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Abstract

The aim of this paper is to present the convergence results to approximate the fixed points of multivalued
mean nonexpansive mappings in CAT(0) spaces. Strong and ∆-convergence results are established for
these mappings using F -iterative scheme. Moreover, a numerical example is given to show the convergence
behavior of the iterative scheme for multivalued mean nonexpansive mappings. The results which we derived
are generalization of many results existing in literature.
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1. Introduction

Browder [9] and Gohde [16] proved that every nonexpansive mapping on a closed convex and bounded
subset of uniformly convex Banach space has a fixed point. Kirk initiated fixed point theory for single and
multivalued mapping in the framework of CAT(0) spaces which possess a nonlinear structure, for details we
refer to [21, 19, 13, 26, 6]).
Kirk and Panyank [20] defined the concept of ∆-convergence in CAT(0) space. Dhompongsa and Panyank
[14] obtained ∆-convergence of different iterative schemes in such spaces.

Zhang [32] was the first who introduced the mean nonexpansive mapping in Banach spaces and proved
the existence and uniqueness of fixed points for such mappings using normal structure. Afterwards, these
mappings were extensively studied see for example, [30], [31] and references mentioned therein.

Browder’s demiclosedness principle [8] is one of the fundamental results in the theory of nonexpansive
mappings which is given as follows:
Let C be a nonempty closed and convex subset of a uniformly convex Banach space X and F : C → X a
nonexpansive mapping, then I−F is demiclosed at each f ∈ X , that is, for any sequence {cn} in C, cn ⇀ c
and (I −F)cn → y imply that (I −F)c = f, where the symbol ⇀ stands for a weak convergence.
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This principle also holds in spaces satisfying the Opial’s condition. It is well known that the demiclosedness
principle plays a key role in studying the asymptotic behavior of nonexpansive mapping (See [8, 29, 24, 15]).

The purpose of this paper is to study the existence of fixed points of multivalued mean nonexpansive
mappings and to obtain the demiclosed principle for such mappings in CAT(0) spaces. Moreover, we proved a
∆-convergence and strong convergence of F - iterative scheme for multivalued mean nonexpansive mappings.
Finally, we present a numerical example to illustrate the convergence behavior of different iterative schemes.

2. Preliminaries

Let X be a metric space and C a nonempty subset of X . A subset C is called proximinal if for each
t ∈ X , there exists an element c ∈ C such that

d(t, c) = d(t, C) = inf{d(t, w) : w ∈ C} (2.1)

where d(t, C) is the distance of the point t from the set C. We denote the family of nonempty closed bounded
subsets of X by FB(X ), the family of nonempty bounded proximinal subsets of X by Λ(X ), and the family
of nonempty compact subsets of X by κ(X ). Define the Hausdroff distance, H(., .) on FB(X ) by

H(P,Q) = max{sup
p∈P

d(p,Q), sup
q∈Q

d(q, P )}. (2.2)

The mapping H is called Pompeiu-Hausdorff metric induced by d.
An element w∗ is fixed point of a multivalued mapping F : X −→ FB(X ), if w∗ ∈ Fw∗. The set F (F)

denotes the set of all fixed points of F . A multivalued mapping F : X −→ FB(X ) is called:

1. nonexpansive if
H(Fw,Fv) ≤ d(w, v), ∀ w, v ∈ X .

2. quasi-nonexpansive if F (F) ̸= ∅ and for any w∗ ∈ F (F), we have

H(Fw,Fw∗) ≤ d(w,w∗), ∀ w ∈ X .

3. satisfies the Condition (C) which was given in [3], if for all w, v ∈ X

1

2
d(w,Fw) ≤ d(w, v) implies that H(Fw,Fv) ≤ d(w, v). (2.3)

Chen et al., [11] gave the concept of multivalued mean nonexpansive mapping in Banach space. We present
the multivalued mean nonexpansive mapping in the frame work of CAT(0) Space which is as follows:

Definition 2.1. Let C be a nonempty subset of X . A mapping F : C → C is said to be mean nonexpansive
if there exists nonnegative real numbers a and b satisfying a+ b ≤ 1 such that for all w, v ∈ C, the following
holds:

d(Fw,Fv) ≤ ad(w, v) + bd(w,Fv) . (2.4)

Obviously, nonexpansive mappings are mean nonexpansive mappings. A mean nonexpansive mapping
is not necessarily continuous and hence not nonexpansive.

Example 2.2. [33] Let F : [0, 1] → [0, 1] be a mapping defined by

Fw =

{
1−w
3 , w ∈ [0, 1] is rational number;

1+w
5 w ∈ [0, 1] is irrational number.

Then F is mean nonexpansive with a = 1
3 and b = 2

3 . Note that, F : [0, 1] → [0, 1] is not continuous at any
point in [0, 1] except w = 1

4 ; the fixed point of F .
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Nakprasit [25] gave an example of a mean nonexpansive mapping which is not Suzuki-generalized non-
expansive and showed that increasing mean nonexpansive mappings are Suzuki-generalized nonexpansive
mappings.

Recall that, a geodesic path joining two points w and v in a metric space X is a map ϕ from a closed
interval [0, f ] ⊂ R to X such that ϕ(0) = w, ϕ(f) = v and d(ϕ(t), ϕ(t′)) = |t − t′| for all t, t′ ∈ [0, f ]. In
particular, f = d(w, v). The image of ϕ is called the geodesic or metric segment joining w and v. If the
image is unique, then it is denoted by [w, v].

The space (X , d) is called the geodesic space if any two points of X are joined by a geodesic and X is
said to be uniquely geodesic if for each w, v ∈ X , there is exactly one metric segment which joins w and v.
A subset C of X is called convex if C contains every geodesic segment joining any two of its points. A
geodesic triangle △(w1, w2, w3) in a geodesic metric space (X , d) consists of three points in X with w1, w2

and w3 are the vertices of △ and a geodesic segments between them are the sides of △. A comparison
triangle for △(w1, w2, w3) in (X , d) is a triangle △(w1, w2, w3)=△(w1, w2, w3) in the Euclidean plane E2

such that d(w1, w2) = dE2(w1, w2), d(w1, w3) = dE2(w1, w2) and d(w2, w3) = dE2(w2, w3).
Suppose that △ is a geodesic triangle in E and △ is a comparison triangle for △. A geodesic space

is said to be a CAT(0) space, if all geodesic triangles of appropriate size satisfy the following comparison
axiom called CAT(0) inequality:

d(u, v) ≤ dE2(u, v), for all u, v ∈ △, u, v ∈ △.

For more details, we refer [7].

Lemma 2.3. [10] Let (X , d) be a CAT(0) space. For w, v ∈ X and t ∈ [0, 1], there exists a unique σ ∈ [w, v]
such that

d(w, σ) = (1− t)d(w, v) and d(v, σ) = td(w, v).

We denote the unique point σ ∈ [w, v] by (1− t)w ⊕ tv.

Lemma 2.4. [14] Let (X , d) be a CAT(0) space. For w, v, σ ∈ X and t ∈ [0, 1], we have the following
inequalities:

i) d((1− t)w ⊕ tv, σ) ≤ (1− t)d(w, σ) + td(v, σ).

ii) d((1− t)w ⊕ tv, σ)2 ≤ (1− t)d(w, v)2 + td(v, σ)2 − t(1− t)d(w, v)2.

Now we recall the concepts of asymptotic center and ∆-convergence in the frame work of CAT(0) spaces.

Definition 2.5. [4, 12] Let C be a bounded subset of a CAT(0) space X and {ηn} a bounded sequence in
X , then:

i) Define a mapping r(., {wn}) : X → R+ by

r(w, {wn}) = lim sup
n→∞

d(wn, w).

For each w ∈ X , the value r(w, {wn}) is called asymptotic radius of {wn} at w.

ii) The asymptotic radius of {wn} relative to C is the number r given by

r = inf{r(w, {wn});w ∈ C}.

We denote the asymptotic radius of {wn} relative to C by r(C, {wn}).
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iii) The asymptotic center of {wn} relative to C is the set A({wn}) of points in X for which the following
holds:

r(C, {wn}) = r(w, {wn}),

that is,
A({wn}) = {w ∈ X : r(w, {wn}) = r}.

The set of all asymptotic centers of {wn} with respect to C is denoted by A(C, {wn}). If the asymptotic
radius and the asymptotic center are taken with respect to X , then they are simply denoted by r({wn})
and A({wn}), respectively.
It is well-known that in uniformly convex Banach spaces as well as CAT(0) spaces; bounded sequences have
unique asymptotic center with respect to closed and convex subset.

Definition 2.6. [27] A sequence {wn} in a CAT(0) space X is said to be △-convergent to w ∈ X if w is
the unique asymptotic center of every subsequence of {wn}. In this case we write it as △ − limnwn = w
and called it △-limit of {wn}.

Definition 2.7. [28] A Banach space B is said to satisfy Opial’s condition if for each weakly convergent
sequence {wn} to w ∈ C,

lim inf
n→∞

∥wn − w∥ < lim inf
n→∞

∥wn − v∥

holds, for w ∈ C with w ̸= v.

If for the given {wn} ⊂ X such that {wn} △-converges to w, we take v ∈ X such that w ̸= v, then by
the uniqueness of the asymptotic center, we have lim supn→∞ d(wn, v) < lim supn→∞ d(wn, v). Thus, every
CAT(0) space satisfies the Opial’s condition.

Lemma 2.8. [14] If C is a closed convex subset of a complete CAT(0) space and {wn} is a bounded sequence
in C, then the asymptotic center of {wn} in C.

Lemma 2.9. [20] Every bounded sequence in a complete CAT(0) space admits a △-convergent subsequence.

Lemma 2.10. [22] Let X be a complete CAT(0) Space and w∗ ∈ X . Suppose that {tn} is a sequence in
[b, c] for some b, c ∈ (0, 1) and {wn}, {vn} are two sequences in X such that

lim sup
n→∞

d(wn, w
∗) ≤ d, lim sup

n→∞
d(vn, w

∗) ≤ d and

lim sup
n→∞

d(tnwn + (1− tn)vn, w
∗) = d hold for some d ≥ 0.

Then
lim
n→∞

d(wn, vn) = 0.

Theorem 2.11. [13] Let C be a nonempty, closed and convex subset of a CAT(0) space X and F : C −→
FB(C) a multivalued nonexpansive mapping. If ∆ − limnwn = w and limn→∞ d(wn,Fwn) = 0, then w is
fixed point of F

Definition 2.12. Let C be a nonempty subset of a CAT(0) space X and {wn} a sequence in X . Then {wn}
is called a Fejér monotone sequence with respect to C if for all w ∈ C and n ∈ N, we have

d(wn+1, w) ≤ d(wn, w).

Proposition 2.13. [17] Let C be a nonempty subset of X and {wn} a sequence in X . Assume that F :
C → FB(C) is any nonlinear mapping and the sequence {wn} is Fejér monotone with respect to C, then we
have the following:

1. {wn} is bounded.
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2. The sequence {d(wn, w
∗)} is decreasing and converges for all w∗ ∈ F (F).

3. limn→∞ d(wn, F (F)) exists.

Let C be a nonempty convex subset of CAT(0) space X and F : C → FB(C) with w∗ ∈ F (F). Then,
Mann, Ishikawa and S-itrative process in setting of CAT(0) space are given in [23] and [2], respectively.

1. The S-iterative scheme is defined as:

vn = (1− ϑn)wn ⊕ ϑnun,

wn+1 = (1− θn)un ⊕ θnu
′
n,

(2.5)

where un ∈ Fwn, u
′
n ∈ Fvn and d(un, u

′
n) ≤ H(Fwn,Fvn) and d(un+1, u

′
n) ≤ H(Fwn+1,Fvn) and

θn, ϑn ∈ (0, 1).

2. The process of Abbas & Nazir for multivalued mapping is defined as follows:
Take w1 ∈ C, 

un = (1− σn)wn ⊕ σnpn,

vn = (1− ϑn)pn ⊕ ϑqn,

wn+1 = (1− θn)rn ⊕ θnqn,

(2.6)

where pn ∈ Fwn, qn ∈ Fun and rn ∈ Fvn such that d(pn, qn) ≤ H(Fwn,Fun), d(rn, qn) ≤ H(Fun,Fvn),
and d(wn+1, qn) ≤ H(Fwn+1,Fvn) and θn, ϑnσn ∈ (0, 1).

3. The process of Thakur et.al for multivalued mapping is defined as;
un = (1− σn)wn ⊕ σnpn,

vn = (1− ϑn)un ⊕ ϑqn,

wn+1 = (1− θn)qn ⊕ θnrn,

(2.7)

where pn ∈ Fwn, qn ∈ Fun and rn ∈ Fvn such that d(pn, qn) ≤ H(Fwn,Fun), d(rn, qn) ≤ H(Fun,Fvn),
and d(wn+1, qn) ≤ H(Fwn+1,Fvn) and θn, ϑnσn ∈ (0, 1).

4. The process of M -iteration for multivalued mapping is defined as;
un = (1− θn)wn ⊕ θnpn,

vn = qn,

wn = rn,

(2.8)

where pn ∈ Fwn, qn ∈ Fvn, rn ∈ Fun, and d(pn, qn) ≤ H(Fwn,Fun), d(pn, rn) ≤ H(Fwn,Fvn),
d(qn, rn) ≤ H(Fun,Fvn) and d(wn+1, rn) ≤ H(Fwn+1,Fvn) and θn ∈ (0, 1).

Recently, Ali et.al., [5] introduced a new iterative scheme known as F -iterative scheme.
In this paper, we define an F -iterative scheme for multivalued mapping in the framework of CAT (0) space
is as follows: 

hn = (1− θn)wn ⊕ θnqn,

un = rn,

vn = sn,

wn+1 = tn,

(2.9)

where qn ∈ Fwn, rn ∈ Fhn, sn ∈ Fun, tn ∈ Fvn and d(qn, rn) ≤ H(Fwn,Fhn), d(rn, sn) ≤ H(Fhn,Fun),
d(sn, tn) ≤ H(Fun,Fvn) and d(wn+1, tn) ≤ H(Fwn+1,Fvn) and θn ∈ (0, 1).
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3. Convergence Results

Theorem 3.1. Let (X , d) be a CAT(0) space and let F : X → FB(X ) be a multivalued mean nonexpansive
mapping (2.4) with a+ b ≤ 1, then F has a fixed point.

Note that the proof of above theorem is same as Theorem 3.1 given in [11] which is proved in the context
of Banach space. Hence, that is valid for metric spaces as well as in CAT(0) spaces.

Theorem 3.2. Let C be a nonempty closed and convex subset of CAT(0) space X and F : C → FB(C) a
multivalued mean nonexpansive mapping with a+ b ≤ 1. If F (F) ̸= ∅, then F (F) is closed and convex.

Proof. First, we show that F (F) is closed.
Let {wn} be a sequence in F (F) such that {wn} converges to some w∗ ∈ C. We show that w∗ ∈ F (F) as
follows:
Consider that

d(wn,Fw∗) =H(Fwn,Fw∗)

≤ad(wn, w
∗) + bd(wn,Fw∗)

d(wn,Fw∗)− bd(wn,Fw∗) ≤ad(wn, w
∗)

d(wn,Fw∗) ≤ a

1− b
d(wn, w

∗).

As, a+ b ≤ 1 implies a ≤ 1− b, so we have

d(wn,Fw∗) ≤ d(wn, w
∗). (3.1)

So, limn→∞ d(wn, w
∗) = 0. By sandwich theorem, we obtain that

lim
n→∞

d(wn,Fw∗) = 0.

By uniqueness of limit, we have w∗ ∈ Fw∗. Hence, F (F) is closed.
Next, we show F (F) is convex. If w, v ∈ F (F), then we have

d(w,Fv) =H(Fw,Fv)

≤ad(w, v) + bd(w,Fv)

≤ a

1− b
d(w, v).

As, a+ b ≤ 1 implies a ≤ 1− b, so we have

d(w,Fv) ≤ d(w, v). (3.2)

d(v,Fw) =H(Fv,Fw)

≤ad(v, w) + bd(v,Fw)

≤ a

1− b
d(v, w).

As, a+ b ≤ 1 implies a ≤ 1− b, we get
d(w,Fv) ≤ d(w, v). (3.3)

Using (3.2) and (3.3), we obtain that

d(w, v) ≤d(w,Fv) + d(v,Fv)

≤d(w, v) + d(v, v)

≤d(w, v). (3.4)
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It follows from (3.2) and (3.3) that d(w,Fv) = d(w, v) and d(v,Fw) = d(w, v), respectively. Indeed, if
d(w,Fv) < d(w, v) and d(v,Fw) < d(w, v), then the inequality in (3.4) becomes strictly less than, which
leads to the contradiction, d(w, v) < d(w, v). Hence we have that d(w, v) = d(w, v) and the result follows.

Corollary 3.3. Let C be a nonempty closed and convex subset of CAT(0) space X and F : C → FB(C) a
multivalued nonexpansive mapping, if F (F) ̸= ∅, then F (F) is closed and convex.

Proof. Take a = 1 and b = 0 in Theorem 3.2 we get our required result.

Theorem 3.4. Let C be a nonempty closed and convex subset of complete CAT(0) space, F : C →
FB(C) a multivalued mean nonexpansive mapping with b < 1, {wn} a bounded sequence in C such that
limn→∞ d(wn, qn) = 0, where qn ∈ Fwn, If ∆− limn→∞wn = w∗, then w∗ ∈ F (F).

Proof. Since, {wn} is a bounded sequence in C, it follows from Lemma 2.8 that {wn} has an asymptotic
center in C. Also, ∆− limn→∞wn = w∗ gives A({wn}) = {w∗}.
Now , we have

d(wn,Fw∗) ≤d(wn, qn) + d(qn,Fw∗)

≤d(wn, qn) +H(Fwn,Fw∗)

≤d(wn, qn) + ad(wn, w
∗) + bd(wn,Fw∗)

≤ 1

1− b

[
d(wn, qn) + ad(wn, w

∗)
]
.

On taking lim sup as n → ∞ on the both sides, we have

lim sup
n→∞

d(wn,Fw∗) =
1

1− b

[
lim sup
n→∞

d(wn, qn) + a lim sup
n→∞

d(wn, w
∗)
]

r(Fw∗, {wn}) = lim sup
n→∞

d(wn,Fw∗) ≤ lim sup
n→∞

d(wn, w
∗) = r(w∗, {wn}).

As {wn} has an asymptotic center in C, we have w∗ ∈ F (F).

Corollary 3.5. Let C be a nonempty closed convex subset of a complete CAT(0) space X , F : C → FB(C)
a multivalued nonexpansive mapping and {wn} a bounded sequence in C such that limn→∞ d(wn, qn) = 0 .
If ∆− limn→∞wn = w∗ then w∗ ∈ F (F).

Lemma 3.6. Let C be a nonempty closed and convex subset of a complete CAT(0) space X and F : C →
FB(C) a multivalued mean nonexpansive mappings. Assume that F (F) ̸= ∅ and the sequence {wn} is
defined by (2.9), then

a. limn→∞ d(wn, w
∗) exists. for all w∗ ∈ F (F).

b. limn→∞ d(wn, F (F)) exists.

Proof. Let w∗ ∈ F (F), then from (2.9), we have

d(wn+1, w
∗) =d(tn, w

∗)

≤H(Fvn,Fw∗)

≤ad(vn, w
∗) + bd(vn,Fw∗)

≤ad(vn, w
∗) + bd(vn, w

∗) + bd(vn,Fw∗)

≤[a+ b]d(vn, w
∗)

≤d(vn, w
∗), (3.5)
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d(vn, w
∗) =d(sn, w

∗)

≤H(Fun,Fw∗)

≤ad(un, w
∗) + bd(un,Fw∗)

≤ad(un, w
∗) + bd(un, w

∗) + bd(w∗,Fw∗)

≤[a+ b]d(un, w
∗)

≤d(un, w
∗), (3.6)

d(un, w
∗) =d(rn, w

∗)

≤H(Fhn,Fw∗)

≤ad(hn, w
∗) + bd(hn,Fw∗)

≤ad(hn, w
∗) + bd(hn, w

∗) + bd(w∗,Fw∗)

≤[a+ b]d(hn, w
∗)

≤d(hn, w
∗), (3.7)

d(hn, w
∗) =d((1− θn)wn ⊕ θnqn, w

∗)

≤(1− θn)d(wn, w
∗)⊕ θnd(qn, w

∗)

≤(1− θn)d(wn, w
∗)⊕ θnH(Fwn,Fw∗)

≤(1− θn)d(wn, w
∗)⊕ θn[ad(wn, w

∗) + bd(wn,Fw∗)]

≤(1− θn)d(wn, w
∗)⊕ θn[a+ b]d(wn, w

∗)

≤d(wn, w
∗). (3.8)

Using (3.8) in (3.7), we obtain that
d(un, w

∗) ≤ d(wn, w
∗). (3.9)

From (3.9) and (3.6), we have
d(vn, w

∗) ≤ d(wn, w
∗). (3.10)

Using (3.10) in (3.5), we get that
d(wn+1, w

∗) ≤ d(wn, w
∗). (3.11)

Now, (3.11) implies that {wn} is Fejer monotone with respect to w∗ ∈ F (F). Thus by Proposition 2.13, we
have that {wn} is bounded. Therefore, limn→∞ d(wn, w

∗) exists for all w∗ ∈ F (F) and limn→∞ d(wn, F (F))
exists.

Lemma 3.7. Let C be a nonempty closed and convex subset of a complete CAT(0) space X and F : C →
FB(C) a multivalued mean nonexpansive mappings. If w∗ ∈ F (F) ̸= ∅ and the sequence {wn} is defined by
(2.9), then limn→∞ d(wn, qn) = 0.

Proof. From the above Lemma 3.6 we have limn→∞ d(wn, w
∗) exists for each w∗ ∈ F (F). Suppose that

lim
n→∞

d(wn, w
∗) = d, (3.12)

for some d ≥ 0. If d = 0, then we are done.
Suppose that d > 0. It is clear from (3.10), (3.9) and (3.8) that

d(vn, w
∗) ≤d(wn, w

∗),

d(un, w
∗) ≤d(wn, w

∗),

d(hn, w
∗) ≤d(wn, w

∗).
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On taking lim sup as n → ∞ on the both sides of the above inequalities, we get

lim sup
n→∞

d(vn, w
∗) ≤ d, (3.13)

lim sup
n→∞

d(un, w
∗) ≤ d, (3.14)

lim sup
n→∞

d(hn, w
∗) ≤ d. (3.15)

As,

lim sup
n→∞

d(sn, w
∗) ≤ lim sup

n→∞
H(Fun,Fw∗)

≤ lim sup
n→∞

[
ad(un, w

∗) + bd(un,Fw∗)
]

≤ lim sup
n→∞

[
(a+ b)d(un, w

∗)
]

≤ lim sup
n→∞

d(un, w
∗)

≤d. (3.16)

Similarly,
lim sup
n→∞

d(rn, w
∗) ≤ d, (3.17)

lim sup
n→∞

d(tn, w
∗) ≤ d, (3.18)

lim sup
n→∞

d(qn, w
∗) ≤ d. (3.19)

Now,

d(wn+1, w
∗) =d(tn, w

∗)

≤H(Fvn,Fw∗)

≤ad(vn, w
∗) + bd(vn,Fw∗)

≤[a+ b]d(vn, w
∗)

≤d(vn, w
∗).

On taking lim inf as n → ∞ on the both sides, we have

d ≤ lim inf
n→∞

d(vn, w
∗). (3.20)

So, from (3.20) and (3.13), we get
lim
n→∞

d(vn, w
∗) = d.

Also, from (3.7), (3.6) and (3.5) we have

d(wn+1, w
∗) ≤ d(hn, w

∗).

On taking lim inf as n → ∞ on the both sides, we get

d ≤ lim inf
n→∞

d(hn, w
∗). (3.21)

By (3.21) and (3.15), we have
lim
n→∞

d(hn, w
∗) = d.
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Note that,

d = lim
n→∞

d(hn, w
∗)

= lim
n→∞

d((1− θn)wn ⊕ θnqn, w
∗)

≤ lim
n→∞

[
(1− θn)d(wn, w

∗)⊕ θnd(qn, w
∗)
]

≤ lim
n→∞

[
(1− θn)d(wn, w

∗)⊕ θnH(Fwn,Fw∗)
]

≤ lim
n→∞

[
(1− θn)d(wn, w

∗)⊕ θn{ad(wn, w
∗) + bd(wn,Fw∗)}

]
≤ lim

n→∞

[
(1− θn)d(wn, w

∗)⊕ θn(a+ b)d(wn, w
∗)

≤ lim
n→∞

[
(1− θn)d(wn, w

∗)⊕ θnd(wn, w
∗)

≤d(wn, w
∗)

≤d. (3.22)

Hence,
lim
n→∞

d((1− θn)wn ⊕ θnqn, w
∗) = d. (3.23)

So, from (3.23), (3.19), (3.12) and Lemma 2.10, we obtain that

lim
n→∞

d(wn, qn) = 0. (3.24)

Theorem 3.8. Let C be a nonempty closed and convex subset of a complete CAT(0) space and F : C →
FB(C) a multivalued mean nonexpansive mapping such that b < 1. Suppose that F (F) ̸= ∅ and {wn} is a
sequence given by (2.9) and ∆− limnwn = w and limn→∞ d(wn, qn) = 0 hold, then w ∈ F (F).

Proof. Since, ∆− limnwn = w. From the Lemma 3.7, we have limn→∞ d(wn, qn) = 0, where qn ∈ Fwn.
Now, for a ∈ Fw, we have

d(a,wn) ≤d(w, qn) + d(qn, wn)

lim sup
n→∞

d(a,wn) ≤ lim sup
n→∞

[d(a, qn) + d(qn, wn)]

≤ lim sup
n→∞

d(a, qn) + lim sup
n→∞

d(qn, wn)

≤ lim sup
n→∞

d(a, qn)

≤ lim sup
n→∞

H(Fw,Fwn)

≤ lim sup
n→∞

[ad(w,wn) + bd(w,Fwn)

≤ lim sup
n→∞

d(w,wn).

By the uniqueness of the asymptotic center, we get a = w, where a ∈ Fw.

Theorem 3.9. Let C be a nonempty closed and convex subset of a complete CAT(0) space and F : C →
FB(C) a multivalued mean nonexpansive mapping such that b < 1. Suppose F (F) ̸= ∅ and {wn} is a
sequence given by (2.9), then sequence {wn} ∆-converges to a fixed point of F .

Proof. It follows from Lemma 3.6 that limn→∞ d(wn, w
∗) exists for each w∗ ∈ F (F).

So, {wn} is bounded and from Lemma 3.7,we have limn→∞ d(wn, qn) = 0 where qn ∈ Fwn. Let W∆(wn =⋃
Ac(zn), where the union taken overall subsequences {zn} of {wn}. We have to prove that {wn} is ∆−
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convergent to a fixed point of F . First, we show W∆(wn) ⊂ F (F). Let a ∈ W∆(wn), then there exists
a subsequence {an} of {wn} such that A({an}) = {a}. By Lemma 2.8 and Lemma 2.9, there exists a
subsequence {bn} of {an} such that ∆− limn bn = b and b ∈ C. Since limn→∞ d(wn, qn) = 0 and {bn} is also
a subsequence of {wn}, we have that limn→∞ d(bn,Fbn) = 0. By the above Theorem 3.8, we have b ∈ Fb
and hence b ∈ F (F).
Now, we claim that b = a. If b ̸= a, then we have

lim sup
n→∞

d(bn, b) < lim sup
n→∞

d(bn, a)

≤ lim sup
n→∞

d(an, a)

≤ lim sup
n→∞

d(an, b)

≤ lim sup
n→∞

d(wn, b)

= lim sup
n→∞

d(bn, b),

a contradiction and hence b = a ∈ F (F).
We now show that W∆(wn) is a singleton set. Assume that {an} be a subsequence of {wn}. From

Lemma 2.8 and Lemma 2.9, there exists a subsequence {bn} of {an} such that ∆ − limn bn = b. Assume
that A({an}) = {a} and A({wn}) = {w}. As we have proved that b = a and hence it is enough to show
that b = w. By Lemma 3.6 {d(wn, w

∗)} is convergent. By uniqueness of asymptotic center, we have

lim sup
n→∞

d(bn, b) < lim sup
n→∞

d(bn, w)

≤ lim sup
n→∞

d(wn, w)

< lim sup
n→∞

d(wn, b)

= lim sup
n→∞

d(bn, b),

a contradiction that b ̸= w and hence b = w ∈ F (F). Hence the result follows.

Theorem 3.10. Suppose that the assumption in the Theorem 3.9 holds, then the sequence {wn} defined
by (2.9) converges strongly to w∗ ∈ F (F) if and only if lim infn→∞ d(wn, F (F)) = 0, where d(wn, F (F)) =
inf{d(wn, w

∗) : w∗ ∈ F (F)}.

Proof. Suppose that the sequence {wn} converges strongly to w∗ ∈ F (F). Then, we have limn→∞ d(wn, w
∗) =

0 and 0 ≤ d(wn, w
∗) ≤ d(wn, F (F)). It follows that limn→∞ d(wn, F (F)) = 0 and hence lim infn→∞ d(wn, F (F)) =

0.
Conversely, Suppose that lim infn→∞ d(wn, F (F)) = 0. Then, from Lemma 3.7, we obtain that limn→∞ d(wn, F (F)) =

0. Suppose that {wnk
} is any arbitrary subsequence of {wn} and {ak} is a sequence in F (F) such that for

all n ≥ 1, we have

d(wnk
, ak) ≤

1

2k
.

It follows from (3.11) that

d(wnk+1, ak) ≤
1

2k
,

which implies that

d(ak+1, ak) ≤d(ak+1, wn+1) + d(wn+1, ak)

<
1

2k+1
+

1

2k
<

1

2k−1
.
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This shows that {ak} is Cauchy sequence in F (F). Also by the Theorem 3.2, F (F) is closed subset of X .
Thus {ak} is convergent sequence in F (F). Let limn→∞ ak = a∗, then a∗ ∈ F (F) and we have

d(wnk
, a∗) ≤ d(wnk

, ak) + d(ak, a
∗) → 0 as n → ∞,

which gives
lim
n→∞

d(wnk
, a∗) = 0.

As, limn→∞ d(wn, a
∗) exists, we conclude that the sequence {wn} converges strongly to a∗ ∈ F (F).

4. Numerical Example

Now, we present an example of CAT(0) space which is not Hilbert space.

Example 4.1. Consider a metric space l2 which is defined as:

d(a, b) =
√∑

(an − bn)2,

where a = (a1, a2, a3, · · · ) and b = (b1, b2, b3, · · · ).
From [18] we can say that l2 is a CAT(0) space and not a Hilbert space. For more related example see [1].

The following example illustrate that the mapping F is multivalued mean nonexpansive mappings but
does not satisfy the Condition (C).

Example 4.2. Let C = [1, 4] and X a CAT (0) space equipped with a standard norm given by d(w, v) =
|w − v| and F : C → FB(C) is a multivalued mapping defined by

F(w) =

{
[1, w+1

2 ] if ; 1 ≤ w < 2
{1} if 2 ≤ w ≤ 4.

We have to show the following assertions.

(1) F does not satisfy the condition (C).

(2) F is multivalued Mean nonexpansive mapping.

To prove (1), we need to show that F does not satisfy that 1
2d(w,Fw) ≤ d(w, v) implies H(Fw,Fv) ≤

d(w, v) for all w, v ∈ C.
Let w ∈ 3

2 and v ∈ 7
3 , then we have

1

2
d(w,Fw) =

1

2

∣∣∣∣32 −
3
4 + 1

2

∣∣∣∣
=
1

2

∣∣∣∣32 − 5

4

∣∣∣∣ = 1

2

∣∣∣∣14
∣∣∣∣

=
1

8
= 0.125, (4.1)

and

d(w, v) =

∣∣∣∣32 − 7

3

∣∣∣∣ = 5

6
= 0.833.

Also,

H(Fw,Fv) =H(F(
3

4
),F(

7

3
)) = H(

5

3
, {1})

=
5

4
= 1.25. (4.2)
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So, from (4.1) and (4.2), we have 1
2d(w,Fw) ≤ d(w, v) and from (4.2) and (4.2), we get that H(Fw,Fv) >

d(w, v). Hence F does not satisfy the condition (C).
Now, to prove (2) we have to show that H(Fw,Fv) ≤ ad(w, v) + bd(w,Fv).

For this we consider the following three cases. Choose, a = 2
5 and b = 3

5 .
Case:1 Let w, v ∈ [1, 2), then

ad(w, v) + bd(w,Fv) =
2

5

∣∣∣∣w − v

∣∣∣∣+ 3

5

∣∣∣∣w − (
v + 1

2
)

∣∣∣∣
≥1

5

∣∣∣∣2w − 2v − 3(w − (
v + 1

2
))

∣∣∣∣
≥1

5

∣∣∣∣4w − v + 3

2

∣∣∣∣
≥1

2

∣∣∣∣w − v

∣∣∣∣
=H(Fw,Fv).

Case:2 Let w, v ∈ [2, 4]. Then it is trivial.
Case:3 Let w ∈ [1, 2) and v ∈ [2, 4], then we have

ad(w, v) + bd(w,Fv) =
2

5

∣∣∣∣w − v

∣∣∣∣+ 3

5

∣∣∣∣w − 1

∣∣∣∣
≥1

5

∣∣∣∣2w − 2v − 3w + 3

∣∣∣∣
≥1

5

∣∣∣∣w + 2v − 3

∣∣∣∣
≥1

2

∣∣w − 1
∣∣

=H(Fw,Fv).

Hence, in all cases of (2), H(Fw,Fv) ≤ ad(w, v) + bd(w,Fv).

Now, we compare the convergence of the iterative scheme (2.9) with other schemes. In table (1) we
discuss the convergence of different iterative schemes. We choose the stopping criteria ∥wn − w ∗ ∥ < 10−9

and fix the parameters αn =
√

n+1
5n+1 , βn = 1√

2n+5
and γn =

√
n+3
6n+3 , where w∗ is a fixed point of the

problem. It is shown that, F -iterative process converges faster than some other known iterative schemes for
multivalued mean nonexpansive mappings.

We illustrate the convergence behaviour of other iterative schemes with the F -iterative scheme for
different choices of parameters. For this, we choose the initial point w1 = 3.78. Observe that, for different
choices of parameters the F -iterative scheme (2.9) converges faster than other iterative schemes to the fixed
point of multivalued mean nonexpansive mappings.

5. Conclusion

In this paper, we presented the multivalued version of F -iterative scheme and showed that it is faster
than the other known iterative schemes in the setting of CAT (0) spaces. Further, we established the △-
convergence and strong convergence results for multivalued mean nonexpansive mappings. The proposed
mapping and results generalize and extend various results of [25, 32, 33].
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Iteration Abbas Thakur M F

1 3.7800000000 3.7800000000 3.7800000000 3.7800000000
2 1.9993232470 2.0198546017 1.5336139235 1.2668069618
3 1.3592255223 1.3741379167 1.1024258343 1.0256064586
4 1.1291303652 1.1372540561 1.0196603782 1.0024575473
5 1.0464183366 1.0503522233 1.0037737595 1.0002358600
6 1.0166859435 1.0184719232 1.0007243635 1.0000226364
7 1.0059980760 1.0067765021 1.0001390397 1.0000021725
8 1.0021561211 1.0024859881 1.0000266883 1.0000002085
9 1.0007750583 1.0009119951 1.0000051227 1.0000000200
10 1.0002786092 1.0003345692 1.0000009833 1.0000000019
11 1.0001001513 1.0001227381 1.0000001887 1.0000000002
12 1.0000360013 1.0000450270 1.0000000362 1.0000000000
13 1.0000129413 1.0000165183 1.0000000070 1.0000000000
14 1.0000046520 1.0000060598 1.0000000013 1.0000000000
15 1.0000016723 1.0000022231 1.0000000003 1.0000000000

Table 1: Convergence Behavior of Iterative schemes for multivalued Mean nonexpansive Mapping
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