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Abstract

In this article, we study the split equality problem involving nonexpansive semigroup and convex minimiza-
tion problem. Using a Halpern iterative algorithm, we establish a strong convergence result for approximat-
ing a common solution of the aforementioned problems. The iterative algorithm introduced in this paper is
designed in such a way that it does not require the knowledge of the operator norm. We display a numerical
example to show the relevance of our result. Our result complements and extends some related results in
literature.
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1. Introduction

The Minimization Problem (MP) is one of the most important problems in optimization theory and
non-linear analysis. The MP is defined as follows: find x ∈ H such that

ψ(x) := miny∈Hψ(y), (1.1)

where ψ : H → (−∞,∞] is a proper and convex function. We denote by argminy∈Hψ(y) the set of all
minimizers of ψ on H.
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Numerous problems in signal processing and imaging, statistical learning and data mining or computer
vision can be formulated as optimization problem that consists of a sum of convex functions which may not
be necessarily differentiable, possibly composed with linear operators and that in turn can be transformed
to Split Minimization Problem (SMP), see for example [1, 6].
Let H1, H2 and H3 be real Hilbert spaces and A : H1 → H3, B : H2 → H3 be bounded linear operators. Let
C and Q be nonempty, closed and convex subsets of H1 and H2 respectively, the Split Equality Problem
(SEP) introduced by Moudafi [13] is to find

x∗ ∈ C, y∗ ∈ Q such that Ax∗ = By∗. (1.2)

A point x ∈ C is called a fixed point of a single-valued mapping T if x = Tx. We denote by F (T ), the set
of all fixed points of T .
In [15], Moudafi introduced the following Split Equality Fixed Point Problem (SEFPP): Let T : H1 → H1

and S : H2 → H2 be nonlinear operators such that F (T ) ̸= ∅ and F (S) ̸= ∅. If C = F (T ) and Q = F (S) in
(1.2), then the SEFPP is to find:

x∗ ∈ F (T ) and y∗ ∈ F (S) such that Ax∗ = By∗. (1.3)

Since the inception of SEFPP (1.3), many authors working in this direction have used SEFPP (1.3) to solve
different optimization problems (see [2, 3, 4, 5, 7, 10, 11, 14, 16, 19, 18, 22] and the references therein).
Let C and Q be nonempty closed and convex subset of real Hilbert spaces H1 and H2 respectively, ψ :
H1 → R ∪ {+∞} and φ : H2 → R ∪ {+∞} be two proper and lower semi-continuous convex functions and
A : H1 → H2 a bounded linear operator. The SMP is to find

x∗ ∈ C such that x∗ = argminx∈Cψ(x); and

y∗ = Ax∗ ∈ Q solves y∗ = argminz∈Qφ(z). (1.4)

It is well-known that

x ∈ argminψ ⇐⇒ Jψµ (x) := argminu{ψ(u) +
1

2µ
||u− x||2}.

The fixed point set of proximity mapping is precisely the set of minimizers of ψ. Based on (1.4), the Split
Equality Minimization Problem (SEMP) is to find

x∗ ∈ argminψ, y∗ ∈ argmin φ such that Ax∗ = By∗, (1.5)

hence (x∗, y∗) solves

minx,y{ψ(x) + φ(y) +
1

2
||Ax−By||2},

an optimization problem with weak coupling in the objective function as well as

minx,y{ψ(x) + φ(y), Ax = By}.

The metric projection PC is a map defined on H onto C which assigns to each x ∈ H, the unique point in
C, denoted by PCx such that

∥x− PCx∥ = inf{∥x− y∥ : y ∈ C}.

It is well known that PCx is characterized by the inequality ⟨x− PCx, z − PCx⟩ ≤ 0, ∀ z ∈ C and PC is a
firmly nonexpansive mapping.
Motivated by the works of authors mentioned above, we introduce an iterative algorithm that does not
require the knowledge of operator norm to approximate a common solution of split equality minimization
problem and split equality fixed point problem of nonexpansive semigroup in real Hilbert space. We also
prove a strong convergence result for approximating a common solution of the aforementioned problems.
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2. Preliminaries

We state some known and useful results which will be needed in the proof of our main theorem. In the
sequel, we denote strong and weak convergence by ”→” and ”⇀”, respectively.
One-parameter family mapping S = {T (s) : 0 ≤ s < ∞} from H into itself is said to be a nonexpansive
semigroup (see [8]), if it satisfies the following conditions:
(i) T (0)x = x, for all x ∈ H;
(ii) T (s+ t) = T (s)T (t), for all s, t ≥ 0;
(iii) For each x ∈ H, the mapping T (.)x is continuous.
(iv) ||T (s)x− T (s)y|| ≤ ||x− y||, for all x, y ∈ H and s ≥ 0.

Lemma 2.1. [9] Let H be a real Hilbert space, then

2⟨x, y⟩ = ||x||2 + ||y||2 − ||x− y||2 = ||x+ y||2 − ||x||2 − ||y||2, ∀ x, y ∈ H.

Lemma 2.2. [20] Let C be a nonempty, closed and convex subset of a real Hilbert space H and S : C → C
be a nonexpansive mapping. Then I − T is demiclosed at 0 (i.e., if {xn} converges weakly to x ∈ C and
{xn − Txn} converges strongly to 0, then x = Tx).

Lemma 2.3. [9] Let H be a Hilbert space, then ∀ x, y ∈ H and α ∈ R, we have

(i) ||αx+ (1− α)y||2 = α||x||2 + (1− α)||y||2 − α(1− α)||x− y||2.
(ii) ||x+ y||2 ≤ ||x||2 + 2⟨y, x+ y⟩.

Lemma 2.4. [8] Let C be a nonempty closed and convex subset of a Hilbert space and {T (s)}s≥0 be a
nonexpansive semigroup on H. Then, for every h ≥ 0

lim sup
t→∞

x ∈ C

∣∣∣∣∣∣∣∣∣∣∣∣1
t

∫ t

0
T (s)xds− T (h)

(
1

t

∫ t

0
T (s)xds

)∣∣∣∣∣∣∣∣∣∣∣∣ = 0.

Lemma 2.5. [12] Let H be a real Hilbert space and f : H → (−∞,∞] be a proper convex and lower
semi-continuous function. Then, for all x, y ∈ H and λ > 0, we have

1

2λ
||Jλx− y||2 − 1

2λ
||x− y||2 + 1

2λ
||x− Jλx||2 + f(Jλx) ≤ f(y).

Lemma 2.6. [16] Let H be a real Hilbert space and f : H → (−∞,∞] be a proper convex and lower
semi-continuous function. Then, for all 0 < λ ≤ µ and x ∈ N, we have

||Jλx− x|| ≤ |Jµx− x||.

Lemma 2.7. [21] Assume {an} is a sequence of nonnegative real sequence such that

an+1 ≤ (1− σn)an + σnδn, n > 0,

where {σn} is a sequence in (0, 1) and {δn} is a real sequence such that

(i)
∞∑
n=1

σn = ∞,

(ii) lim sup
n→∞

δn ≤ 0 or
∞∑
n=1

|σnδn| <∞.

Then lim
n→∞

an = 0.
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3. Main Result

In this section, we state and prove our main result. We denote by Jfµ , the resolvent of MP.

Lemma 3.1. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and B : H2 → H3 be bounded
linear operators. Let ψ : H1 → (−∞,+∞], φ : H2 → (−∞,+∞] be two proper, convex and lower semi-
continuous functions and {T (s) : 0 ≤ s < ∞}, {R(m) : 0 ≤ m < ∞} be two-parameters nonexpansive
semigroups on H1 and H2 respectively. Suppose Γ := {p ∈ F (T (s)) ∩ argminy∈H1ψ(y), q ∈ F (R(m)) ∩
argminy∈H2φ(y) and Ap = Bq} ≠ ∅ and the step size sequence {γn} is chosen in such a way that for some
ϵ > 0

γn ∈
(
ϵ,

2||Awn −Bzn||2

||A∗(Awn −Bzn)||2 + ||B∗(Awn −Bzn)||2
− ϵ

)
, n ∈ Ω.

Otherwise γn = γ(γ being any any nonnegative value), where the set of indexes Ω = {n : Awn − Bzn ̸= 0}.
Let u, x1 ∈ H1 and v, y1 ∈ H2 be arbitrary and the sequence ({xn}, {yn}) be generated iteratively by

wn = (1− αn)xn + αnu;

zn = (1− αn)yn + αnv;

un = Jψρn(wn − γnA
∗(Awn −Bzn));

vn = Jφµn(zn + γnB
∗(Awn −Bzn));

xn+1 = (1− βn)un + βn
1
tn

∫ tn
0 T (s)unds;

yn+1 = (1− βn)vn + βn
1
rn

∫ rn
0 R(m)vndm;

(3.1)

where {αn}, {βn} are sequences in (0, 1), A∗ and B∗ are adjoints of A and B respectively. Let 0 < ρ ≤ ρn,
0 < µ ≤ µn and {tn}, {rn} be sequences in [0,∞), then {xn} and {yn} are bounded.

Proof. Let (p, q) ∈ Γ, an = wn − γnA
∗(Awn − Bzn) and bn = zn + γnB

∗(Awn − Bzn) then from (3.1) and
Lemma 2.1, we have that

||un − p||2 = ||Jψρnan − p||2

≤ ||an − p||2

= ||wn − p||2 + γ2n||A∗(Awn −Bzn)||2 − 2γn⟨wn − p,A∗(Awn −Bzn)⟩
= ||wn − p||2 + γ2n||A∗(Awn −Bzn)||2 − 2γn⟨Awn −Ap,Awn −Bzn)⟩
= ||wn − p||2 + γ2n||A∗(Awn −Bzn)||2 − γn||Awn −Ap||2

− γn||Awn −Bzn||2 + γn||Bzn −Ap||2. (3.2)

By similar steps as in (3.2), we have

||vn − q||2 ≤ ∥bn − q∥2

= ||zn − q||2 + γ2n||B∗(Awn −Bzn)||2 − γn||Bzn −Bq||2

− γn||Awn −Bzn||2 + γn||Awn −Bq||2. (3.3)

Adding (3.2) and (3.3), using the fact that Ap = Bq and noting the assumption on γn, we obtain

||un − p||2 + ||vn − q||2 ≤ ∥an − p∥2 + ∥bn − q∥2

≤ ||wn − p||2 + ||zn − q||2 − γn[2||Awn −Bzn||2

− γn(||A∗(Awn −Bzn)||2 + ||B∗(Awn −Bzn||2)]
≤ ||wn − p||2 + ||zn − q||2. (3.4)
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From (3.1), we have that

||wn − p||2 = ||(1− αn)xn + αnu− p||2

= ||(1− αn)(xn − p) + αn(u− p)||2

≤ (1− αn)||xn − p||2 + αn||u− p||2. (3.5)

Using the same approach in (3.5), we have that

||zn − q||2 ≤ (1− αn)||yn − q||2 + αn||v − q||2. (3.6)

Adding (3.5) and (3.6), we have

||wn − p||2 + ||zn − q||2 ≤ (1− αn)[||xn − p||2 + ||yn − q||2] + αn[||u− p||2 + ||v − q||2]. (3.7)

From (3.1) and Lemma 2.3, we have that

||xn+1 − p||2 + ||yn+1 − q||2

= ||(1− βn)un + βn
1

tn

∫ tn

0
T (s)unds− p||2 + ∥(1− βn)vn + βn

1

rn

∫ rn

0
R(m)vndm− q∥2

= ||(1− βn)(un − p) + βn(
1

tn

∫ tn

0
T (s)unds−

1

tn

∫ tn

0
T (s)pds)||2

+ ||(1− βn)(vn − q) + βn(
1

rn

∫ rn

0
R(m)vndm− 1

rn

∫ rn

0
R(m)qdm)||2

≤ (1− βn)||un − p||2 + βn
∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds−

1

tn

∫ tn

0
T (s)pds

∣∣∣∣∣∣2
− βn(1− βn)

∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds− un

∣∣∣∣∣∣2
+ (1− βn)||vn − q||2 + βn

∣∣∣∣∣∣ 1
rn

∫ rn

0
R(m)vndm− 1

rn

∫ rn

0
R(m)qdm

∣∣∣∣∣∣2
− βn(1− βn)

∣∣∣∣∣∣ 1
rn

∫ rn

0
R(m)vndm− vn

∣∣∣∣∣∣2
≤ (1− βn)||un − p||2 + βn||un − p||2 − βn(1− βn)

∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds− un

∣∣∣∣∣∣2
+ (1− βn)||vn − q||2 + βn||vn − q||2 − βn(1− βn)

∣∣∣∣∣∣ 1
rn

∫ rn

0
R(m)vndm− vn

∣∣∣∣∣∣2
= ||un − p||2 + ∥vn − q∥2 − βn(1− βn)

[∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds− un

∣∣∣∣∣∣2
+

∣∣∣∣∣∣ 1
rn

∫ rn

0
R(m)vndm− vn

∣∣∣∣∣∣2]
≤ ||un − p||2 + ∥vn − q∥2. (3.8)

Using (3.1), (3.7) and (3.8), we have that

||xn+1 − p||2 + ||yn+1 − q||2 ≤ ||un − q||2 + ||vn − q||2

≤ ||wn − p||2 + ||zn − q||2

..

≤ (1− αn)[||xn − p||2 + ||yn − q||2] + αn[||u− p||2 + ||v − q||2]
≤ max{||xn − p||2 + ||yn − q||2, ||u− p||2 + ||v − q||2}
.

≤ max{||x1 − p||2 + ||y1 − q||2, ||u− p||2 + ||v − q||2}.
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Therefore, {||xn+1 − p||2}+ {||yn+1 − q||2} is bounded. Hence, {xn} and {yn} are bounded. Consequently,
{un}, {vn}, {wn}, {zn}, { 1

tn

∫ tn
0 T (s)unds} and { 1

rn
R(m)vndm} are also bounded.

Theorem 3.2. Suppose that Lemma 3.1 holds and let 0 < ρ ≤ ρn, 0 < µ ≤ µn and {sn}, {rn} be sequences
in [0,∞) with conditions:

(i) lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞;

(ii) 0 < lim inf
n→∞

βn < lim sup
n→∞

βn < 1.

Then ({xn}, {yn}) converges strongly to (x, y) ∈ Γ.

From (3.1), (3.2) and (3.7), we have that

||xn+1 − p||2 + ||yn+1 − q||2 ≤ ||wn − p||2 + ||zn − q||2 − γn[2||Awn −Bzn||2

− γn(||A∗(Awn −Bzn) + ||B∗(Awn −Bzn)||2)]
≤ (1− αn)[||xn − p||2 + ||yn − q||2] + αn[||u− p||2 + ||v − q||2]
− γn[2||Awn −Bzn||2 − γn(||A∗(Awn −Bzn) + ||B∗(Awn −Bzn)||2)]. (3.9)

Case 1: Assume that {||xn − p||2 + ||yn − q||2} is monotone decreasing, then {||xn − p||2 + ||yn − q||2} is
convergent, thus lim

n→∞
[(||xn+1 − p||2 + ||yn+1 − q||2)− (||xn − p||2 + ||yn − q||2)] = 0.

From (3.9), we have that

γ2n(||A∗(Awn −Bzn) + ||B∗(Awn −Bzn)||2)
≤ (1− αn)[||xn − p||2 + ||yn − q||2][||xn+1 − p||2 + ||yn+1 − q||2] + αn[||u− p||2 + ||v − q||2]. (3.10)

From condition (i) of Theorem 3.2 and the condition

γn ∈
(
ϵ,

2||Awn −Bzn||2

||A∗(Awn −Bzn)||2 + ||B∗(Awn −Bzn)||2
− ϵ

)
, n ∈ Ω.

We conclude that

(||A∗(Awn −Bzn)||2 + ||B∗(Awn −Bzn)||2) → 0, as n→ ∞.

Since Awn −Bzn = 0, if n ∈ Ω, therefore we have

lim
n→∞

||A∗(Awn −Bzn)||2 = lim
n→∞

||B∗(Awn −Bzn)||2 = 0. (3.11)

From (3.1), we have

||wn − xn|| = ||(1− αn)(xn − xn) + αn(u− xn)||
≤ αn||u− xn||

From condition (ii) of Theorem 3.2, we have that

lim
n→∞

||wn − xn|| = 0. (3.12)

Also,

||zn − yn|| = ||(1− αn)(yn − yn) + αn(v − yn)||
≤ αn||v − yn||

From condition (i) of (3.2), we have that

lim
n→∞

||zn − yn|| = 0. (3.13)
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From (3.1), (3.4) and (3.7), we have that

||xn+1 − p||2 + ∥yn+1 − q∥2 ≤ ||un − p||2 + ∥vn − q∥2 − βn(1− βn)

[∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds− un

∣∣∣∣∣∣2
+
∣∣∣∣∣∣ 1
rn

∫ rn

0
R(m)vndm− vn

∣∣∣∣∣∣2]
≤ ∥wn − p∥2 + ∥zn − q∥2 − βn(1− βn)

[∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds− un

∣∣∣∣∣∣2
+
∣∣∣∣∣∣ 1
rn

∫ rn

0
R(m)vndm− vn

∣∣∣∣∣∣2]
≤ (1− αn)[||xn − p||2 + ||yn − q||2] + αn[||u− p||2 + ||v − q||2]

− βn(1− βn)

[∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds− un

∣∣∣∣∣∣2
+ || 1

rn

∫ rn

0
R(m)vndm− vn

∣∣∣∣∣∣2]
,

(3.14)

which implies that

βn(1− βn)

[∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds− un

∣∣∣∣∣∣2
+
∣∣∣∣∣∣ 1
rn

∫ rn

0
R(m)vndm− vn

∣∣∣∣∣∣2]
≤ (1− αn)[||xn − p||2 + ||yn − q||2]− [||xn+1 − p||2 + ||yn+1 − q||2] + αn[||u− p||2 + ||v − q||2].

From condition (i) of Theorem 3.2, we have that

∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds− un

∣∣∣∣∣∣2
+
∣∣∣∣∣∣ 1
rn

∫ rn

0
R(m)vndm− vn

∣∣∣∣∣∣2 → 0.

Hence,

lim
n→∞

∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds− un

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
rn

∫ rn

0
R(m)vndm− vn

∣∣∣∣∣∣
= 0. (3.15)

From Lemma 2.5, we have that

1

2ρn
||un − p||2 + 1

2ρn
||an − p||2 + 1

2ρn
||an − un||2 ≤ ψ(y)− ψ(un).

Since ψ(p) ≤ ψ(un) for all n ≥ 1, we obtain

||un − p||2 ≤ ||an − p||2 − ||an − un||2. (3.16)

Similarly, from (2.5), we have that

1

2µn
||vn − q||2 + 1

2µn
||bn − q||2 + 1

2µn
||bn − vn||2 ≤ g(y)− g(vn).

Since g(q) ≤ g(vn) for all n ≥ 1, we obtain

||vn − q||2 ≤ ||bn − q||2 − ||bn − vn||2. (3.17)

By adding (3.16) and (3.17), we get

∥un − p∥2 + ∥vn − q∥2 ≤ ∥an − p∥2 + ∥bn − q∥2 −
[
∥an − un∥2 + ∥bn − vn∥2

]
. (3.18)
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On substituting (3.18) into (3.8), and applying (3.4) and (3.7), we obtain

||xn+1 − p||2 + ∥yn+1 − q∥2 ≤ ||un − p||2 + ∥vn − q∥2 −
[
∥an − un∥2 + ∥bn − vn∥2

]
≤ ∥an − p∥2 + ∥bn − q∥2 −

[
∥an − un∥2 + ∥bn − vn∥2

]
≤ ∥wn − p∥2 + ∥zn − q∥2 −

[
∥an − un∥2 + ∥bn − vn∥2

]
≤ (1− αn)[||xn − p||2 + ||yn − q||2] + αn[||u− p||2 + ||v − q||2]
−
[
∥an − un∥2 + ∥bn − vn∥2

]
, (3.19)

which implies that

||un − an||2 + ||vn − bn||2 ≤ (1− αn)[||xn − p||2 + ||yn − q||2]− [∥xn+1 − p∥2 + ∥yn+1 − q∥2]
+ αn[||u− p||2 + ||v − q||2].

Hence, we obtain that

lim
n→∞

||un − an|| = lim
n→∞

||vn − bn|| = 0. (3.20)

Using the definition of an, bn and applying (3.11), we have that

lim
n→∞

||an − wn||2 = lim
n→∞

γ2n||A∗(Awn −Bzn)||2 = 0. (3.21)

Similarly,

lim
n→∞

||bn − zn||2 = lim
n→∞

γ2n||B∗(Awn −Bzn)||2 = 0. (3.22)

From (3.21) and (3.22), we have that

lim
n→∞

||un − wn|| = 0 = lim
n→∞

∥vn − zn∥. (3.23)

Also, from (3.12), (3.13) and (3.23), we have

lim
n→∞

∥un − xn∥ = ||vn − yn|| = 0. (3.24)

From (3.1), we obtain

||xn+1 − un|| = ||(1− βn)un + βn
1

tn

∫ tn

0
T (s)unds− un||

≤ (1− βn)||un − un||+ βn
∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds− un

∣∣∣∣∣∣
.

Thus, from (3.15), we have that

lim
n→∞

||xn+1 − un|| = 0. (3.25)

Similarly, from (3.1), we have that

||yn+1 − vn|| = ||(1− βn)vn + βn
1

rn

∫ rn

0
R(m)vndm− vn||

≤ (1− βn)||vn − vn||+ βn
∣∣∣∣∣∣ 1
rn

∫ rn

0
R(m)vndm− vn

∣∣∣∣∣∣
.
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Thus, from (3.15), we have obtain

lim
n→∞

||yn+1 − vn|| = 0. (3.26)

From (3.1), we have that

||xn+1 − xn|| ≤ ||xn+1 − un||+ ||un − xn||.

Thus, from (3.20) and (3.25), we obtain

lim
n→∞

||xn+1 − xn|| = 0. (3.27)

Also, from (3.1), we obtain

||yn+1 − yn|| ≤ ||yn+1 − vn||+ ||vn − yn||

Thus, from (3.20) and (3.26), we obtain

||yn+1 − yn|| = 0. (3.28)

Note that

||un − T (u)un|| ≤
∣∣∣∣∣∣
un −

1

tn

∫ tn

0
T (s)unds

∣∣∣∣∣∣
+
∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds− T (u)

1

tn

∫ tn

0
T (s)unds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
T (u)

1

tn

∫ tn

0
T (s)unds− T (u)un

∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣
un −

1

tn

∫ tn

0
T (s)unds

∣∣∣∣∣∣
+
∣∣∣∣∣∣ 1
tn

∫ tn

0
T (s)unds− T (u)

1

tn

∫ tn

0
T (s)unds

∣∣∣∣∣∣
.

It follows from (3.15) and Lemma 2.4 that

lim
n→∞

||un − T (u)un|| = 0. (3.29)

Similarly, using the same approach as in (3.29), we have that

lim
n→∞

||vn − T (v)vn|| = 0. (3.30)

Since ρn > ρ > 0, we have from Lemma 2.6 and (3.20) that

||Jρan − an|| ≤ ||Jρnan − an||.

Hence,

lim
n→∞

||Jρan − an|| = 0. (3.31)

Similarly, from Lemma 2.6 and (3.20), we have that

||Jµbn − bn|| ≤ ||Jµnbn − bn||.

Thus, we obtain that

lim
n→∞

||Jµbn − bn|| = 0. (3.32)

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} which converges weakly to x. It follows
from (3.12) and (3.20) that the subsequences {unj} and {wnj} of {un} and {wn} converges weakly to x.
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Similarly, since {yn} is bounded, there exists a subsequence {ynj} of {yn} which converges weakly to y .
From (3.13) and (3.20), we have that subsequences {vnj}, {znj} of {vn} and {zn} also converges weakly to
y. Hence, from the nonexpansiveness of Jρ, it follows from the demiclosedness principle (Lemma 2.2) and

(3.31) that x ∈ F (Jψρ ). Following the same approach and using (3.32), we have that y ∈ F (Jφµ ). Using
(3.29), (3.30) and Lemma 2.2, we have that x ∈ F (T (s)) y ∈ F (R(m)).
Next, we show that Ax = By. Since A and B are bounded linear operators, we have Awn ⇀ Ax and
Bzn ⇀ By.
Using the condition on {γn} and (3.9), we have that

lim
n→∞

||Awn −Bzn||2 = 0. (3.33)

By weakly semi continuity of the norm, we have

||Ax−By|| ≤ lim inf
n→∞

||Awn −Bzn|| = 0. (3.34)

Thus,

Ax = By. (3.35)

Now, since {xnj} converges weakly to x, we obtain by the property of PΓ that Next, we show that ({xn}, {yn})
converges strongly to (x, y).
Now, since ({xnj}, {ynj}) converges weakly to (x, y), we obtain by the property of PΓ that

lim sup
n→∞

⟨u− p, xn − p⟩+ lim sup
n→∞

⟨v − q, yn − q⟩ = lim
j→∞

⟨u− p, xnj − p⟩+ lim
j→∞

⟨v − q, ynj − q⟩

= ⟨u− p, x− p⟩+ ⟨v − q, y − q⟩
≤ 0. (3.36)

From (3.4), we have that

||xn+1 − x||2 + ||yn+1 − y||2 ≤ ||wn − x||2 + ||zn − y|2

= (1− αn)
2||xn − x||2 + α2

n||u− x||2 + 2(1− αn)αn⟨xn − x, u− x⟩
+ (1− αn)

2||yn − y||2 + α2
n||v − y||2 + 2(1− αn)αn⟨yn − y, v − y⟩

≤ (1− αn)[||xn − x||2 + ||yn − y||2] + αn[αn||u− x||2 + 2(1− αn)⟨xn − x, u− x⟩
+ αn||v − y||2 + 2(1− αn)⟨yn − y, v − y⟩]. (3.37)

Applying Lemma 2.7, (3.36) and condition (i) of Theorem (3.2), we have that ({xn}, {yn}) converges strongly
to (x, y).
Case 2: Assume that {||xn−p||2+||yn−q||2} is not monotone decreasing. Suppose Υn := ||xn−p||2+||yn−q||2
and let τ : N → N be a mapping defined for all n ≥ n0 (for some large n0) by

τ(n) := max{k ∈ N : k ≤ n,Υk ≤ Υk+1}.

Obviously, τ is a non-decreasing sequence such that τ(n) → ∞, as n→ ∞ and

Υτ(n) ≤ Υτ(n)+1, ∀ n ≥ n0.

From (3.10), we have

γ2n[||A∗(Awτ(n) −Bzτ(n)||2) + ||B∗(Awτ(n) −Bzτ(n))||2]
≤ ||xτ(n) − p||2 + ||yτ(n) − q||2

− [||xτ(n)+1 − p||2 + ||yτ(n)+1 − p||2] + ατ(n)[||u− p||2 + ||v − q||2]
≤ ατ(n)[||u− p||2 + ||v − q||2].
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Hence,

γ2τ(n)[||A
∗(Awτ(n) −Bzτ(n)||2) + ||B∗(Awτ(n) −Bzτ(n))||2] → 0, as n→ ∞.

By the condition on {γτ(n)}, we have

[||A∗(Awτ(n) −Bzτ(n)||2) + ||B∗(Awτ(n) −Bzτ(n))||2] → 0, as n→ ∞.

Note that Awτ(n) −Bzτ(n) = 0, if τ(n) /∈ Ω. Hence,

lim
n→∞

||A∗(Awτ(n) −Bzτ(n))||2 = 0, (3.38)

and

lim
n→∞

||B∗(Awτ(n) −Bzτ(n))||2 = 0. (3.39)

Now for all n ≥ n0, we have from (3.37) that

0 ≤ [||xτ(n)+1 − x||2 + ||yτ(n)+1 − y||2 − (||xτ(n) − x||2 + ||yτ(n) − y||2)]
≤ (1− ατ(n))[||xτ(n) − x||2 + ||yτ(n) − y||2]− [||xτ(n) − x||2 + ||yτ(n) − y||2]
+ ατ(n)[ατ(n)[||u− x||2 + ||v − y||2] + 2(1− ατ(n))(⟨xτ(n) − x, u− x⟩+ ⟨yτ(n) − y, v − y⟩)],

which implies

||xτ(n) − x||2 + ||yτ(n) − y||2

≤ ατ(n)[||u− x||2 + ||v − y||2] + 2(1− ατ(n))(⟨xτ(n) − x, u− x⟩+ ⟨yτ(n) − y, v − y⟩) → 0.

Hence,

lim
n→∞

(||xτ(n) − x||2 + ||yτ(n) − y||2) = 0.

Therefore,

lim
n→∞

Υτ(n) = lim
n→∞

Υτ(n)+1 = 0.

Moreso, for n ≥ n0, it is clear that Υτ(n) ≤ Υτ(n)+1 if n ̸= τ(n) (i.e τ(n) < n) because Υj > Υj+1 for
τ(n) + 1 ≤ j ≤ n.
Consequently for all n ≥ n0,

0 ≤ Υn ≤ max{Υτ(n),Υ(n) + 1} = Υτ(n)+1.

Therefore, we conclude that lim
n→∞

Υn = 0, which also implies that {(xn, yn)} converges strongly to (x, y).

4. Numerical Example

Let H = R2 be endowed with the Euclidean norm and T : R2 → R2 be defined by T (x1, x2) =
1
3(x1, x2)

and R(x1, x2) =
2
5(x1, x2). Then T and R are nonexpansive mappings. Now, define ψ : R2 → (−∞,∞] by

ψ(x) = 1
2 ||Bx− b||2, where B(x) = (2x1 + x2, x1 +3x2) and b = (0, 0). Then f is a proper convex and lower

semi-continuous function, since B is a continuous linear mapping.
Also, define φ : R2 → (−∞,∞] by φ(x) = ||Mx −m||2 by M(x) = (3x1 − x2, 2x1 + 3x2) and m = (0, 0).
Then φ is a proper convex and lower semi-continuous function. Let ρn = µn = 1 ∀ n ≥ 1, then

Jψ1 (x) = argminy∈R2 [ψ(y) +
1

2
||y − x||2] = [I +BTB]−1(x+BT bT )

=
(11x1 − 5x2

41
,
−5x1 + 6x2

41

)
.
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Also,

Jφ1 (x) = argminy∈R2 [φ(y) +
1

2
||y − x||2] = [I +MTM ]−1(x+MTmT )

=
(11x1 − 3x2

145
,
−3x1 + 14x2

145

)
.

Now take αn = 1
n+5 and βn = n

2n+3 ,∀ n ≥ 1.
Then (3.1) becomes 

wn = n+4
n+5xn +

1
n+5u,

zn = n+4
n+5yn +

1
n+5v,

un = Jψρn(wn − γnA
∗(Awn −Bzn)),

vn = Jφµn(zn + γnA
∗(Awn −Bzn)),

xn+1 =
n+3
2n+3un +

n
6n+9un,

yn+1 =
n+3
2n+3vn +

2n
10n+15vn

(4.1)

Let A(x1, x2) = 2 and B(x1, x2) = 6x, so that A∗(x) = 2x and B∗(x) = 6x.

Let γn ∈
(
ϵ, 2||Awn−Bzn||2

||A∗(Awn−Bzn)||2+||B∗(Awn−Bzn)||2 − ϵ

)
, n ∈ Ω. Otherwise γn = γ(γ being any any nonnegative

value), where the set of indexes Ω = {n : Awn −Bzn ̸= 0}.
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