec-
tion, tracking and scene analysis. The latest Gallian survey [14] shows that much effort has been done on
graph labeling. In 1988, Chartrand et al.[12] introduced edge labeling for a graph U . We call this labeling
as irregular assignments because all vertices have distinct weights. Irregularity strength s(U) is a minimum
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positive integer which is used to form irregular labeling. In 1998, Amar et al. [2] proved that the irregularity
strength of any tree with no vertices of degree two is its number of pendant vertices. In 2011, Kalkowski
et al. [18] gave a new upper bound for the irregularity strength of graphs. Similarly, results regarding
irregularity strength of graphs can be seen in papers [9], [13] and [20]. Vertex irregular mapping or edge
mapping β : E(U) −→ {1, 2, 3, ..., s} is a mapping of edges in such a way that all vertices have distinct
weights. Weight of any vertex can be calculated by using the equation wtβ(c) = Σβ(cd), ∀c, d ∈ V (U) and
cd ∈ E(U).
In 2007, Baca et al. [11] developed a new labeling known as edge irregular total labeling as a result of Char-
trand’s research. Edge irregular total labeling for a graph U is a mapping β : E(U)∪ V (U) −→ {1, 2, 3, ..., s}
in such a way that the total edge weight is different for all edges. We can evaluate total edge weight by
using the relation wtβ(cd) = β(c) + β(d) + β(cd), ∀c, d ∈ V (U) and cd ∈ E(U). Total edge irregularity
strength denoted by tes(U) is a minimum positive integer used to label edges to form edge irregular total
labeling. More results were deduced by many researchers as a result of this inspiration. In 2012, Ahmad et
al. determined exact value of total edge irregularity strength of the strong product of two paths Pn and Pm

in their paper [6], while in 2014, they found total edge irregularity strength of product of two cycles Cn and
Cm in their paper [4]. In 2012, Mushayt et al. [8] calculated exact value of total edge irregularity strength
of hexagonal grid graphs. In 2014, Baca et al. [10] obtained useful results regarding total edge irregularity
strength of generalized prism. Many authors contributed to the study of total edge irregularity strength in
their papers [15],[17],[19],[21] and [22].
Edge irregularity and vertex irregularity were both new labels developed by Marzuki based on the previously
improved motivation in [11], which were categorized as total labels with complete irregularity. Total irregu-
larity strength for a graph U is denoted as ts(U). Results related to irregular total labeling were developed
in papers [11] and [20].
Because of the challenge to the previous results, Ahmed et al. developed a new concept of edge irregularity
strength denoted by es(U) in [3], which was a minimum positive integer used to label vertices to form edge
irregular labeling. Inspired by this, many researchers found edge irregularity strength of various graphs. In
2016, Ahmad et al. [5] investigated exact value of edge irregularity strength of different families of toeplitz
graph. In 2017, Mushayt et al. [7] took product of certain families of graphs with P2 and determined
their exact value of edge irregularity strength. In the same year, Imran et al. [16] gave results on edge
irregularity strength of friendship graphs, cycle chains, caterpillars, star graphs and kite graphs. Ahmad et
al. [1] computed edge irregularity strength of some chain graphs and the join of two graphs, and introduced
a conjecture and open problems for researchers to research further. Tarawneh et al. [25] estimated edge
irregularity strength of corona graphs of path Pm with P2, Pm with K1 and Sm with Pm, as well as the edge
irregularity strength of the corona product of a cycle with isolated vertices in their paper [23]. Additionally,
they explored edge irregularity strength of various graphs in papers [26] and [27]. By the motivation of
previous results, Zhang et al. [28] introduced some new families of comb graph, such as comb graph Can,
Cdn, Cen, Cfn and Cgn, and found their exact value of edge irregularity strength in 2020. Furthermore, in
2021, Tarawneh et al. [24] obtained edge irregularity strength of some classes of plane graphs.

Theorem 1.1. [3] Let U be a simple graph with maximum degree △=△ (U), then

es(U) ≥ max{⌈ |E(U)|+1
2 ⌉, △ (U)}.

Definition 1.2. An edge of a graph is categorized as pendant edge if one of its vertices has degree one.

Definition 1.3. To obtain a triangular snake graph, let’s consider a path graph Pm with m ≥ 2. If we
replace each edge of the path graph with a triangle C3, we get the triangular snake graph Tm. It is formed
by vertex set V (Tm) = {az; 1 ≤ z ≤ m − 1}

⋃
{bz; 1 ≤ z ≤ m} and edge set E(Tm) = {bzbz+1; 1 ≤ z ≤

m− 1}
⋃
{azbz; 1 ≤ z ≤ m− 1}

⋃
{azbz+1; 1 ≤ z ≤ m− 1}. It has (2m− 1) vertices and 3(m− 1) edges.
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Figure 1: Triangular snake graph T7.

Definition 1.4. Triangular snake graph Tm with pendant edges is formed by vertex set V (Tm) = {az, bz; 1 ≤
z ≤ m − 1}

⋃
{cz, dz; 1 ≤ z ≤ m} and edge set E(Tm) = {azbz; 1 ≤ z ≤ m − 1}

⋃
{bzcz; 1 ≤ z ≤ m −

1}
⋃
{bzcz+1; 1 ≤ z ≤ m − 1}

⋃
{czcz+1; 1 ≤ z ≤ m − 1}

⋃
{czdz; 1 ≤ z ≤ m}. It has (5m − 4) edges and

(4m− 2) vertices.

Figure 2: Triangular snake graph T7 with pendant edges.

Definition 1.5. In order to obtain the alternate triangular snake graph ATm, let’s consider a path graph
Pm with m ≥ 2. If we join Pi and Pi−1 (alternately) to a new vertex ai, so that each alternating edge
of a path is replaced by triangle C3, we get the alternate triangular snake graph ATm. It is formed by
vertex set V (ATm) = {az; 1 ≤ z ≤ m − 2}

⋃
{bz; 1 ≤ z ≤ m} and edge set E(ATm) = {bzbz+1; 1 ≤ z ≤

m− 1}
⋃
{azbz; 1 ≤ z ≤ m− 2}

⋃
{azbz+2; 1 ≤ z ≤ m− 2}. It has (2m− 2) vertices and (3m− 5) edges.

Figure 3: Alternate triangular snake graph AT10.
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Definition 1.6. Alternate triangular snake graphATm with pendant edges is formed by vertex set V (ATm) =
{az, bz; 1 ≤ z ≤ m− 2}

⋃
{cz, dz; 1 ≤ z ≤ m} and edge set E(ATm) = {azbz; 1 ≤ z ≤ m− 2}

⋃
{bzcz; 1 ≤ z ≤

m − 2}
⋃
{bzcz+2; 1 ≤ z ≤ m − 2}

⋃
{czcz+1; 1 ≤ z ≤ m − 1}

⋃
{czdz; 1 ≤ z ≤ m}. It has (4m − 4) vertices

and (5m− 7) edges.

Figure 4: Alternate triangular snake graph AT10 with pendant edges.

2. Main results

Theorem 2.1. Let Tm be a triangular snake graph, then es(Tm) = 2m− 1.

Proof. Let Tm be a triangular snake graph. We have to show that es(Tm) = 2m− 1. From Theorem 1.1, we
get lower bound es(Tm) ≥ 2m−1. To establish the equality, it is enough to prove the existence of an optimal
edge irregular (2m−1)-labeling. For this, define a vertex labeling β : V (Tm) → {1, 2, 3, ..., 2m−1} such that:

β(az) = 2z, 1 ≤ z ≤ m− 1.

β(bz) = 2z − 1, 1 ≤ z ≤ m.

Now we evaluate weights for all edges as follows:

wt(bzbz+1) = 4z, 1 ≤ z ≤ m− 1.

wt(azbz) = 4z − 1, 1 ≤ z ≤ m− 1.

wt(azbz+1) = 4z + 1, 1 ≤ z ≤ m− 1.

On the basis of the above calculations, we can see that all vertex labels are at most 2m − 1, and all edges
have distinct weights. The labeling β provides the upper bound on es(Tm), i.e es(Tm) ≤ 2m−1. Combining
with the lower bound, we conclude that es(Tm) = 2m− 1. This completes the proof.
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Figure 5: Irregular labeling on triangular snake graph T7.

Theorem 2.2. Let Tm be a triangular snake graph with pendant edges, then es(Tm) = ⌈5m−3
2 ⌉.

Proof. Let Tm be a triangular snake graph with pendant edges. We have to show that es(Tm) = ⌈5m−3
2 ⌉.

From Theorem 1.1, we get lower bound es(Tm) ≥ ⌈5m−3
2 ⌉. To establish the equality, it is enough to prove

the existence of an optimal edge irregular ⌈5m−3
2 ⌉-labeling. For this, define a vertex labeling β : V (Tm) →

{1, 2, 3, ..., ⌈5m−3
2 ⌉} such that:

β(az) =


1, if z = 1
5z+2
2 , if z is even

5z−1
2 , if z > 1, odd.

β(bz) =


1, if z = 1
5z+2
2 , if z is even

5z+3
2 , if z > 1, odd.

β(cz) =


2, if z = 1
5z−4
2 , if z is even

5z−5
2 , if z > 1, odd.

β(dz) =


4, if z = 1, 2
5z−6
2 , if z > 2, even

5z−5
2 , if z > 1, odd.

Now we evaluate weights for all edges as follows:

wt(azbz) =


2, if z = 1

5z + 1, if z > 1, odd

5z + 2, if z is even.

wt(bzcz) =

{
3, if z = 1

5z − 1, otherwise.

wt(bzcz+1) =


4, if z = 1

5z + 2, if z > 1, odd

5z + 1, if z is even.

wt(czcz+1) =

{
5, if z = 1

5z − 2, otherwise.
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wt(czdz) =

{
z + 5, if z = 1, 2

5z − 5, otherwise.

On the basis of the above calculations, we can see that all vertex labels are at most ⌈5m−3
2 ⌉, and all edges

have distinct weights. The labeling β provides the upper bound on es(Tm), i.e es(Tm) ≤ ⌈5m−3
2 ⌉. Combining

with the lower bound, we conclude that es(Tm) = ⌈5m−3
2 ⌉. This completes the proof.

Figure 6: Irregular labeling on triangular snake graph T7 with pendant edges.

Theorem 2.3. Let ATm be an alternate triangular snake graph, then es(ATm) = 3m−4
2 .

Proof. Let ATm be an alternate triangular snake graph. We have to show that es(ATm) = 3m−4
2 . From The-

orem 1.1, we get lower bound es(ATm) ≥ 3m−4
2 . To establish the equality, it is enough to prove the existence

of an optimal edge irregular 3m−4
2 -labeling. For this, define a vertex labeling β : V (ATm) → {1, 2, 3, ..., 3m−4

2 }
such that:

β(az) =


1, if z = 1
3z+2
2 , if z is even

3z+3
2 , if z > 1, odd.

β(bz) =


z, if z = 1, 2
3z−4
2 , if z > 2, even

3z−3
2 , if z > 1, odd.

Now we evaluate weights for all edges as follows:

wt(bzbz+1) =

{
2z + 1, if z = 1, 2

3z − 2, otherwise.

wt(azbz) =


4z − 2, if z = 1, 2

3z, if z > 1, odd

3z − 1, if z > 2 , even.
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wt(azbz+2) =


4, if z = 1

3z + 3, if z > 1, odd

3z + 2, if z is even.

On the basis of the above calculations, we can see that all vertex labels are at most 3m−4
2 , and all edges have

distinct weights. The labeling β provides the upper bound on es(ATm), i.e es(ATm) ≤ 3m−4
2 . Combining

with the lower bound, we conclude that es(ATm) = 3m−4
2 . This completes the proof.

Figure 7: Irregular labeling on alternate triangular snake graph AT10.

Theorem 2.4. Let ATm be an alternate triangular snake graph with pendant edges, then es(ATm) = 5m−6
2 .

Proof. Let ATm be an alternate triangular snake graph with pendant edges. We have to show that es(ATm)
= 5m−6

2 . From Theorem 1.1, we get lower bound es(ATm) ≥ 5m−6
2 . To establish the equality, it is

enough to prove the existence of an optimal edge irregular 5m−6
2 -labeling. For this, define a vertex la-

beling β : V (ATm) → {1, 2, 3, ..., 5m−6
2 } such that:

β(az) =


5z
2 , if z = 2, 4
5z−2
2 , if z > 4 , even

7z−5
2 , if z = 1, 3

5z−1
2 , if z > 3, odd.

β(bz) =


4, if z = 2
5z
2 , if z > 2 , even
7z−5
2 , if z = 1, 3

5z+3
2 , if z > 3, odd.

β(cz) =


5z−1
2 , if z = 1, 3

5z−3
2 , if z > 3 , odd

3, if z = 2
5z−6
2 , if z > 2, even.

β(dz) =


2, if z = 1
5z−5
2 , if z > 1 , odd

3z
2 , if z = 2, 4
5z−6
2 , if z > 4, even.

Now we evaluate weights for all edges as follows:
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wt(azbz) =


2, if z = 1
11z−4

2 , if z = 2, 4

5z + 1, if z ≥ 3, odd

5z − 1, if z ≥ 6 , even.

wt(bzcz) =


3, if z = 1

5z, if z > 1, odd

5z − 3, if z is even.

wt(bzcz+2) =


8, if z = 1

8z − 5, if 2 ≤ z ≤ 3

5z + 2, if z > 2, even

5z + 5, if z > 3 , odd.

wt(czcz+1) =


5, if z = 1

4z + 2, if 2 ≤ z ≤ 3

5z − 2, otherwise.

wt(czdz) =


4z, if z = 1, 3
7z−2
2 , if z = 2, 4

5z − 4, if z ≥ 5, odd

5z − 6, if z ≥ 6 , even.

On the basis of the above calculations, we can see that all vertex labels are at most 5m−6
2 , and all edges have

distinct weights. The labeling β provides the upper bound on es(ATm), i.e es(ATm) ≤ 5m−6
2 . Combining

with the lower bound, we conclude that es(ATm) = 5m−6
2 . This completes the proof.

Figure 8: Irregular labeling on alternate triangular snake graph AT10 with pendant edges.

3. Conclusion

In this paper, we obtained accurate value of edge irregularity strength of triangular snake graph with and
without pendant edges and alternate triangular snake graph with and without pendant edges. Numerous
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applications, including network design and optimization, rely on these findings. Further advancing the field
of graph theory research, the approach employed in this work will be utilized as a base for investigating the
edge irregularity strengths of other complicated graphs. Moving forward, a promising future direction will
be to find edge irregularity strength of shadow graph, splitting graph, jewel graph, jellyfish graph, 4-Pan
graph and deep neural network. Finding edge irregularity strength of above mentioned graphs will definitely
potentially lead to valuable findings in graph theory.
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[3] A. Ahmad, O. B. S. Al-Mushayt, and M. Bača, On edge irregularity strength of graphs, Applied Mathematics

and Computation, 243 (2014), 607–610.
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