On the representations of the braid group and the welded braid group

Rana S. Kahila , Mohammad N. Abdulrahim ${ }^{\text {b,* }}$
${ }^{2}$ Department of Mathematics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
${ }^{b}$ Department of Mathematics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.

Abstract

We study the composition of F. R. Cohen's map $B_{n} \rightarrow B_{n k}$ with the standard representation of $B_{n k}$, where B_{n} is the braid group on n strings. We prove that the obtained representation of B_{n} is isomorphic to the direct sum of k copies of the standard representation of B_{n}. A similar work is done for the welded braid group $w B_{n}$.

Keywords: Braid group, common fixed point, Welded Braid group, Cohen.
2010 MSC: Primary: 20F36.

1. Introduction

There are many kinds of representations of B_{n}, the braid group on n strings. Some of the main representations of the braid group are the Burau representation, Wada representations, and the standard representation. The standard representation is known for its simplicity. In fact, it was first discovered only in 1996 by Dian-Min Tong et al. [12, and it was studied by I. Sysoeva [11.

In this paper, we consider $w B_{n}$, the welded braid group, which is a 3-dimensional analogue of B_{n}. Welded braid groups, also known as loop braid groups, have different definitions in terms of configuration spaces of circles in the 3 -ball B^{3}, as automorphisms of free groups, or as tubes in \mathbb{R}^{4}. In [9], C. Damiani presented various definitions of welded braid groups and proved the equivalence of these definitions. The representation theory for these groups is recently studied. Burau representation extends, in terms of Fox derivatives and Magnus expansion, to welded braid groups [3]. In [4], Bellingeri and Soulié extended LongMoody procedure to $w B_{n}$ and compared different Burau representations for $w B_{n}$. They extended some types of Wada representations to welded braid groups. Also, they introduced the Tong-Yang-Ma representations of $w B_{n}$ and its dual. The standard representation of $w B_{n}$ is obtained in a similar way.

[^0]We consider the map $B_{n} \rightarrow B_{n k}$ introduced by F. R. Cohen, which is defined on geometric braids by replacing each string with k strings [8]. In [1], M. N. Abdulrahim studied the composition of the Burau representation and the natural map $B_{n} \rightarrow B_{n k}$. Constructing a free group, $G_{n m}$, of rank $n m$, M. Abdulrahim and N. Kassem composed Cohen's map on m strings and the embedding $B_{n m} \rightarrow \operatorname{Aut}\left(G_{n m}\right)$ via Wada's map [2].

In Section two of this paper, we give basic definitions concerning B_{n} and $w B_{n}$, and introduce some of their main representations. Also, we present some previous known results, needed in our work, concerning monomial matrices.

In Section three, we study the composition of Cohen's map, $B_{n} \rightarrow B_{n k}$, and the standard representation, $B_{n k} \rightarrow G L_{n k}\left(\mathbb{Z}\left[t, t^{-1}\right]\right)$. Our main result is Theorem 3.4 which shows that the linear representation obtained by composing Cohen's map and the standard representation is isomorphic to a direct sum of k copies of the standard representation of B_{n}.

In Section four, we extend this work to the welded braid group. We aim to construct linear representations of $w B_{n}$ of high degree. Using Cohen's map on k strings, we define a map $\psi: w B_{n} \rightarrow w B_{n k}$, and we show that it is a well defined homomorphism. We compose ψ with the standard representation of $w B_{n k}$, to obtain a representation of $w B_{n}$ of degree $n k$. The composition of ψ with representations of B_{n} may result in new representations of $w B_{n}$.

2. Definitions and Known Results

We recall some basic definitions of braid groups and welded braid groups. In particular, we define the standard representation of the braid group and that of the welded braid group. Also, we present Cohen's map. Then, we give some previous result of monomial matrices that are needed in our work.

Definition 2.1. 5 The braid group on n strings, B_{n}, is the abstract group with generators $\sigma_{1}, \ldots, \sigma_{n-1}$ and a presentation as follows:

$$
\begin{gathered}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \quad i=1,2, \ldots, n-2 \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \quad|i-j| \geq 2
\end{gathered}
$$

There are many representations of the braid group B_{n}. One of these is the standard representation of degree n.

Definition 2.2. [12] The standard representation is the representation

$$
\rho: B_{n} \rightarrow G L_{n}\left(\mathbb{Z}\left[t^{ \pm 1}\right]\right)
$$

given by :

$$
\rho\left(\sigma_{i}\right)=I_{i-1} \oplus\left(\begin{array}{cc}
0 & t \\
1 & 0
\end{array}\right) \oplus I_{n-i-1}, \text { for } i=1,2, \ldots, n-1 .
$$

Here, I_{k} is the $k \times k$ identity matrix.

According to [6], the fundamental group of the space of configurations of n unlinked Euclidean circles being all parallel to a fixed plane is generated by two types of moves. The move τ_{i} is the path permuting the $i^{\text {th }}$ and the $(i+1)^{t h}$ circles by passing over or around, and the move σ_{i} permutes them by passing the $i^{t h}$ circle through the $(i+1)^{t h}$.

Definition 2.3. [6] The welded braid group on n generators $w B_{n}$ admits a presentation with generators $\left\{\sigma_{i}, \tau_{i} ; i \in\{1, \ldots, n-1\}\right\}$ together with relations:

$$
\begin{cases}\sigma_{i} \sigma_{l}=\sigma_{l} \sigma_{i} & \text { if }|i-l| \geq 2 \\ \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & \text { if } i \in\{1, \ldots, n-2\} \\ \tau_{i} \tau_{l}=\tau_{l} \tau_{i} & \text { if }|i-l| \geq 2 \\ \tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} & \text { if } i \in\{1, \ldots, n-2\} \\ \tau_{i}^{2}=1 & \text { if } i \in\{1, \ldots, n-1\} \\ \sigma_{i} \tau_{l}=\tau_{l} \sigma_{i} & \text { if }|i-l| \geq 2 \\ \tau_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \tau_{i+1} & \text { if } i \in\{1, \ldots, n-2\} \\ \sigma_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \sigma_{i+1} & \text { if } i \in\{1, \ldots, n-2\}\end{cases}
$$

In [12], Tong, Yang and Ma investigated the representations of braid group where the $i^{\text {th }}$ generator is sent to a non-singular matrix of the form

$$
\rho\left(\sigma_{i}\right)=I d_{i-1} \oplus\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \oplus I d_{n-i-1}
$$

They proved that only two non trivial representations of this type exist (up to equivalence and transpose): the unreduced Burau representations and the Tong-Yang-Ma representation. The standard representation is the transpose of the Tong-Yang-Ma representation. This representation can be extended to welded braid groups in the following way:

Proposition 2.4. The standard representation of the welded braid group is the representation

$$
w B_{n} \rightarrow G L_{n}\left(\mathbb{Z}\left[t^{ \pm 1}\right]\right)
$$

given by

$$
\rho\left(\sigma_{i}\right)=I d_{i-1} \oplus\left(\begin{array}{ll}
0 & t \\
1 & 0
\end{array}\right) \oplus I d_{n-i-1} \quad, \quad \rho\left(\tau_{i}\right)=I d_{i-1} \oplus\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \oplus I d_{n-i-1}
$$

for all natural numbers $i \in\{1, \ldots, n-1\}$.
Proof. The matrices for σ_{i} define the standard representation of the braid group and those of τ_{i} define the permutation representation of the symmetric group. It follows that we only need to check the mixed relations between the braid and symmetric generators of $w B_{n}$ (see Definition 2.3).

To construct representations of higher degree, F. R. Cohen defined a map on geometric braids that replaces each string with k strings.

Definition 2.5. ([7], [8]) The Cohen representation is the map $B_{n} \rightarrow B_{n k}$ defined as follows: $\sigma_{i} \rightarrow\left(\sigma_{k i} \sigma_{k i+1} \ldots \sigma_{k i+k-1}\right)\left(\sigma_{k i-1} \sigma_{k i} \ldots \sigma_{k i+k-2}\right) \ldots\left(\sigma_{k i-k+1} \sigma_{k i-k+2} \ldots \sigma_{k i}\right)$.

The image of the braid σ_{i} is the braid obtained by replacing each string of the geometric braid, σ_{i}, with k parallel strings. This tensor product of braids is a homomorphism. For more details see [7].

The images of the generators of braid group under the standard representation are monomial matrices. Thus, we introduce some results concerning this type of matrices.

Definition 2.6. 10 A Monomial matrix of order n is a regular $n \times n$-matrix which has in each row and in each column exactly one non-zero component. Monomial matrices form a group. Permutation matrices are monomial matrices in which all nonzero components are equal to 1 . Its rows are a permutation of the rows of the identity matrix.

Let $P\left(i_{1}, \ldots, i_{n}\right)$ be the permutation matrix associated to the permutation
$\left(i_{1}, \ldots, i_{n}\right)$.
Lemma 2.7. [10] Every monomial matrix is a product of a diagonal matrix with a permutation matrix. In general, any monomial matrix can be written in the following way:

$$
M\left(a_{1}, \ldots, a_{n} ; i_{1}, \ldots, i_{n}\right)=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) P\left(i_{1}, \ldots, i_{n}\right)
$$

The notation for the diagonal matrix is the obvious one: $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ is the diagonal matrix with (i, $\left.i\right)$ entry a_{i}.

We consider the cycle decomposition of a monomial matrix $M\left(a_{1}, \ldots, a_{n} ; i_{1}, \ldots, i_{n}\right)$ as the cycle decomposition of the permutation $\left(i_{1}, \ldots, i_{n}\right)$.

Note. Let $\left\{e_{j}, 1 \leq j \leq n\right\}$ be the standard basis and M be a monomial matrix. Then, $M\left(e_{j}\right)=a_{i_{j}} e_{i_{j}}$, where $a_{i_{j}}$ is the non zero element in the $i_{j}^{t h}$ row, and i_{j} is the image of j under the considered permutation.

3. Composition of Cohen's map and the standard representation

In this section, we study the image of the composition map

$$
\phi(n, k): B_{n} \rightarrow B_{n k} \rightarrow G L_{n k}\left(\mathbb{Z}\left[t, t^{-1}\right]\right)
$$

where the first map is Cohen's map (see Definition 2.5), and the second is the standard representation, ρ (see Definition 2.2).

$$
\begin{aligned}
\phi(n, k)\left(\sigma_{i}\right)= & \\
& =\rho\left(\left(\sigma_{k i} \sigma_{k i+1} \ldots \sigma_{k i+k-1}\right)\left(\sigma_{k i-1} \sigma_{k i} \ldots \sigma_{k i+k-2}\right) \ldots\left(\sigma_{k i-k+1} \sigma_{k i-k+2} \ldots \sigma_{k i}\right)\right)
\end{aligned}
$$

Thus, the image of σ_{i} under $\phi(n, k)$ is a product of k factors of the form

$$
\rho\left(\sigma_{k i-j+1} \sigma_{k i-j+2} \ldots \sigma_{k i-j+k}\right)
$$

starting from $j=1$ till $j=k$. Therefore, to obtain our result we consider two steps. In the first, we compute $\rho\left(\sigma_{k i-j+1} \sigma_{k i-j+2} \ldots \sigma_{k i-j+k}\right)$ for each j. In the second, we compute their product. These two steps are represented in the next two propositions. In what follows, let ρ be the standard representation of B_{n}.

Proposition 3.1. For any positive integer k, and $1 \leq i \leq n-1$ we have:

$$
\left.\begin{array}{l}
\rho\left(\sigma_{k i-j+1} \sigma_{k i-j+2} \ldots \sigma_{k i-j+k}\right) \\
=I_{k(i-1)} \oplus\left(\begin{array}{c|c|c}
I_{k-j} & 0 & 0 \\
\hline 0 & 0 & t^{k} \\
\hline & I_{k} & 0
\end{array}\right. \\
\hline \begin{array}{c|c|}
\hline
\end{array} \\
\hline 0
\end{array}\right) \oplus I_{n k-k(i+1)}
$$

for all $1 \leq j \leq k$.
Proof. We use induction to show that, for any natural number m such that $1 \leq m \leq k$,

$$
\left.\begin{array}{rl}
\rho\left(\sigma_{k i-j+1} \sigma_{k i-j+2} \ldots \sigma_{k i-j+m}\right)=\rho\left(\sigma_{k i-j+1}\right) \rho\left(\sigma_{k i-j+2}\right) \ldots \rho\left(\sigma_{k i-j+m}\right) \\
\quad=I_{k(i-1)} \oplus & \left(\begin{array}{c|c|c}
I_{k-j} & 0 & 0 \\
\hline 0 & 0 & t^{m} \\
\hline 0 & I_{m} & 0
\end{array}\right. \\
\hline \begin{array}{lll}
0 & 0
\end{array} \\
\hline 0 & I_{k+j-m-1}
\end{array}\right) \oplus I_{n k-k(i+1)} .
$$

For $m=1$, it is true, by Definition 2.2 . We easily see that

$$
\left.\left.\rho\left(\sigma_{k i-j+1}\right)=I_{k(i-1)} \oplus\left(\begin{array}{c|c|c}
I_{k-j} & 0 & 0 \\
\hline 0 & 0 & t \\
\hline & 1 & 0
\end{array}\right) 0 \begin{array}{c}
0 \\
\hline 0
\end{array} \right\rvert\, \begin{array}{c}
0 \\
I_{k+j-2}
\end{array}\right) \oplus I_{n k-k(i+1)}
$$

Assume it is true for $m=r$ with $1<r<k$. Then, for $m=r+1$ we have

$$
\rho\left(\sigma_{k i-j+1}\right) \rho\left(\sigma_{k i-j+2}\right) \ldots \rho\left(\sigma_{k i-j+r+1}\right)=\left(\rho\left(\sigma_{k i-j+1}\right) \ldots \rho\left(\sigma_{k i-j+r}\right)\right) \rho\left(\sigma_{k i-j+r+1}\right)
$$

By assumption, $\rho\left(\sigma_{k i-j+1}\right) \ldots \rho\left(\sigma_{k i-j+r}\right)=$

$$
\begin{align*}
& \left.=I_{k(i-1)} \oplus\left(\begin{array}{c|cc|c}
I_{k-j} & & 0 & 0 \\
\hline & 0 & t^{r} & 0 \\
\mathbf{0} & I_{r} & 0 & 0 \\
0 & 0 & 1 & \\
\hline 0 & & 0 & \\
\hline
\end{array}\right) \quad \begin{array}{l}
I_{k+j-r-2}
\end{array}\right) \oplus I_{n k-k(i+1)} . \tag{1}
\end{align*}
$$

Again, from Definition 2.2 , we have that $\rho\left(\sigma_{k i-j+r+1}\right)$

$$
\left.=I_{k(i-1)} \oplus \begin{array}{c|c|c}
I_{k-j+r} & 0 & 0 \\
\hline 0 & 0 & t \\
\hline 0 & 0 & 0 \\
\hline 0 & 0 & I_{k+j-r-2}
\end{array}\right) \oplus I_{n k-k(i+1)}
$$

$$
\left.=I_{k(i-1)} \oplus \begin{array}{c|ccc|c}
I_{k-j} & & 0 & 0 \tag{2}\\
\hline & I_{r} & 0 & 0 & \\
0 & 0 & 0 & t & 0 \\
& 0 & 1 & 0 & \\
\hline 0 & & 0 & I_{k+j-r-2}
\end{array}\right) \oplus I_{n k-k(i+1)}
$$

Using (1) and (2) we get

$$
\begin{aligned}
& \rho\left(\sigma_{k i-j+1}\right) \rho\left(\sigma_{k i-j+2}\right) \ldots \rho\left(\sigma_{k i-j+r+1}\right)=\left(\rho\left(\sigma_{k i-j+1}\right) \ldots \rho\left(\sigma_{k i-j+r}\right)\right) \rho\left(\sigma_{k i-j+r+1}\right) \\
& \left.=I_{k(i-1)} \oplus\right) \oplus I_{n k-k(i+1)} \\
& =I_{k(i-1)} \oplus\left(\right] 0 \begin{array}{l}
0 \\
\hline 0
\end{array}
\end{aligned}
$$

So, it is true for $m=r+1$, and thus, it is true for all m such that $1 \leq m \leq k$.

Proposition 3.2. Let k be a positive integer, then

$$
\begin{gathered}
\rho\left(\left(\sigma_{k i} \sigma_{k i+1} \ldots \sigma_{k i+k-1}\right)\left(\sigma_{k i-1} \sigma_{k i} \ldots \sigma_{k i+k-2}\right) \ldots\left(\sigma_{k i-k+1} \sigma_{k i-k+2} \ldots \sigma_{k i}\right)\right) \\
=I_{k(i-1)} \oplus\left(\begin{array}{cc}
0 & t^{k} I_{k} \\
I_{k} & 0
\end{array}\right) \oplus I_{n k-k(i+1)} \quad i=1,2, \ldots, n-1
\end{gathered}
$$

Proof. Let s be the number of consecutive factors of the form
$\rho\left(\sigma_{k i-j+1} \sigma_{k i-j+2} \ldots \sigma_{k i-j+k}\right)$. We use induction on $s, 1 \leq s \leq k$, to show that

$$
\begin{gathered}
\rho\left(\left(\sigma_{k i} \sigma_{k i+1} \ldots \sigma_{k i+k-1}\right)\left(\sigma_{k i-1} \sigma_{k i} \ldots \sigma_{k i+k-2}\right) \ldots\left(\sigma_{k i-(s-1)} \ldots \sigma_{k i+k-s}\right)\right) \\
\\
=I_{k(i-1)} \oplus\left(\begin{array}{c|c|c}
I_{k-s} & 0 & 0 \\
\hline 0 & 0 & t^{k} I_{s} \\
\hline 0 & I_{k} & 0
\end{array}\right) \oplus I_{n k-k(i+1)} .
\end{gathered}
$$

We show it is true for $s=1$. Using the result of Proposition 3.1, we have that

$$
\begin{gathered}
\rho\left(\sigma_{k i} \sigma_{k i+1} \ldots \sigma_{k i+k-1}\right)=I_{k(i-1)} \oplus\left(\begin{array}{c|c|c}
I_{k-1} & 0 & 0 \\
\hline 0 & 0 & t^{k} \\
\hline & 0 \\
\hline 0 & 0 & I_{k} \\
\hline
\end{array}\right) \oplus I_{n k-k(i+1)} \\
\hline=I_{k(i-1)} \oplus\left(\begin{array}{c|c|c}
I_{k-1} & 0 & 0 \\
\hline 0 & 0 & t^{k} \\
\hline 0 & I_{k} & 0
\end{array}\right) \oplus I_{n k-k(i+1)} .
\end{gathered}
$$

Assume it is true for $s=r$ where $1 \leq r<k$. We show it is true for $s=r+1$. By assumption, we have for $s=r$

$$
\begin{gathered}
\rho\left(\left(\sigma_{k i} \sigma_{k i+1} \ldots \sigma_{k i+k-1}\right)\left(\sigma_{k i-1} \sigma_{k i} \ldots \sigma_{k i+k-2}\right) \ldots\left(\sigma_{k i-(r-1)} \ldots \sigma_{k i+k-r}\right)\right) \\
\quad=I_{k(i-1)} \oplus\left(\begin{array}{c|c|c}
I_{k-r} & 0 & 0 \\
\hline 0 & 0 & t^{k} I_{r} \\
\hline 0 & I_{k} & 0
\end{array}\right) \oplus I_{n k-k(i+1)} .
\end{gathered}
$$

Using Proposition 3.1 for $j=r+1, \rho\left(\sigma_{k i-r} \ldots \sigma_{k i+k-(r+1)}\right)$

$$
\left.\left.=I_{k(i-1)} \oplus\left(\right] \begin{array}{c}
0 \\
\hline 0
\end{array} \right\rvert\, \begin{array}{l}
0
\end{array}\right)
$$

Using direct computations, we obtain that

$$
\begin{aligned}
& \rho\left(\left(\sigma_{k i} \sigma_{k i+1} \ldots \sigma_{k i+k-1}\right) \ldots\left(\sigma_{k i-(r-1)} \ldots \sigma_{k i+k-r}\right)\left(\sigma_{k i-r} \ldots \sigma_{k i+k-(r+1)}\right)\right) \\
& \quad=I_{k(i-1)} \oplus\left(\begin{array}{c|c|c}
I_{k-r-1} & 0 & 0 \\
\hline 0 & 0 & t^{k} I_{r+1} \\
\hline 0 & I_{k} & 0
\end{array}\right) \oplus I_{n k-k(i+1)} .
\end{aligned}
$$

Therefore, it is true for all s such that $1 \leq s \leq k$.
Using Proposition 3.1 and Proposition 3.2 we state the following lemma.

Lemma 3.3. Consider the composition $\operatorname{map} \phi(n, k): B_{n} \rightarrow B_{n k} \rightarrow G L_{n k}\left(\mathbb{Z}\left[t, t^{-1}\right]\right)$, where the first map is Cohen's map and the second is the standard representation, ρ. The images of the generators of B_{n} under $\phi(n, k)$, are given by

$$
\phi(n, k)\left(\sigma_{i}\right)=I_{k(i-1)} \oplus\left(\begin{array}{cc}
0 & t^{k} I_{k} \\
I_{k} & 0
\end{array}\right) \oplus I_{n k-k(i+1)} \quad, \quad i=1,2, \ldots, n-1
$$

After obtaining explicitly the images of the generators of B_{n} under $\phi(n, k)$, we now study the irreducibility of $\phi(n, k)$.

Theorem 3.4. The linear representation, $\phi(n, k): B_{n} \rightarrow B_{n k} \rightarrow G L_{n k}\left(\mathbb{Z}\left[t, t^{-1}\right]\right)$, obtained by composing Cohen's map with the standard representation is the direct sum of k copies of the standard representation of B_{n} after replacing t by t^{k}.

Proof. We first prove that there exists k non trivial invariant subspaces each of dimension n. Let U_{j} be the subspace generated by $e_{j}, e_{j+k}, e_{j+2 k}, \ldots, e_{j+(n-1) k}$ for $1 \leq j \leq k$. We show that U_{j} is an invariant subspace, for all j. Using the result of Lemma 3.3 and the fact that each matrix $\phi(n, k)\left(\sigma_{i}\right)$ is a monomial matrix, we consider the cycle decomposition of each matrix $\phi(n, k)\left(\sigma_{i}\right)$, for $1 \leq i \leq n-1$, as follows:

$$
\begin{gathered}
(1)(2) \ldots(k(i-1)) \\
(k(i-1)+1, i k+1)(k(i-1)+2, i k+2) \ldots(k i, i k+k) \\
(k(i+1)+1) \ldots(k n)
\end{gathered}
$$

Using the above cycle decomposition and the result of Lemma 3.3 and Lemma 2.7 , we compute $\phi(n, k)\left(\sigma_{i}\right)\left(e_{j+l k}\right)$, for $0 \leq l \leq n-1$.
Since $1 \leq j \leq k$, it follows that $j+(i-2) k \leq k(i-1)$. Then, the images of the first $i-1$ vectors in U_{j} under $\phi(n, k)\left(\sigma_{i}\right)$ are as follows:

$$
\begin{aligned}
& \phi(n, k)\left(\sigma_{i}\right)\left(e_{j}\right)=e_{j} \\
& \phi(n, k)\left(\sigma_{i}\right)\left(e_{j+k}\right)=e_{j+k} \\
& \vdots \\
& \phi(n, k)\left(\sigma_{i}\right)\left(e_{j+(i-2) k}\right)=e_{j+(i-2) k}
\end{aligned}
$$

Also, we have that $1+(i-1) k \leq j+(i-1) k \leq k i$, and $1+i k \leq j+i k \leq k(i+1)$. Then, the images of the vectors $e_{j+(i-1) k}$ and $e_{j+i k}$ are as follows:

$$
\begin{gathered}
\phi(n, k)\left(\sigma_{i}\right)\left(e_{j+(i-1) k}\right)=e_{j+i k} \\
\phi(n, k)\left(\sigma_{i}\right)\left(e_{j+i k}\right)=t^{k} e_{j+(i-1) k}
\end{gathered}
$$

Moreover, $1+(i+1) k \leq j+(i+1) k$, and $j+(n-1) k \leq n k$. Then the images of the vectors $e_{j+(i+1) k}$ till $e_{j+(n-1) k}$ are as follows:

$$
\begin{gathered}
\phi(n, k)\left(\sigma_{i}\right)\left(e_{j+(i+1) k}\right)=e_{j+(i+1) k} \\
\vdots \\
\phi(n, k)\left(\sigma_{i}\right)\left(e_{j+(n-1) k}\right)=e_{j+(n-1) k}
\end{gathered}
$$

We observe that $\phi(n, k)\left(\sigma_{i}\right)\left(e_{j+l k}\right) \in U_{j}$ for all $0 \leq l \leq n-1$, which completes the proof .
Second, we consider, U , the new basis formed by the generating vectors of U_{j}. In other words, consider the new basis

$$
U=\left\{e_{1}, e_{1+k}, e_{1+2 k}, \ldots e_{1+(n-1) k}, e_{2}, e_{2+k} \ldots e_{2+(n-1) k}, \ldots e_{k}, e_{2 k}, \ldots e_{n k}\right\}
$$

We have $e_{j+l k} \in U_{j}$, for $0 \leq l \leq n-1$. We computed the vectors $\phi(n, k)\left(\sigma_{i}\right)\left(e_{j+l k}\right)$, for $1 \leq j \leq k$. Thus, we determine the matrices $\phi(n, k)\left(\sigma_{i}\right)$ with respect to the new basis U. For each j, we obtain a block of the following form:
$\left.\left(\begin{array}{c|c|c}I_{i-1} & 0 & 0 \\ \hline 0 & 0 & t^{k} \\ & 1 & 0\end{array}\right) 0 . \begin{array}{c}0\end{array}\right)$,
which is, by Definition 2.2, the standard representation after replacing t by t^{k}. For $j=1, \ldots, k$, we then obtain the required result.

4. Cohen's map and Welded braid group

We now consider the welded braid group. We extend the work done on composing Cohen's map with representations of the braid group to the welded braid group. Using Cohen's map on k strings, we define the $\operatorname{map} \psi: w B_{n} \rightarrow w B_{n k}$. We prove ψ is a well defined homomorphism, then we compose it with the standard representation of $w B_{n k}$.

Proposition 4.1. For all natural numbers $i \in\{1, \ldots n-1\}$, the map

$$
\begin{gathered}
\psi: w B_{n} \rightarrow w B_{n k} \text { defined by: } \\
\psi\left(\sigma_{i}\right)=\left(\sigma_{k i} \sigma_{k i+1} \ldots \sigma_{k i+k-1}\right)\left(\sigma_{k i-1} \sigma_{k i} \ldots \sigma_{k i+k-2}\right) \ldots\left(\sigma_{k i-k+1} \sigma_{k i-k+2} \ldots \sigma_{k i}\right)
\end{gathered}
$$

and

$$
\psi\left(\tau_{i}\right)=\left(\tau_{k i} \tau_{k i+1} \ldots \tau_{k i+k-1}\right)\left(\tau_{k i-1} \tau_{k i} \ldots \tau_{k i+k-2}\right) \ldots\left(\tau_{k i-k+1} \tau_{k i-k+2} \ldots \tau_{k i}\right)
$$

is a well defined homomorphism.
Proof. To show it is a well-defined homomorphism, we prove it respects the relations of $w B_{n}$ (see Definition2.3. . It is enough to show that $\psi\left(\tau_{i}\right)^{2}=1$ and $\psi\left(\tau_{i}\right) \psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right)=\psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right) \psi\left(\tau_{i+1}\right)$.
(i) $\psi\left(\tau_{i}\right)^{2}=1$

Each $\psi\left(\tau_{i}\right)$ is the composition of k factors of which each is of the form

$$
\tau_{k i-j+1} \tau_{k i-j+2} \ldots \tau_{k i-j+k}
$$

starting from $j=1$ till $j=k$. Each one of these factors is a composition of k consecutive terms (consecutive generators) itself. In each $\psi\left(\tau_{i}\right)$, for $1 \leq r \leq k$, let f_{r} be the $r^{t h}$ factor appearing in the product of words above. For $1 \leq m \leq k$, let t_{m} represent the $m^{t h}$ term in the factor f_{r}. Using properties (5) and (3), we compose terms of the second generator $\psi\left(\tau_{i}\right)$ (that comes from the right of $\psi\left(\tau_{i}\right)^{2}$) with some identical terms in the first $\psi\left(\tau_{i}\right)$ to obtain one. Precisely, starting from f_{1} till f_{k} and for each f_{r} starting from t_{1} till t_{k}, we compose the term t_{m} in the factor f_{r} of the second generator $\psi\left(\tau_{i}\right)$ with the term t_{k-r+1} in the factor f_{k-m+1} of the first $\psi\left(\tau_{i}\right)$ to obtain the desired result.
(ii) $\psi\left(\tau_{i}\right) \psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right)=\psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right) \psi\left(\tau_{i+1}\right)$.
$\psi\left(\tau_{i}\right) \psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right)=\left(\tau_{k i} \tau_{k i+1} \ldots \tau_{k i+k-1}\right) \ldots\left(\tau_{k i-k+1} \tau_{k i-k+2} \ldots \tau_{k i}\right)$
$\left(\sigma_{k i+k} \ldots \sigma_{k i+2 k-1}\right) \ldots\left(\sigma_{k i+2} \ldots \sigma_{k i+k+1}\right)\left(\sigma_{k i+1} \ldots \sigma_{k i+k}\right)$
$\left(\sigma_{k i} \sigma_{k i+1} \ldots \sigma_{k i+k-1}\right)\left(\sigma_{k i-1} \sigma_{k i} \ldots \sigma_{k i+k-2}\right) \ldots\left(\sigma_{k i-k+1} \sigma_{k i-k+2} \ldots \sigma_{k i}\right)$.
We show that the last term in $\psi\left(\tau_{i}\right), \tau_{k i}$, becomes $\tau_{k i+k}$ after its action on $\psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right)$. To do so, we take $\tau_{k i}$ the last term in $\psi\left(\tau_{i}\right)$ and $\sigma_{k i}$ the first term in $\psi\left(\sigma_{i}\right)$, using relations (6) and (1), to obtain $\tau_{k i} \sigma_{k i+1} \sigma_{k i}$. That is,

$$
\begin{aligned}
& \psi\left(\tau_{i}\right) \psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right)=\left(\tau_{k i} \tau_{k i+1} \ldots \tau_{k i+k-1}\right) \ldots\left(\tau_{k i-k+1} \tau_{k i-k+2} \ldots \tau_{k i-1}\right) \\
& \left(\sigma_{k i+k} \ldots \sigma_{k i+2 k-1}\right) \ldots\left(\sigma_{k i+2} \ldots \sigma_{k i+k+1}\right) \underbrace{\tau_{k i}\left(\sigma_{k i+1} \sigma_{k i}\right.} \sigma_{k i+2} \ldots \sigma_{k i+k})
\end{aligned}
$$

$$
\left(\sigma_{k i+1} \sigma_{k i+2} \ldots \sigma_{k i+k-1}\right)\left(\sigma_{k i-1} \sigma_{k i} \ldots \sigma_{k i+k-2}\right) \ldots\left(\sigma_{k i-k+1} \sigma_{k i-k+2} \ldots \sigma_{k i}\right)
$$

Then, by relation (7), we replace $\tau_{k i} \sigma_{k i+1} \sigma_{k i}$ by $\sigma_{k i+1} \sigma_{k i} \tau_{k i+1}$, to obtain the following:

$$
\begin{aligned}
& \psi\left(\tau_{i}\right) \psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right)=\left(\tau_{k i} \tau_{k i+1} \ldots \tau_{k i+k-1}\right) \ldots\left(\tau_{k i-k+1} \tau_{k i-k+2} \ldots \tau_{k i-1}\right) \\
& \left(\sigma_{k i+k} \ldots \sigma_{k i+2 k-1}\right) \ldots\left(\sigma_{k i+2} \ldots \sigma_{k i+k+1}\right)(\underbrace{\sigma_{k i+1} \sigma_{k i} \tau_{k i+1}} \sigma_{k i+2} \ldots \sigma_{k i+k}) \\
& \underbrace{\left(\sigma_{k i+1}\right.} \sigma_{k i+2} \ldots \sigma_{k i+k-1})\left(\sigma_{k i-1} \sigma_{k i} \ldots \sigma_{k i+k-2}\right) \ldots\left(\sigma_{k i-k+1} \sigma_{k i-k+2} \ldots \sigma_{k i}\right) .
\end{aligned}
$$

By a similar work, we now take $\sigma_{k i+1}$, the first term of $\psi\left(\sigma_{i}\right)$. Using relation (1), we now change the place of the first term of $\psi\left(\sigma_{i}\right)$, namely $\sigma_{k i+1}$, and write it in the second line of the equation above. That is,

$$
\begin{aligned}
& \psi\left(\tau_{i}\right) \psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right)=\left(\tau_{k i} \tau_{k i+1} \ldots \tau_{k i+k-1}\right) \ldots\left(\tau_{k i-k+1} \tau_{k i-k+2} \ldots \tau_{k i-1}\right) \\
& \left(\sigma_{k i+k} \ldots \sigma_{k i+2 k-1}\right) \ldots\left(\sigma_{k i+2} \ldots \sigma_{k i+k+1}\right)(\sigma_{k i+1} \sigma_{k i} \underbrace{\tau_{k i+1} \sigma_{k i+2} \sigma_{k i+1}} \ldots \sigma_{k i+k}) \\
& \quad\left(\sigma_{k i+2} \ldots \sigma_{k i+k-1}\right)\left(\sigma_{k i-1} \sigma_{k i} \ldots \sigma_{k i+k-2}\right) \ldots\left(\sigma_{k i-k+1} \sigma_{k i-k+2} \ldots \sigma_{k i}\right)
\end{aligned}
$$

Again by relation (7), we replace $\tau_{k i+1} \sigma_{k i+2} \sigma_{k i+1}$ by $\sigma_{k i+2} \sigma_{k i+1} \tau_{k i+2}$. We repeat the process for a total of k times, we obtain the following :

```
\psi(\mp@subsup{\tau}{i}{})\psi(\mp@subsup{\sigma}{i+1}{})\psi(\mp@subsup{\sigma}{i}{})=(\mp@subsup{\tau}{ki}{}\mp@subsup{\tau}{ki+1}{}\ldots\mp@subsup{\tau}{ki+k-1}{})\ldots(\mp@subsup{\tau}{ki-k+1}{}\mp@subsup{\tau}{ki-k+2}{}\ldots\mp@subsup{\tau}{ki-1}{})
(\mp@subsup{\sigma}{ki+k}{}\mp@subsup{\sigma}{ki+k+1}{}\ldots\mp@subsup{\sigma}{ki+2k-1}{})\ldots(\mp@subsup{\sigma}{ki+2}{}\mp@subsup{\sigma}{ki+3}{}\ldots\mp@subsup{\sigma}{ki+k+1}{})
\sigma
(}\mp@subsup{\sigma}{ki-1}{}\mp@subsup{\sigma}{ki}{}\ldots\mp@subsup{\sigma}{ki+k-2}{})\ldots(\mp@subsup{\sigma}{ki-k+1}{}\mp@subsup{\sigma}{ki-k+2}{}\ldots\mp@subsup{\sigma}{ki}{})
```

Using the relations (6) and (1), we rearrange the terms to obtain the desired result.
Similarly, $\tau_{k i-1}$ becomes $\tau_{k i+k-1}$ after its action on $\psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right)$. Following these steps for all the $\tau^{\prime} s$, the proof is completed.

A similar proof is done by replacing the relations (1)(6) and (7) by (3) (6) and (8) respectively, which shows $\psi\left(\sigma_{i}\right) \psi\left(\tau_{i+1}\right) \psi\left(\tau_{i}\right)=\psi\left(\tau_{i+1}\right) \psi\left(\tau_{i}\right) \psi\left(\sigma_{i+1}\right)$.

We now present the following example to demonstrate the proof (ii) in Proposition 4.1.
Example 4.2. For $k=2$, we consider the map

$$
\psi: w B_{n} \rightarrow w B_{2 n}
$$

defined in Proposition 4.1. We verify, for this particular case, the proof of (ii) in Proposition 4.1, namely

$$
\begin{array}{ll}
& \psi\left(\tau_{i}\right) \psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right)=\psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right) \psi\left(\tau_{i+1}\right) \\
\psi\left(\tau_{i}\right) \psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right)= \\
=\left(\tau_{2 i} \tau_{2 i+1}\right)(\tau_{2 i-1} \underbrace{\tau_{2 i}})\left(\sigma_{2 i+2} \sigma_{2 i+3}\right)\left(\sigma_{2 i+1} \sigma_{2 i+2}\right)(\underbrace{\sigma_{2 i}} \sigma_{2 i+1})\left(\sigma_{2 i-1} \sigma_{2 i}\right)
\end{array}
$$

Rearranging the terms and using relations (6) and (1), we get,

$$
\begin{align*}
& \psi\left(\tau_{i}\right) \psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right)=\tau_{2 i} \tau_{2 i+1} \tau_{2 i-1} \sigma_{2 i+2} \sigma_{2 i+3} \underbrace{\tau_{2 i} \sigma_{2 i+1} \sigma_{2 i}} \sigma_{2 i+2} \sigma_{2 i+1} \sigma_{2 i-1} \sigma_{2 i} \\
& =\tau_{2 i} \tau_{2 i+1} \tau_{2 i-1} \sigma_{2 i+2} \sigma_{2 i+3} \underbrace{\sigma_{2 i+1} \sigma_{2 i} \tau_{2 i+1}} \sigma_{2 i+2} \sigma_{2 i+1} \sigma_{2 i-1} \sigma_{2 i} \quad \text { (using relation (7)) } \\
& =\tau_{2 i} \tau_{2 i+1} \tau_{2 i-1} \sigma_{2 i+2} \sigma_{2 i+3} \sigma_{2 i+1} \sigma_{2 i} \underbrace{\sigma_{2 i+2} \sigma_{2 i+1}}_{2 i+1} \sigma_{2 i-1} \sigma_{2 i} \\
& =\tau_{2 i} \tau_{2 i+1} \tau_{2 i-1} \sigma_{2 i+2} \sigma_{2 i+3} \sigma_{2 i+1} \sigma_{2 i} \underbrace{\sigma_{2 i+1} \sigma_{2 i+1} \tau_{2 i+2}}_{2 i+2} \sigma_{2 i-1} \sigma_{2 i} \quad \text { (using relation (7)) } \\
& =\tau_{2 i} \tau_{2 i+1} \tau_{2 i-1} \sigma_{2 i+2} \sigma_{2 i+3} \sigma_{2 i+1} \sigma_{2 i+2} \sigma_{2 i} \sigma_{2 i+1} \sigma_{2 i-1} \sigma_{2 i} \tau_{2 i+2} \quad \text { (A) } \tag{A}
\end{align*}
$$

Similarly, we move the term $\tau_{2 i-1}$ in equation (A) few places and proceed as above to get

$$
\tau_{2 i} \tau_{2 i+1} \sigma_{2 i+2} \sigma_{2 i+3} \sigma_{2 i+1} \sigma_{2 i+2} \sigma_{2 i} \sigma_{2 i+1} \sigma_{2 i-1} \sigma_{2 i} \tau_{2 i+1} \tau_{2 i+2}
$$

Doing the same for $\tau_{2 i+1}$, and $\tau_{2 i}$ we get

$$
\begin{gathered}
\sigma_{2 i+2} \sigma_{2 i+3} \sigma_{2 i+1} \sigma_{2 i+2} \sigma_{2 i} \sigma_{2 i+1} \sigma_{2 i-1} \sigma_{2 i} \tau_{2 i+2} \tau_{2 i+3} \tau_{2 i+1} \tau_{2 i+2} \\
=\psi\left(\sigma_{i+1}\right) \psi\left(\sigma_{i}\right) \psi\left(\tau_{i+1}\right)
\end{gathered}
$$

Using this result, we aim to construct a linear representation of $w B_{n}$ of degree $n k$. In Section 3, we studied the composition of the Cohen's map with the standard representation of B_{n}. In a similar way, we compose ψ with the standard representation of $w B_{n}$.

Proposition 4.3. The linear representation,

$$
\alpha(n, k): w B_{n} \rightarrow w B_{n k} \rightarrow G L_{n k}\left(\mathbb{Z}\left[t, t^{-1}\right]\right)
$$

obtained by composing the map ψ with the standard representation of the welded braid group is the direct sum of k copies of the standard representation of $w B_{n}$ after replacing t by t^{k}.

Proof. Using Theorem 3.4, we have that the images of the generators σ_{i} under $\alpha(n, k)$ are the direct sum of k copies of the standard representation of B_{n}. By substituting $t=1$ in the matrices corresponding to σ_{i} the same result holds for the permutation matrices corresponding to τ_{i}.

Declarations:

The authors did not receive support from any organization for the submitted work.
The authors have no relevant financial or non-financial interests to disclose.
On behalf of all authors, the corresponding author states that there is no conflict of interest.
The manuscript has no associated data.

References

[1] M. N. Abdulrahim. On the composition of the Burau representation and the natural map $B_{n} \rightarrow B_{n k}$, Journal of Algebra and Its Applications, 2(2) (2003), 169-175. 1
[2] M. N. Abdulrahim and N. H. Kassem. The interplay between linear representations of the braid group. Int. J. Math. Math. Sci. Art. ID 16186 (2007),9 pp. 1
[3] V. G. Bardakov. The structure of the group of conjugating automorphisms and the linear representation of the braid groups of some manifolds. J. Knot Theory Ramifications, 14(8) (2005), 1087-1098. 1
[4] P. Bellingeri and A. Soulié. A note on representations of welded braid groups. J. Knot Theory Ramifications 29(12), 2050082 (2020), 21 pp .1
[5] J. S. Birman. Braids, Links, and Mapping Class Groups, Annals of Mathematics Studies, no. 82, Princeton University Press, Princeton, NJ, USA (1974). 2.1
[6] T. E. Brendle and A. Hatcher, Configuration spaces of rings and wickets, Comment. Math. Helv. 88(1) (2013), 131-162. 2, 2.3
[7] F. R. Cohen, Little cubes and the classifying spaces for n-sphere fibrations, Algebraic and geometric topology, Proc. Sympos. Pure Math. Stanford Univ. Stanford, Calif. Part2 (1976), 245-248, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence RI.(1978). 2.5
[8] F. R. Cohen, Artin's braid groups and classical homotopy theory, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), 207-220, Contemp. Math. 44, Amer. Math. Soc., Providence, RI (1985). 1 2.5
[9] C. Damiani, A journey through loop braid groups, Expo. Math. 35(3) (2017), 252-285. 1
[10] M. I. García-Planas and M. D. Magret, Eigenvalues and eigenvectors of monomial matrices, Proceeding of the XXIV congress on Differential Euations and applications. Cádiz (2015), 963-966. 2.6. 2.7
[11] I. Sysoeva, Dimension n representations of the braid group on n strings, Journal of Algebra 243 (2001), 518-538. 1
[12] D. M. Tong, S. D. Yang, and Z. Ma, A new class of representations of braid groups, Comm. Theoret. Phys. 26(4), (1996) 483-486. 1, 2.2. 2

[^0]: *Corresponding author
 Email addresses: rsk349@student.bau.edu.lb (Rana S. Kahil), mna@bau.edu.lb (Mohammad N. Abdulrahim)

