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Abstract

Non-linear wave equations are created by the elastic wave propagation through inelastic material. We obtain
the Lie point symmetries for the non-linear elastic wave equation and the optimal system of the symmetry
algebra using Lie symmetry approach. Numerous solutions that are group invariant are obtained under
the optimal system of subalgebras of Lie algebra. Additionally, the variational symmetries are obtained
via Noether approach and the corresponsing conservation laws are presented. The non-linear elastic wave
equation with a damping term is also studied. The local conservation laws using the direct approach are
also discussed in this study.
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1. Introduction

The non-linear theory of elastic waves has come under the spotlight in recent years because of its numerous
applications. In a recent work, J.J. Rushchitsky [1] has presented the developments in the non-linear elastic
waves describing many real problems arising in applications. The linear theory of elasticity is based upon
the assumption that the deformations in the elastic body are small. In this case, the strain tensor ϵij is
given by

ϵij =
1

2
(ui,j + uj,i). (1.1)
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Many real life situations can be studied using the non-linear model in a number of materials such as rubber
exhibits large deformations under stress. J.J. Rushchitsky [1] has presented the developments of such a
phenomenon in recent work [1]. Thus the strain has to be defined as a non-linear function ϵij given by

ϵij =
1

2
(ui,j + uj,i + uk,iuk,j). (1.2)

In the event of the strain tensor being non linear, the Hooke’s law is no longer applicable. There are quite
a few models to take into account the non linearity of the strain. We use a unidirectional motion in which
u1 = u and (1.2) has only one component given by

ϵ11 = ux +
1

2
ux

2. (1.3)

The Murnaghan equation of state describes the connection between the volume of a body and the deformation
to which it is subjected. For one-dimensional case, Murnaghan potential upto third order takes the form,
presented in [1] given by

W = (
1

2
λ+ µ)ux

2 + (
1

2
λ+ µ+

A

3
+B +

C

3
)ux

3. (1.4)

If the continuum body is in static equilibrium, it can be shown that the components of the Cauchy stress
tensor in every material point in the body meet the equilibrium equations. This is in accordance with the
concept of conservation of linear momentum. The Cauchy equation of motion [2] in absence of body force
is given by

tij,j = ρüi, (1.5)

where tij is the stress tensor and is given by tij =
∂W
∂uj,i

.ρ is the density of a body. The equation (1.5) with

the values of α = λ+2µ
ρ and β = 3(λ+2µ)+2(A+3B+C)

ρ can then be written as

utt − (α+ βux)uxx = 0. (1.6)

In reference [3], Apostol has studied equation (1.6) using asymptotic series method. In another reference,
Bokhari et. al. [4] have performed Lie symmetry analysis of equation (1.6) and presented some invariant
solutions. In a study, Mustafa and Masood [5] have studied equation (1.6) with third order anharmonic
corrections. In another study [21], (2 + 1) non-linear elastic wave equation is studied via Lie symmetry
approach.

In non-linear analysis, finding exact solutions of non-linear DEs is a challenging task. Lie theory [7, 8]
provides a technique to obtain group-invariant solutions of non-linear PDEs that are the special type of
solutions admitted by Lie algebra of PDEs. The major goal of this study is to classify the invariant solutions
by identifying the optimal system of Lie sub algebras for the symmetry algebra admitted by equation (1.6)
and constructing the conservation laws by different approach. In this study, we use the approach proposed
by P.J. Olver [8] to construct the optimal system of subalgebras of their Lie algebras. There is a detailed
discussion of how to create the family of invariant solutions in [9, 20].

In earlier studies [4, 5], the Noether symmetries, conservation laws and multiplier approach were not
discussed. In this study, we perform Lie symmetry analysis, obtained invariant solutions, presented Noether
symmetries and study conservation laws by two methods. The multiplier method has led to some new
conservation laws. The exact invariant solutions and conservation laws provides information about physical
phenomenon and helps in understanding the system.

The study of conservation laws is important because they as a vector remains invariant on the surface
generated by solutions of the differential equation. We discussed the conservation laws of equation (1.6) in
this work. Due to the fact that they provide conserved quantities for every solution and can be used to
assess the accuracy of numerical solution techniques, conservation laws are of vital importance in the study
of PDEs [14, 15, 16]. Conservation laws do double reduction to obtain the solutions of given PDEs.
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The outline of the paper is following. In section (2), the Lie symmetry analysis of equation (1.6) is
performed in order to find Lie symmetries of equation (1.6). The discussion of the one-dimensional optimal
system is used to categorise and divide the Lie symmetries generators into disjoint, non-equivalent classes.
Complete set of reductions by similarity variables, forms of group invariant solutions under the optimal
systems are presented in section (3). In section (4), variational symmetries of equation (1.6) and conservation
laws are obtained using approach. Furthermore, the multiplier approach is used to study the elastic wave
equation in section (5). In section (6), we reviewed the classification of Lie symmetries of non-linear damped
elastic wave equation which was already performed by Bokhari et. al. in [4]. In this work, we extended the
study by presenting optimal system of sub algebras, reductions under optimal systems, Noether symmetries
and conservation laws by two methods, Noether approach and by multipliers method.

2. Lie Symmetries and One-Dimensional Optimal System

The procedure for identifying classical symmetries of a PDE is well-known and is covered in several literature,
e.g. [10, 13]. For the symmetry algebra of equation (1.6), we consider the infinitesimal generator given by

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
. (2.1)

Using the method discussed in [6, 7], we obtain the Lie algebra of infinitesimal symmetries for equation (1.6)
spanned by six dimensional algebra given by

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 =

∂

∂u
, X4 = t

∂

∂u
,

X5 = −5x
∂

∂x
− 6t

∂

∂t
+ (−3u+

2α

β
x)

∂

∂u
,

X6 = 4x
∂

∂x
+ 5t

∂

∂t
+ (2u− 2α

β
x)

∂

∂u
.

(2.2)

Now by using the technique outlined in [11], we will obtain the optimal system of sub algebras of Lie algebra
of equation (2.2) by dividing the previously mentioned Lie symmetry generators into disjoint non-equivalent
classes. The commutator relation for the Lie algebra (2.2) is given by

[Xi, Xj ] = XjXi −XiXj , (i, j = 1, 2, ..., 6),

Commutator table for the Lie algebra (2.2) is presented in Table-(2) given by

[Xi,Xj ] X1 X2 X3 X4 X5 X6

X1 0 0 0 0 −5X1 + 2α
β
X3 4X1 − 2α

β
X3

X2 0 0 0 X3 −6X2 5X2

X3 0 0 0 0 −3X3 2X3

X4 0 -X3 0 0 3X4 −3X4

X5 5X1 − 2α
β
X3 6X2 3X3 −3X4 0 0

X6 −4X1 + 2α
β
X3 −5X2 −2X3 3X4 0 0

Table 1: Commutator Table

The adjoint representation is given by

Ad(exp (ϵXi).Xj) = Xj − ϵ[Xi, Xj ] +
ϵ2

2!
[Xi, [Xi, Xj ]]− · · · . (2.3)

The adjoint representation table can be constructed using the adjoint expression (2.2), and presented in
Table-(2) given by
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Ad(eϵ) X1 X2 X3 X4 X5 X6

X1 X1 X2 X3 X4 5ϵX1 − 2αϵ
β

X3 +X5 −4ϵX1 + 2αϵ
β

X3 +X6

X2 X1 X2 X3 X4 − ϵX3 6ϵX2 +X5 −5ϵX2 +X6

X3 X1 X2 X3 X4 3ϵX3 +X5 −2ϵX3 +X6

X4 X1 X2 + ϵX3 X3 X4 −3ϵX4 +X5 3ϵX4 +X6

X5 e−5ϵX1 − α
β
e−3ϵ(e−2ϵ − 1)X3 e−6ϵX2 e−3ϵX3 e3ϵX4 X5 X6

X6 e4ϵX1 − α
β
e2ϵ(e2ϵ − 1)X3 e5ϵX2 e2ϵX3 e−3ϵX4 X5 X6

Table 2: Adjoint Table

a6

a6 = 0

a5 = 0

a4 = 0

a1 = 0

a2 = 0

Case 11

a2 ̸= 0

Case 10

a1 ̸= 0

a2 = 0

Case 9

a2 ̸= 0

Case 8

a4 ̸= 0

a1 = 0

a2 = 0

Case 7

a2 ̸= 0

Case 6

a1 ̸= 0

a2 = 0

Case 5

a2 ̸= 0

Case 4

a5 ̸= 0

Case 3

a6 ̸= 0

a5 = 0

Case 2

a5 ̸= 0

Case 1

Figure 1: Tree leaf diagram of the case by case study of optimal system

Theorem 2.1. Let L6 be the Lie algebra of Lie symmetries with basis (8). The optimal system of one-
dimensional subalgebras is then provided by the following generators given by

S1 = cX5 +X6, c ̸= 0

S2 = X6,

S3 = X5,

S4 = ±X1 +X2 ±X4,

S5 = X1 ±X4,

S6 = X2 ±X4,

S7 = X4,

S8 = X1 ±X2,

S9 = X1,

S10 = X2,

S11 = X3.

(2.4)

Proof: Consider a general element X ∈ L6. We have,

X = a1X1 + a2X2 + a3X3 + a4X4 + a5X5 + a6X6. (2.5)

Case 1: a6 ̸= 0, a5 ̸= 0. Under the adjoint action on X, we have

X ′ = Ad(eϵX1)X = a2X2 + a4X4 + a5X5 + a6X6, (2.6)
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X ′′ = Ad(eϵX2)X
′ = a4X4 + a5X5 + a6X6, (2.7)

X ′′′ = Ad(eϵX4)X
′′ = a5X5 + a6X6. (2.8)

We can scale a6 = 1.
S1 = cX5 +X6, c ̸= 0, (2.9)

Case 2: a6 ̸= 0, a5 = 0.
X ′′′ = a6X6, (2.10)

S2 = X6. (2.11)

Case 3: a6 = 0, a5 ̸= 0.
X ′′′ = a5X5, (2.12)

S3 = X5. (2.13)

Case 4: a6 = 0, a5 = 0, a1 ̸= 0, a2 ̸= 0, a4 ̸= 0.

X = a1X1 + a2X2 + a3X3 + a4X4, (2.14)

X ′ = Ad(eϵX5)X = a1e
−5ϵX1 + e−6ϵa2X2 + e3ϵa4X4, (2.15)

X ′ = a1e
ϵX1 + a2X2 + a4e

9ϵX4. (2.16)

We can scale a2 = 1.
S4 = ±X1 +X2 ±X4, (2.17)

Case 5: a6 = 0, a5 = 0, a2 = 0, a1 ̸= 0, a4 ̸= 0.

X ′ = eϵa1X1 + a4e
9ϵX4, (2.18)

X ′ = a1X1 + a4e
8ϵX4. (2.19)

We can take a1 = 1.
S5 = X1 ±X4. (2.20)

Case 6: a6 = 0, a1 = 0, a5 = 0, a2 ̸= 0, a4 ̸= 0.

X ′ = Ad(eϵX4)X = a2X2 + a4X4, (2.21)

X ′′ = Ad(eϵX5)X
′ = e−6ϵa2X2 + a4e

3ϵX4, (2.22)

X ′′ = a2X2 + a4e
9ϵX4. (2.23)

We can scale a2 = 1.
S6 = X2 ±X4. (2.24)

Case 7: a6 = 0, a5 = 0, a2 = 0, a1 = 0, a4 ̸= 0.

X ′ = Ad(eϵX2)X = a4X4, (2.25)

S7 = X4. (2.26)

Case 8: a6 = 0, a4 = 0, a5 = 0, a2 ̸= 0, a1 ̸= 0.

X ′ = Ad(eϵX6)X = e4ϵa1X1 + e5ϵa2X2, (2.27)

X ′ = a1X1 + eϵa2X2. (2.28)

Take a1 = 1.
S8 = X1 ±X2. (2.29)
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Case 9: a6 = 0, a4 = 0, a5 = 0, a2 = 0, a1 ̸= 0.

X ′ = Ad(eϵX6)X = e4ϵa1X1, (2.30)

S9 = X1. (2.31)

Case 10: a5 = 0, a6 = 0, a4 = 0, a1 = 0, a2 ̸= 0.

X ′ = Ad(eϵX4)X = a2X2, (2.32)

S10 = X2. (2.33)

Case 11: a6 = 0, a4 = 0, a5 = 0, a1 = 0, a2 = 0.

X = a3X3, (2.34)

S11 = X3. (2.35)

By considering the general element from L6 and by applying the suitable adjoint action from the Table-(2),
we have constructed the optimal system of sub algebras of their Lie algebras in this section. The case by
case study of optimal system is presented with the help of tree-leaf diagram.

3. Similarity Reductions and Group Invariant Solutions

In this section the reduction under the optimal system (2.4) has been performed and the exact invariant
solutions are presented. The given (1 + 1)-dimensional non-linear elastic wave equation can be reduced to
ODEs using similarity reduction. They are frequently referred to as similarity reduction equations and can
produce group invariant solutions. For the symmetry generator X1, the associated characteristic equation
is given by

dx

1
=

dt

0
=

du

0
.

The similarity variables are s(x, t) = t and u = f(s). Similarity variables s(x, t) = t and u = f(s), further
reduce the equation (1.6) into the reduced ODE given by

f ′′ = 0. (3.1)

The reduced ODE f ′′ = 0 yields the form of an exact solution f(s) = c1s+ c2. Consequently, the given PDE
(1.6) has an exact solution that is invariant under X1 presented by

u(x, t) = c1t+ c2.

Corresponding to the symmetry generator X2, the characteristic equation is given by

dx

0
=

dt

1
=

du

0
.

The invariant variables s(x, t) = x and u = f(s) reduced the (1.6) to a reduced ODE given by

−f ′′(α+ βf ′) = 0. (3.2)

Thus, the equation α + βf ′ = 0 yields the function f(s) = c1 − α
β s which is an exact solution of the PDE

(1.6) that is invariant under the symmetry generator X2 given by

u(x, t) = c1 −
α

β
x.
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For the symmetry generator X1 +X2, we have

dx

1
=

dt

1
=

du

0
.

The similarity variables are s(x, t) = t− x and u = f(s). Using these transformations PDE (1.6) reduces to
an ODE given by

f ′′(1− α+ βf ′) = 0. (3.3)

The equation 1−α+βf ′ = 0 yields f(s) = α
β s−

s
β + c1. Consequently, the PDE (1.6) has an exact solution

that is invariant under X1 +X2 given by

u(x, t) = c1 +
α

β
(t− x) +

x− t

β
.

For generator X1 +X4, the associated characteristic equation is given by

dx

1
=

dt

0
=

du

t
.

The invariant variables are s(x, t) = t and u = tx+f(s). Using these transformations equation (1.6) reduces
to a ODE given by

f ′′ = 0. (3.4)

The equation f ′′ = 0 yields f(s) = c1s + c2. Consequently, the PDE (1.6) has an exact solution that is
invariant under X1 +X4 given by

u(x, t) = (x+ c1t) + c2.

For symmetry generator X2 + X4, the invariant variables s(x, t) = x and u = t2

2 + f(s) reduce the PDE
(1.6) to a ODE given by

1 + (−α− βf ′)f ′′ = 0. (3.5)

The equation 1 + (−α − βf ′)f ′′ = 0 thus yields an exact solution of the given PDE (1.6) that is invariant
under X2 +X4 given by:

u(x, t) =
((4x+ 4c1)β + 2α2)

6β2

√
(2c1 + 2x)β + α2 − α

β
x+

t2

2
+ c2.

Similarly, corresponding to the symmetry X1 +X2 +X4, the PDE (1.6) reduces to a ODE given by

(1− α− βs+ βf ′)f ′′ − βf ′ + βs+ α = 0, (3.6)

where the similarity variables are s(x, t) = −x+ t and u = −x2

2 + tx+ f(s). This implies

f(s) = −(2βc1 + α2 − 2βs− 2α+ 1)
3
2

3β2
+

α

β
s+

s2

2
− s

β
+ c2. (3.7)

Consequently, the PDE (1.6) has an exact solution that is invariant under X1 +X2 +X4 given by

u(x, t) =
((−4x− 4c1 + 4t)β − 2(α− 1)2)

6β2

√
(2c1 + 2x− 2t)β + (α− 1)2

+
(α− 1)

β
(t− x) +

t2

2
+ c2.

The complete symmetry reduction is performed in this section under the optimal system of sub algebras.
The characteristic method is used to performed the reduction. The reduced ODEs are obtained and the
exact invariant solutions are presented corresponding to each symmetry generators under the optimal system
of sub algebras of equation (1.6).
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4. Conservation Laws via Noether Approach

A non-trivial conservation law of (1.6) exists if there exist a vector (T t, T x) whose divergence DtT
t +DxT

x

vanishes on the solutions of (6). To obtain the conserved vectors, we will apply Noether theorem [17, 7]. The
Noether approach is linked with the variational problem and the Lagrangian. Following Noether approach
first we will find the variational symmetries which are also called Noether symmetries. Then by using
Noether theorem formulas we can obtain the Noether conservation laws. The Lagrangian of Euler-Lagrange
equation (1.6) is given by

L =
αu2x
2

+
βu3x
6

− u2t
2
. (4.1)

The variational symmetry has the form given by

X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
, (4.2)

which is also known as Noether symmetry of equation (1.6) associated with the Lagrangian (4.1) that satisfies
the identity given by

X[1]L+ L(Dxξ +Dtτ) = DtG
1 +DxG

2, (4.3)

where Gi(x, t, u), i = 1, 2 are gauge terms. We now obtain a set of determining equations from the
expression (4.3) given by

αηx −G2
u = 0

αηu − αξx −
β

2
ηx +

α

2
τt +

α

2
ξx = 0

−αξu − β

2
ηu +

β

2
ξx +

α

2
ξu +

β

6
τt +

β

6
ξx = 0,

β

2
ξu +

β

6
ξu = 0

−ατx + ξt = 0,

−ατu +
β

2
τx +

α

2
τu = 0

βτu = 0

ξu = 0

β

6
τu = 0

−ηt −G1
u = 0

−ηu + τt −
τt
2
− ξx

2
= 0

τu − τu
2

= 0

G1
t +G2

x = 0

By solving the above set of determining equations, we obtain the following infinitesimals

ξ =
c1
11

x+ c3, τ = c1t+ c2, η =
5c1
11

u+
20αc1
11β

x+ c4t+ c5,

and the gauge terms G1 and G2 given by

G1 = −c4u+ fx, G2 = −ft +
20α2c1
11β

u+ g(t).
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We can set f = g = 0, then we have G1 = −c4u, G2 = 20α2c1
11β u. Noether symmetries are given by

X1 =
∂

∂x
; G1 = 0, G2 = 0,

X2 =
∂

∂t
; G1 = 0, G2 = 0,

X3 =
∂

∂u
; G1 = 0, G2 = 0,

X4 = t
∂

∂u
; G1 = −u,G2 = 0,

X5 =
x

11

∂

∂x
+ t

∂

∂t
+ (

5

11
u+

20αx

11β
)
∂

∂u
; G1 = 0, G2 =

20α2u

11β
.

The Noether symmetry generators generate indeed a subalgebra of the algebra generated by Lie symmetry
generators. We will now find the conserved vectors corresponding to the previously discussed Noether
symmetries by using the formula [18] given by

T i = Gi − ξiL − (ηα − ξjuαj )
δL
δuαi

−
∑
s≥1

Di1...is(η
α − ξiuαj )

δL
δuαi1...is

, (4.4)

where δ
δuα

i
is the Euler operator defined as

δ

δuαi
=

∂

∂uαi
+
∑
s≥1

(−1)sDj1...js

∂

∂uαij1...js
. (4.5)

Here, Di represents the total derivative operator given by,

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ · · · . (4.6)

By the expression (4.4), we obtain the following set of conservation laws which are presented in the form of
conserved vectors given by

1. For X1 =
∂
∂x ; G1 = 0, G2 = 0

T t = −uxut,

T x = α
2u

2
x +

β
3u

3
x +

u2
t
2 .

2. For X2 =
∂
∂t ; G1 = 0, G2 = 0

T t = −α
2 u2x −

β
6u

3
x −

u2
t
2 ,

T x = αuxut +
β
2u

2
xut,

3. For X3 =
∂
∂u ; G1 = 0, G2 = 0

T t = ut,
T x = −αux − β

2u
2
x.

4. For X4 = t ∂
∂u ; G1 = −u,G2 = 0

T t = −u+ tut,
T x = −t(αux +

β
2u

2
x).

5. For X5 =
x
11

∂
∂x + t ∂

∂t + ( 5
11u+ 20αx

11β ) ∂
∂u ; G1 = 0, G2 = 20α2u

11β

T t = −t(αu
2
x

2 + βu3
x

6 − u2
t
2 ) + (5u11 + 20αx

11β − x
11ux − tut)ut,

T x = 20α2u
11β − x

11(
αu2

x
2 + βu3

x
6 − u2

t
2 )− (αux +

βu2
x

2 )(5u11 + 20αx
11β − x

11ux − tut).
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The Noether conservation laws are presented in the form of conserved vector T = (T t, T x) corresponding to
Noether symmetries such that it holds for all solutions of equation (1.6) and satisfy the divergence expression
DtT

t+DxT
x = 0. Some of the conservation laws describe physical quantities and explain natural phenomena

like as momentum, energy, and object motion, the rest of the conservation laws describe the geometry of the
surface formed by the partial differential equation. The Noether theorem states that there is a conserved
quantity that corresponds to a symmetry, although it can be challenging to identify that quantity’s physical
characteristics. This theorem can be used to explain the conservation laws that result from a variational
principle. Furthermore, these conservation laws describe the geometry of the surface formed by the solution
of the partial differential equation.

5. Conservation Laws via Multiplier Approach

The study of conservation laws for the partial differential equations is significant because they explain the
geometrical properties of the surface formed by solution and are simply mathematical objects. Conservation
laws via multiplier approach are presented in this section. We follow the direct approach proposed by Anco
and Bluman [6, 9] to find conservation laws. In this work, we use the multiplier approach to compute the con-
servation laws of the non-linear elastic wave equation. Multipliers are dependent on variables {x, t, u, ux, ut}
for which the corresponding conservation laws are formulated. Consider a multiplier M = M(x, t, u, ux, ut)
satisfying

δ

δu
[M(x, t, u, ux, ut)(utt − αuxx − βuxuxx)] = 0, (5.1)

where δ
δu is the Euler operator. From (5.1), we obtain the following system of determining equations for the

multipliers

Mutut = 0

Mtut = 0

Mtt = 0

Mux = 0

Mx = 0

Mu = 0

(5.2)

The solution of the system of equations (5.2) gives

M = c1t+ c2ut + c3 (5.3)

where ci, i = 1, 2, 3 are constants. The multiplier M of the equation E = utt − αuxx − βuxuxx has the
property

DiT
i = ME (5.4)

for arbitrary functions u(x, t). From (5.3) and (5.4), we obtain the conservation laws presented in the form
of conserved vectors given by

1. T1 = (T t, T x) = (tut − u, tut − u)

2. T2 = (T t, T x) = (β6u
3
x +

α
2u

2
x +

1
2u

2
t ,−[β2ux + α]uxut)

3. T3 = (T t, T x) = (ut,−1
2βu

2
x − αux)

The local conservation laws are presented in the form of conserved vector T = (T t, T x) corresponding to
each multipliers such that it holds for all solutions of equation (1.6) and satisfy DtT

t + DxT
x = 0. The

conservation laws presented in this section are obtained using the multiplier method that has led to some
new conservation laws.
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6. Non-linear Damped Elastic Wave Equation

In the study, Bokhari Et. al. [4] introduced the non-linear damped elastic wave equation by adding a
damping element ut to equation (1.6) given by

utt − (α+ βux)uxx + γut = 0 (6.1)

The point symmetries of equation (6.1) forms a five dimensional algebra spanned by

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 =

∂

∂u
, X4 = e−γt ∂

∂u
,

X5 = x
∂

∂x
+ (3u+

2α

β
x)

∂

∂u
.

(6.2)

The commutator table of the Lie symmetry algebra is presented in Table (6) given by

[Xi,Xj ] X1 X2 X3 X4 X5

X1 0 0 0 0 X1 + 2α
β
X3

X2 0 0 0 −γX4 0

X3 0 0 0 0 3X3

X4 0 γX4 0 0 3X4

X5 −X1 − 2α
β
X3 0 −3X3 −3X4 0

Table 3: Commutator Table

The adjoint representation values are presented in the Table (6) given by

[Xi,Xj ] X1 X2 X3 X4 X5

X1 X1 X2 X3 X4 X5 − ϵX1 − 2α
β
ϵX3

X2 X1 X2 X3 eγϵX4 X5

X3 X1 X2 X3 X4 X5 − 3ϵX3

X4 X1 X2 − γϵX4 X3 X4 X5 − 3ϵX4

X5 eϵX1 + α
β
eϵ(e2ϵ − 1)X2 X2 e3ϵX3 e3ϵX4 X5

Table 4: Adjoint Table

Theorem 6.1. Let L5 be the Lie algebra of Lie symmetries with basis (60). Then the optimal system of
one-dimensional subalgebras is given by the following set of generators:

S1 = cX2 +X5, c ̸= 0

S2 = X5,

S3 = X1 ±X3,

S4 = X2 ±X3,

S5 = X1,

S6 = X2,

S7 = X1 ±X3 ±X4,

S8 = X3 ±X4,

S9 = X3,

S10 = X1 ±X4,

S11 = X4.

(6.3)
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Proof: Consider a general element X ∈ L5. We have,

X = a1X1 + a2X2 + a3X3 + a4X4 + a5X5. (6.4)

Case 1: a5 ̸= 0. Under the adjoint action on X, we have

X ′ = Ad(eϵX1)X = a2X2 + a4X4 + a5X5, (6.5)

X ′′ = Ad(eϵX4)X
′ = a2X2 + a5X5, (6.6)

Take a5 = 1
S1 = cX2 +X5. c ̸= 0 (6.7)

Case 2: a5 ̸= 0, a2 = 0.
X ′′ = a5X5, (6.8)

S2 = X5, (6.9)

Case 3: a5 = 0, a1 ̸= 0, a2 ̸= 0, a3 ̸= 0.

X ′ = Ad(eϵX4)X = a1X1 + a2X2 + a3X3, (6.10)

X ′′ = Ad(eϵX5)X
′ = a1e

ϵX1 + a3e
3ϵX3, (6.11)

X ′′ = a1X1 + a3e
2ϵX3, (6.12)

We can scale a1 = 1.
S3 = X1 ±X3. (6.13)

Case 4: a5 = 0, a1 = 0, a2 ̸= 0, a3 ̸= 0.

X ′ = Ad(eϵX4)X = a2X2 + a3X3, (6.14)

X ′′ = Ad(eϵX5)X
′ = a2X2 + a3e

3ϵX3, (6.15)

We can take a2 = 1.
S4 = X2 ±X3. (6.16)

Case 5: a5 = 0, a3 = 0, a1 ̸= 0, a2 ̸= 0.

X ′ = Ad(eϵX4)X = a1X1 + a2X2, (6.17)

X ′′ = Ad(eϵX5)X
′ = a1X1, (6.18)

S5 = X1. (6.19)

Case 6: a5 = 0, a1 = 0, a3 = 0, a2 ̸= 0.

X ′ = Ad(eϵX4)X = a2X2, (6.20)

S6 = X2. (6.21)

Case 7: a5 = 0, a2 = 0, a1 ̸= 0, a3 ̸= 0.

X ′ = Ad(eϵX5)X = eϵa1X1 + e3ϵa3X3 + e3ϵa4X4, (6.22)

X ′ = a1X1 + e2ϵa3X3 + e2ϵa4X4. (6.23)

We can scale a1 = 1.
S7 = X1 ±X3 ±X4. (6.24)
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a5

a5 = 0

a2 = 0

a3 = 0

a1 = 0

Case11

a1 ̸= 0

Case 10

a3 ̸= 0

a1 = 0

a4 = 0

Case 9

a4 ̸= 0

Case 8

a1 ̸= 0

Case 7

a2 ̸= 0

a3 = 0

a1 = 0

Case 6

a1 ̸= 0

Case 5

a3 ̸= 0

a1 = 0

Case 4

a1 ̸= 0

Case 3

a5 ̸= 0

a2 = 0

Case 2

a2 ̸= 0

Case 1

Figure 2: Tree leaf diagram of the case by case study of optimal system

Case 8: a5 = 0, a2 = 0, a1 = 0, a3 ̸= 0, a4 ̸= 0.

X ′ = Ad(eϵX2)X = a3X3 + eγϵa4X4. (6.25)

We can take a3 = 1.
S8 = X3 ±X4. (6.26)

Case 9: a5 = 0, a4 = 0, a2 = 0, a1 = 0, a3 ̸= 0.

X = a3X3, (6.27)

S9 = X3. (6.28)

Case 10: a5 = 0, a3 = 0, a2 = 0, a1 ̸= 0.

X ′ = Ad(eϵX2)X = a1X1 + eγϵa4X4. (6.29)

Take a1 = 1.
S10 = X1 ±X4. (6.30)

Case 11: a5 = 0, a3 = 0, a2 = 0, a1 = 0.
X = a4X4, (6.31)

S11 = X4. (6.32)

The case by case tree-leaf diagram is presented in Figure 2. The optimal system of sub algebras of non-linear
damped elastic wave equation is presented in this section.

6.1. Reduction under Optimal System and Invariant Solutions

For X1, the associated characteristic equation is given by

dx

1
=

dt

0
=

du

0
.

The invariant variables are s(x, t) = t, u = f(s). From these transformations equation (6.1) reduces to
the ODE given by

f ′′ + γf ′ = 0. (6.33)
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The equation f ′′+γf ′ = 0 yields f(s) = c1+ c2e
−γs. Consequently, the equation (6.1) has an exact solution

that is invariant under X1 given by
u(x, t) = c1 + c2e

−γt.

For X2, we have
dx

0
=

dt

1
=

du

0
.

The invariant variables are s(x, t) = x, u = f(s). From these transformations equation (6.1) reduces to
the ODE given by

−f ′′(α+ βf ′) = 0. (6.34)

The equation α + βf ′ = 0 yields f(s) = c1 − α
β s. Consequently, the equation (6.1) has an exact solution

that is invariant under X2 given by

u(x, t) = c1 −
α

β
x.

For X1 +X3, the associated characteristic equation is given by

dx

1
=

dt

0
=

du

1
.

The invariant variables are s(x, t) = t, u = x + f(s). From these transformations equation (6.1) reduces
to the ODE given by

f ′′ + γf ′ = 0. (6.35)

The equation f ′′ + γf ′ = 0 yields f(s) = x + c1 + c2e
−γs. Consequently, the equation (6.1) has an exact

solution that is invariant under X1 +X3 given by

u(x, t) = x+ c1 + c2e
−γt.

For X1 + X4, the invariant variables are s(x, t) = t, u = xe−γt + f(s). From these invariant variables
equation (6.1) reduces to the ODE given by

f ′′ + γf ′ = 0. (6.36)

The equation f ′′ + γf ′ = 0 yields f(s) = x + c1 + c2e
−γs. Consequently, the equation (6.1) has an exact

solution that is invariant under X1 +X4 given by

u(x, t) = x+ c1 + c2e
−γt.

For X1+X3+X4, the invariant variables are s(x, t) = t, u = xe−γt+x+f(s). From these transformations
equation (6.1) reduces to the ODE given by

f ′′ + γf ′ = 0. (6.37)

The equation f ′′ + γf ′ = 0 yields f(s) = x + c1e
−γs + c2. Consequently, the equation (6.1) has an exact

solution that is invariant under X1 +X3 +X4 given by

u(x, t) = (x+ c1)e
−γt + x+ c2.

For X2 +X3, the invariant variables are s(x, t) = x, u = t+ f(s). From these invariant variables equation
(6.1) reduces to the ODE given by

(−α− βf ′)f ′′ + γ = 0. (6.38)

The equation (−α− βf ′)f ′′ + γ = 0 yields f(s) = −(2βγc1+2βγs+α2)
3
2

3β2γ
− α

β s+ c2. Consequently, the equation

(6.1) has an exact solution that is invariant under X2 +X3 given by:

u(x, t) =
(−2β(c1 + x)γ − α2)

3β2γ

√
2β(c1 + x)γ + α2 − α

β
x+ t+ c2.

For the non-linear damped wave equation, the reduced ODEs and invariant solutions are presented in this
section.
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6.2. Conservation Laws via Noether Approach

A non-trivial conservation law of the equation (6.1) exists, if there exist a vector (T t, T x) whose divergence
DtT

t +DxT
x vanishes on the solutions of the equation (6.1). The Lagrangian of the equation (6.1) is given

by

L = eγt(
αu2x
2

+
βu3x
6

− u2t
2
). (6.39)

The Noether symmetry is presented in the form given by

X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
, (6.40)

is known as Noether symmetry of equation (6.1) associated with the Lagrangian (6.39) that satisfies the
following identity given by

X[1]L+ L(Dxξ +Dtτ) = DtG
1 +DxG

2, (6.41)

where Gi(x, t, u), i = 1, 2 are gauge terms. We obtain a set of determining equations from (6.41) given by

αeγtηx −G2
u = 0,

eγtα(ηu − ξx) +
β

2
eγtηx +

α

2
eγt(τt + γτ + ξx) = 0,

βeγt

6
(τt + γτ + ξx)−

α

2
τt + γτ + ξx)ξu +

β

2
eγt(ηu − ξx) = 0,

−eγtηt = G1
u,

1

2
eγt(γτ − τt − ξx)− eγt(ηu − ξt) = 0,

eγtτu = 0,

eγt(−ατx + ξt) = 0,

eγt(
−α

2
τu − β

2
τx = 0,

β

3
eγtξu = 0,

G1
x +G2

x = 0.

By solving the above set of determining equations, we get the following infinitesimals

ξ = c3e
γ
5
t, τ = c1x+ c2, η =

α

β
c1x+ c4t+

c1
5
u+ c5,

and the corresponding gauge terms given by

G1 = −c4u+ c4t+ c6, G2 =
α2

β
c1u− c4x+ c5.

Noether symmetries of non-linear damped wave equation are given by

X1 = x
∂

∂x
+ (

α

β
x+

u

5
)
∂

∂u
; G1 = 0, G2 =

α2

β
u

X2 =
∂

∂x
; G1 = 0, G2 = 0

X3 = eγt
∂

∂t
; G1 = 0, G2 = 0

X4 = t
∂

∂u
; G1 = t− u,G2 = −x

X5 =
∂

∂u
. G1 = 0, G2 = 1

From (4.4) we obtain the following set of conserved vectors given by
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1. For X1 = x ∂
∂x + (αβx+ u

5 )
∂
∂u ; G1 = 0, G2 = α2

β u

T t = −eγtut(
α
βx+ u

5 − xux),

T x = α2

β u− xeγt(α2u
2
x +

β
6u

3
x − 1

2u
2
t ) + eγt(αβx+ u

5 − xux)(αux +
β
2u

2
x).

2. For X2 =
∂
∂x ; G1 = 0, G2 = 0

T t = eγtuxut,
T x = −eγt(32αu

2
x +

2
3βu

3
x − 1

2u
2
t ).

3. For X3 = e
γ
5
t ∂
∂t ; G1 = 0, G2 = 0

T t = −e
6
5
γt(α2u

2
x +

β
6u

3
x − 3

2u
2
t ),

T x = −e
6
5
γtut(αux +

β
2u

2
x).

4. For X4 = t ∂
∂u ; G1 = t− u,G2 = −x

T t = −u+ t− teγtut,
T x = −x+ teγt(αux +

β
2u

2
x).

5. For X5 =
∂
∂u ; G1 = 0, G2 = 1

T t = −eγtut,
T x = 1 + eγt(αux +

β
2u

2
x).

The Noether conservation laws are presented in the form of conserved vector T = (T t, T x) corresponding to
Noether symmetries such that it holds for all solutions of equation (6.1) and satisfy the divergence expression
DtT

t +DxT
x = 0.

6.3. Conservation Laws via Multiplier Approach

By using the multiplier approach on equation (6.1) with the multiplier M = M(x, t, u, ux, ut) depending on
the variables (x, t, u, ux, ut), we have

δ

δu
[M(x, t, u, ux, ut)(utt − αuxx − βuxuxx + γut)] = 0, (6.42)

where δ
δu represents the Euler operator. From (6.42), we obtain the following system of determining equations

for the multipliers given by

Mtt − γMt = 0

Mut = 0

Mux = 0

Mx = 0

Mu = 0

(6.43)

The solution of the system of equations (6.43) provides us the following multipliers given by

M = c1 + c2e
γt. (6.44)

where ci, i = 1, 2 are constants. The multiplier M of the equation E = utt − αuxx − βuxuxx + γut has the
property

DiT
i = ME, (6.45)

for arbitrary functions u(x, t). From (6.44) and (6.45), we obtain the conserved vectors given by

1. T t = ut + γu, T x = −1
2βu

2
x − αux.

2. T t = eγtut, T x = −(β2ux + α)eγtux.

The local conservation laws are presented in the form of conserved vector T = (T t, T x) corresponding to
each multipliers such that it holds for all solutions of equation (6.1) and satisfy DtT

t + DxT
x = 0. The

conservation laws presented in this section are obtained using the multiplier method that has led to some
new conservation laws for the non-linear damped elastic wave equation.
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7. Conclusion

The Lie symmetry classification of non-linear elastic wave equation (1.6) and non-linear damped elastic
wave equation (6.1) is reviewed which was already done by Bokhari et. al. [4]. Since there exist infinite
many linear combinations of Lie symmetry generators so the classification upto non-equivalent classes of
symmetry generators is necessary. This can be obtained by constructing the optimal system of sub algebras
of their Lie algebra. The optimal systems of non-linear elastic wave equation (1.6) and non-linear damped
elastic wave equation (6.1) are presented in section (2) and section (6) respectively. The discussion of the
one-dimensional optimal system is used to categorise and divide the Lie symmetries generators into disjoint,
non-equivalent classes. These optimal systems further categorise group invariant solutions. Complete set of
reductions by similarity variables, exact invariant solutions under the optimal systems are presented in this
study for both equations (1.6) and (6.1). Explicit new solutions are also obtained. Variational symmetries
of equation (1.6) and equation (6.1) are studied and conservation laws are derived using Noether approach.
Furthermore, the multiplier approach is used to study the conservation laws of equation (1.6) and equation
(6.1). The conservation laws obtained using the multiplier approach has led us to some new conservation
laws.
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