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Abstract

The study of networks by using topological indices (TIs) have been significantly become a useful attention in
the physicochemical properties of compounds, pharmacology and drug delivery in the field of experimental
sciences. Thus, TIs help us to study the new networks and they also play an essential role in the study of
the quantitative structure property and activity relationships. In this paper, we compute the connection
number (CN) based Zagreb indices in the form of first general-Zagreb connection index (ZCI), generalized
first, second, third and fourth ZCIs of two rhombus type networks such as rhombus oxide and rhombus
silicate. In particularly, we also find the first, second, modified first, second, third and fourth ZCIs by using
main results of the abovementioned general & generalized connection based Zagreb indices. In addition, a
comparison between degree and CN based Zagreb indices is done with the help of their numerical values
and graphical demonstration.
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1. Introduction

Topological index (TI) is a numerical parameter of networks which deal its topology, and also known as
network invariants. The chemical applicability of their molecular structures can be characterized with the
help of these TIs. In molecular networks, atoms have correspondence with vertices and covalent bounds be-
tween atoms have correspondence with edges. Therefore, TIs check the physical and chemical properties of
isomers as well as compounds liked density, octanol-water partition coefficient, boiling point, molar volume,
total surface area, enthalpy of formation and vaporization, see [1, 2, 3]. The fusion of chemistry, information
science, and mathematics provides to a new horizon called by cheminformatics. In mathematical chemistry
these molecular invariants are very used for the characteristics of chemical compounds. They are also very
good tools in the behavior of quantitative-structure property and activity relationships. In modern chem-
istry as well as mathematics, TIs are attached by a link that two isomorphic networks have to derive the
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same TI. For more information, see [4, 5, 6]. Generally, a TI can be classified into three different ways:
degree, distance and polynomial based TIs.

In graph theory history, the first TI was defined by American chemist Wiener [7] (1947) when he was working
on the chemical compound which was boiling point of paraffin. The well known class of TIs is degree based
which depend on degree of the vertex. This class is further classified into two subclasses degree as well
connection number (CN). Gutman and Trinajstić [8] defined these both subclasses in 1972 to find the entire
energy relation of a chemical compound between their atoms and bounds. Later on, Gutman and Rucic
[9] defined another TI named as second Zagreb index (ZI) in 1975. Furtula and Gutman [10] investigated
another index of the Zagreb series after a long gap in 2015 named as third ZI. For the late discovery of
this index and due to that instance, every researcher called it forgotten index. This Zagreb series based
on degree of a vertex was generalized by Azari and Iranmanesh [11] (2011) in the name of generalized ZI.
Azari [12] also used this generalized ZI to compute the exact formulas of product graphs such as sum, union,
disjunction, Cartesian product, symmetric difference, lexicographic product, corona product, direct product
and strong product.

Javaid et al. [13] (2017) computed degree based generalized versions ZIs such as first general ZI, generalized
ZI, multiplicative ZI and some other TIs of the rhombus silicate and oxide networks. Kulli [14] computed
reverse Zagreb and hyper ZIs of rhombus silicate network. Mondal et al. [15] developed neighborhood
versions ZIs to find the exact solutions of silicate and oxide networks. Sarkar et al. [16] (2019) called this
generalized ZI as (a,b) Zagreb index to find some derived-networks liked butterfly, Benes and Sierpinski.
Kulli [17] computed exact formulae for (a, b)-Kulli-Basava index of some special graphs. In 2020, Awais
et al. [18] used this generalized version to find some particular indices such as first, second & third ZIs,
symmetric division deg index, redefined index, general first ZI and general Randić index of the metal or-
ganic networks. Liu et al. [19] computed some well known Zagreb and other TIs of certain networks such
as silicate, hexagonal, chain silicate, oxide, cellular and Sierpinski. Zhao et al. [20] computed some reverse
Zagreb-type indices for planar-metal organic networks. Recently, a topological index Remdesivir compound
has been used in the treatment of COVID-19 [21].

The another subclass of degree based TI is connection number (CN). CN represents second degree of the
vertex λ. Gutman and Trinajstić defined another TI in this paper [8]. But after that no one researcher
checked its suitability for any connected networks. In 2019, Tang et al. [22] computed different exact solu-
tions of CN based ZIs in the form of first ZCI, second ZCI, and modified first ZCI for sub-division related
operations on graphs. Ali et al. [23] enhanced this concept to find modified second ZCI and modified
third ZCI for T -sum graphs. Asif et al. [24] computed exact values for ZCIs of newly developed chemical
structures θϕΩ. Recently, Hussain et al. [25] compared zinc based metal organic networks for ZCIs and mod-
ified ZCIs. At this time, many papers on the topic of CN based ZIs have been revolutionized, see [26, 27, 28].

In this paper, we compute the CN based ZIs in the form of the first general ZCI, generalized first, second,
third and fourth ZCIs of the rhombus oxide and silicate networks. Moreover, a recent developed ZCIs are
computed with the help of above mentioned generalized ZCIs. In addition, a comparison between degree and
CN based ZIs is included by using numerical values and graphical demonstrations. This article is framed
as Section II presents the preliminaries, definitions & definitions related Tables and some important results
which help the derivations of main results, Section III covers partitions of rhombus oxide and silicate net-
works, Section IV and V gives the main results of aforesaid networks and Section VI gives comparison and
conclusions.
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2. Notations and Preliminaries

Any simple, finite and connected network Q, there is a path for each pair of possible vertices κ and λ. If
the path between two vertices κ and λ shall be shortest then its becomes distance as d(κ, λ). This shortest
path is also known as κ− λ geodesic otherwise κ− λ detour. V (Q) and E(Q) are the vertex and edge sets
having order u and size v, respectively. Let d(λ) and τ(λ) be the degree and CN of vertex λ in (molecular)
network Q. A network Q becomes molecular if vertex and edge of Q are equal to atom and bond, respectively.

Definition 2.1 (See [29]). Let Q ba a (molecular) network. Then ∀m ∈ R − {0}, the first general Zagreb
index (Zm(Q)) is given as

Zm(Q) =
∑

λ∈V (Q)

[d(λ)m].

By using Definition 2.1, we make modified first ZI in the Table 1 as gives:

Table 1: Degree based modified first ZI.

Name/Symbol Formula

Modified first ZI (See [30])
mM1(Q) = Z−2(Q)

∑
λ∈V (Q)

1
[τ(λ)]2

Corresponding to this degree based ZI, CN based the first general ZI is as gives:

Definition 2.2 (See [31]). Let Q ba a (molecular) network. Then ∀m,n ∈ R ∧ n ̸= 0, the first general
Zagreb connection index (Gm,n(Q)) is given as

Gm,n(Q) =
∑

λ∈V (Q)

[d(λ)m × τ(λ)n].

By using Definition 2.2, we make the first Zagreb connection index in the Table 2 as gives:

Table 2: Connection number based first ZI.
Name/Symbol Formula

First ZCI (See [22])
ZC1(Q) = G0,2(Q)

∑
λ∈V (Q) τ(λ)

2

Definition 2.3 (See [32]). Let Q ba a (molecular) network. Then ∀m,n ∈ R and both are not zero at the
same time. The k-distance generalized Zagreb index (Zk

m,n(Q)) for k ≥ 1, is given as

Zk
m,n(Q) =

∑
κλ∈E(Q)

[dk(κ)
mdk(λ)

n + dk(λ)
mdk(κ)

n].

If k = 1, then Zm,n(Q) becomes degree of vertices based the generalized Zagreb index as

Zm,n(Q) =
∑

κλ∈E(Q)

[d(κ)md(λ)n + d(λ)md(κ)n].

The generalized Zagreb index [11] (2011) was introduced by Azari and Iranmanesh to find some networks
of nanotori and nanotubes. By using Definition 2.3, we make some important degree based ZIs in the Table
3 as gives:

In Definition 2.3, if we put k = 2, we can obtain connection number (d2 = τ) based Zagreb indices in the
form of generalized Zagreb connection indices [32] as gives:
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Table 3: Some more Degree based ZIs.

Name/Symbol Formula

First ZI (See [8])
M1(Q) = Z1,0(Q)

∑
κλ∈E(Q)[d(κ) + d(λ)]

Second ZI (See [9])
M2(Q) = 1

2Z1,1(Q)
∑

κλ∈E(Q)[d(κ)× d(λ)]

Third ZI (See [10])
M3(Q) = Z2,0(Q)

∑
κλ∈E(Q)[d(κ)

2 + d(λ)2]

Modified second ZI (See [33])
mM2(Q) = 1

2Z−1,−1(Q)
∑

κλ∈E(Q)
1

[d(κ)×d(λ)]

Redefined third ZI (See [34])
ReZ3(Q) = Z2,1(Q)

∑
κλ∈E(Q) d(κ)d(λ)[d(κ) + d(λ)]

Definition 2.4(See [32]). Let Q ba a (molecular) network. Then ∀m,n ∈ R and both are not zero at the
same time, the generalized first Zagreb connection index (Cm,n(Q)) is given as

Cm,n(Q) =
∑

κλ∈E(Q)

[τ(κ)mτ(λ)n + τ(λ)mτ(κ)n].

By using Definition 2.4, we make some important CN based Zagreb indices in the Table 4 as gives:

Table 4: Connection number based ZIs.
Name/Symbol Formula

Second ZCI (See [22])
ZC2(Q) = 1

2C1,1(Q)
∑

κλ∈E(Q)[τ(κ)× τ(λ)]

Modified first ZCI (See [22])
ZC∗

1 (Q) = C1,0(Q)
∑

κλ∈E(Q)[τ(κ) + τ(λ)]

Definition 2.5 See [32]). Let Q ba a (molecular) network. Then ∀m,n ∈ R − {0}, the generalized second
Zagreb connection index (C2

m,n(Q)) is given as

C2
m,n(Q) =

∑
κλ∈E(Q)

[d(κ)mτ(λ)n + d(λ)mτ(κ)n].

By using Definition 2.5, we make the modified second Zagreb connection index in the Table 5 as gives:

Table 5: Connection number based modified second ZI.
Name/Symbol Formula

Modified second ZCI (See [23])
ZC∗

2 (Q) = C2
1,1(Q)

∑
κλ∈E(Q)[d(κ)τ(λ) + d(λ)τ(κ)]

Definition 2.6 (See [32]). Let Q ba a (molecular) network. Then ∀m,n ∈ R − {0}, the generalized third
Zagreb connection index (C3

m,n(Q)) is given as

C3
m,n(Q) =

∑
κλ∈E(Q)

[d(κ)mτ(κ)n + d(λ)mτ(λ)n].

By using Definition 2.6, we make the modified third Zagreb connection index in the Table 6 as gives:
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Table 6: Connection number based modified third ZI.
Name/Symbol Formula

Modified third ZCI (See [23])
ZC∗

3 (Q) = C3
1,1(Q)

∑
κλ∈E(Q)[d(κ)τ(κ) + d(λ)τ(λ)]

Definition 2.7 (See [32]). Let Q ba a (molecular) network. Then ∀m,n ∈ R− {0}, the generalized fourth
Zagreb connection index (C4

m,n(Q)) is given as

C4
m,n(Q) =

∑
κλ∈E(Q)

[d(κ)mτ(κ)n × d(λ)mτ(λ)n].

By using Definition 2.7, we make the modified fourth Zagreb connection index in the Table 7 as gives:

Table 7: Connection number based modified fourth ZI.
Name/Symbol Formula

Modified fourth ZCI (See [25])
ZC∗

4 (Q) = C4
1,1(Q)

∑
κλ∈E(Q)[d(κ)τ(κ)× d(λ)τ(λ)]

Now, we discuss some valuable results which can be utilized in the main outcomes.

Lemma 2.1 (See [35]). Let Q be a connected network of size v. Then,∑
λ∈V (Q)

d(λ) = 2v.

Lemma 2.2 (See [22]). Let Q be a connected network of order u and size v. Then,∑
λ∈V (Q)

τ(λ) = M1(Q)− 2v, equality holds if Q is {C3, C4}-free network.

Corollary 2.1 (See [13]). Let A ∼= RHOX(p) be a rhombus oxide network on dimension p ≥ 3. Then, the
first general Zagreb index of A is

Zm(A) = 2m×4p+4m(3p2−2p).

By using Corollary 2.1, we derive the modified first ZI as follows:
mM1(A) = Z−2(A) = 3

16p
2 + 15

8 p.

Corollary 2.2 (See [13]). Let A ∼= RHOX(p) be a rhombus oxide network on dimension p ≥ 3. Then, the
generalized Zagreb index of A is

Zm,n(A) = 2m+n+2[3p2(2m+n)+2p(2m+2n−2m+n+1)+(1−2m−2n+2m+n+1)].

By using Corollary 2.2, we derive the degree of vertices based ZIs as follows:
i. M1(A) = Z1,0(A) = 48p2 − 16p+ 16,
ii. M2(A) = 1

2Z1,1(A) = 96p2 − 64p+ 40,
iii. M3(A) = Z2,0(A) = 192p2 − 96p+ 64,
iv. mM2(A) = 1

2Z−1,−1(A) =
3
8p

2 + 1
2p+

1
4 ,

v. ReZ3(A) = Z2,1(A) = 768p2 − 640p+ 352.

Corollary 2.3 (See [13]). Let B ∼= RHSL(p) be a rhombus silicate network on dimension p ≥ 3. Then, the
first general Zagreb index of B is

Zm(B) = p2(2×3m+3×6m)+2p(2×3m−6m).
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By using Corollary 2.3, we derive the modified first ZI as follows:
mM1(B) = Z−2(B) = 11

36p
2 + 7

18p.

Corollary 2.4 (See [13]). Let B ∼= RHSL(p) be a rhombus silicate network on dimension p ≥ 3. Then, the
generalized Zagreb index of B is

Zm,n(B) = (2×3m+n)[3p2(2m+2n+2m+n+1)+2p(2+2m+2n−2m+n+2)+2(1−2m−2n+2m+n)].

By using Corollary 2.4, we derive the degree of vertices based ZIs as follows:
i. M1(B) = Z1,0(B) = 126p2 − 36p,
ii. M2(B) = 1

2Z1,1(B) = 324p2 − 180p+ 18,
iii. M3(B) = Z2,0(B) = 702p2 − 324p,
iv. mM2(B) = 1

2Z−1,−1(B) = 1
2p

2 + 4
9p+

1
18 ,

v. ReZ3(B) = Z2,1(B) = 3564p2 − 2592p+ 324.

3. Under Study Molecular-Networks

In this section, we study molecular networks which are rhombus oxide and rhombus silicate. The silicate
is the most interesting, most wonderful, most complicated and the largest class of minerals. SiO4 tetra-
hedron is used as the basic chemical unit of silicate. So, SiO4 is the mixture of sand and metal oxide. In
graph theory (or chemistry), we represent centre vertices and corner vertices of silicate with silicon nodes (or
silicon ions) and oxygen nodes (or oxygen ions), respectively. A silicate sheet is a ring of tetrahedron which is
attached with sharing oxygen nodes to other rings in a two dimensional plane. As such silicate sheets are rec-
ognized sheet-like networks. Some more well known networks of silicate are pyrosilicate, orthosilicate, chain
silicate, cyclic silicate and sheet silicate. We can easily develop rhombus oxide networks by the deletion of all
silicon ions from rhombus silicate networks. The set of orders and sizes of rhombus oxide and rhombus sil-
icate networks are {3p2+2p, 6p2} and {5p2+2p, 12p2} respectively. For more discussion, see Figures 1 and 2.

3.1. Partitions of Rhombus Oxide Network (RHOX(p)):
Let A ∼= RHOX(p) be the rhombus oxide network of dimensions p, see Figure 1.

Figure 1. Rhombus oxide network (RHOX(p) ∼= A) on dimension p = 3.

The partition of A according to vertex set V (A) and edge set E(A). We see that each vertex of degree and
connection number sets are {2, 3} and {2, 4, 6, 8} respectively. We have V1 = {λ ∈ V (A)|d(λ) = 2} and
V2 = {λ ∈ V (A)|d(λ) = 4}, where |V1| = 4p and |V2| = 3p2 − 2p. Therefore, |V (A)| = |V1|+ |V2| = 3p2 +2p.
The partition of vertices according to connection numbers are V c

1 = {λ ∈ V (A)|τ(λ) = 2}, V c
2 = {λ ∈
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V (A)|τ(λ) = 4}, V c
3 = {λ ∈ V (A)|τ(λ) = 6} and V c

4 = {λ ∈ V (A)|τ(λ) = 8}, where |V c
1 | = 4, |V c

2 | = 4p,
|V c

3 | = 8p−12 and |V c
4 | = 3p2−10p+8. Therefore, |V (A)| = |V c

1 |+|V c
2 |+|V c

3 |+|V c
4 | = 3p2+2p. The partition

of vertices according to both degree and connection numbers are Vd,τ = V2,2 = {λ ∈ V (A)|d(λ) = 2, τ(λ) =
2}, V2,4 = {λ ∈ V (A)|d(λ) = 2, τ(λ) = 4}, V4,4 = {λ ∈ V (A)|d(λ) = 4, τ(λ) = 4}, V4,6 = {λ ∈ V (A)|d(λ) =
4, τ(λ) = 6} and V4,8 = {λ ∈ V (A)|d(λ) = 4, τ(λ) = 8}, where |V2,2| = 4, |V2,4| = 8, |V4,4| = 4, |V4,6| = 8p−12
and |V4,8| = 3p2 − 10p+ 8. Therefore, |V (A)| = |V2,2|+ |V2,4|+ |V4,4|+ |V4,6|+ |V4,8| = 3p2 − 2p+ 12. The
partitions of network A vertices are presented in the following Tables 8, 9 and 10.

Table 8: The partitions of network A vertices with respect to degree.

Vd 2 4

|Vd| 4p 3p2 − 2p

Table 9: The partitions of network A vertices with respect to connection number.

Vτ 2 4 6 8

|Vτ | 4 4p 8p− 12 3p2 − 10p+ 8

Table 10: The partitions of network A vertices with respect to degree and connection number.

Vd,τ 2,2 2,4 4,4 4,6 4,8

|Vτ | 4 8 4 8p− 12 3p2 − 10p+ 8

Now, there are eight types partitions of edge set E(A) with respect to connection number as Ec
2,2 = {κλ ∈

E(A)|τ(κ) = 2, τ(λ) = 2}, Ec
2,4 = {κλ ∈ E(A)|τ(κ) = 2, τ(λ) = 4}, Ec

4,4 = {κλ ∈ E(A)|τ(e) = 4, τ(λ) = 4},
Ec1

4,6 = {κλ ∈ E(A)|τ(κ) = 4, τ(j) = 6}, Ec2
4,6 = {κλ ∈ E(A)|τ(κ) = 4, τ(λ) = 6}, Ec

6,6 = {κλ ∈ E(A)|τ(κ) =
6, τ(λ) = 6}, Ec

6,8 = {κλ ∈ E(A)|τ(κ) = 6, τ(λ) = 8} and Ec
8,8 = {κλ ∈ E(A)|τ(κ) = 8, τ(λ) = 8},

where |Ec
2,2| = 2, |Ec

2,4| = 4, |Ec
4,4| = 4, |Ec1

4,6| = 8p − 12, |Ec2
4,6| = 8, |Ec

6,6| = 8p − 14, |Ec
6,8| = 8p − 16 and

|Ec
8,8| = 6p2−24p+24. Therefore, |E(A)| = |Ec

2,2|+|Ec
2,4|+|Ec

4,4|+|Ec1
4,6|+|Ec2

4,6|+|Ec
6,6|+|Ec

6,8|+|Ec
8,8| = 6p2.

This edge partitions with respect to connection number is shown in Table 11.
3.2. Partitions of Rhombus Silicate Network (RHSL(p)):
Let B ∼= RHSL(p) be the rhombus silicate network of dimensions p, see Figure 2.

Figure 2. Rhombus silicate network (RHSL(p) ∼= B) on dimension p = 3.

The partition of B according to vertex set V (B) and edge set E(B). We see that each vertex of degree and
connection number sets are {3, 6} and {3, 6, 9, 12} respectively. We have V1 = {λ ∈ V (B)|d(λ) = 3} and
V2 = {λ ∈ V (B)|d(λ) = 6}, where |V1| = 2p2 + 4p and |V2| = 3p2 − 2p. Therefore, |V (B)| = |V1| + |V2| =
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Table 11: The partitions of network A edges with respect to connection numbers.

Ec
τ(κ),τ(λ) Ec

2,2 Ec
2,4 Ec

4,4 Ec1
4,6

|Ec
τ(κ),τ(λ)| 2 4 4 8p-12

Ec
τ(κ),τ(λ) Ec2

4,6 Ec
6,6 Ec

6,8 Ec
8,8

|Ec
τ(κ),τ(λ)| 8 8p− 14 8p− 16 6p2 − 24p+ 24

5p2 + 2p. The partition of vertices according to connection numbers are V c
1 = {λ ∈ V (B)|τ(λ) = 3},

V c
2 = {λ ∈ V (B)|τ(λ) = 6}, V c

3 = {λ ∈ V (B)|τ(λ) = 9} and V c
4 = {λ ∈ V (B)|τ(λ) = 12}, where

|V c
1 | = 6, |V c

2 | = 8p − 4, |V c
3 | = 2p2 + 4p − 10 and |V c

4 | = 3p2 − 10p + 8. Therefore, |V (B)| = |V c
1 | +

|V c
2 | + |V c

3 | + |V c
4 | = 5p2 + 2p. The partition of vertices according to both degree and connection numbers

are Vd,τ = V3,3 = {λ ∈ V (B)|d(λ) = 3, τ(λ) = 3}, V3,6 = {λ ∈ V (B)|d(λ) = 3, τ(λ) = 6}, V3,9 = {λ ∈
V (B)|d(λ) = 3, τ(λ) = 9}, V6,6 = {λ ∈ V (B)|d(λ) = 6, τ(λ) = 6}, V6,9 = {λ ∈ V (B)|d(λ) = 6, τ(λ) = 9}
and V6,12 = {λ ∈ V (B)|d(λ) = 6, τ(λ) = 12}, where |V3,3| = 6, |V3,6| = 8p − 8, |V3,9| = 8p − 16, |V6,6| = 4,
|V6,9| = 8p−12 and |V6,12| = 3p2−10p+8. Therefore, |V (B)| = |V3,3|+|V3,6|+|V3,9|+|V6,6|+|V6,9|+|V6,12| =
3p2 + 14p − 18. The partitions of network B verticesThese vertex partitions are presented in the following
Tables 12, 13 and 14.

Table 12: The partitions of network B vertices with respect to degree.

Vd 3 6

|Vd| 2p2 + 4p 3p2 − 2p

Table 13: The partitions of network B vertices according to connection number.

Vτ 3 6 9 12

|Vτ | 6 8p− 4 2p2 + 4p− 10 3p2 − 10p+ 8

Now, there are eleven types partitions of edge set E(B) according to connection number as Ec
3,3 = {κλ ∈

E(B)|τ(κ) = 3, τ(λ) = 3}, Ec
3,6 = {κλ ∈ E(B)|τ(κ) = 3, τ(λ) = 6}, Ec1

6,6 = {κλ ∈ E(B)|τ(κ) = 6, τ(λ) = 6},
Ec2

6,6 = {κλ ∈ E(B)|τ(κ) = 6, τ(λ) = 6}, Ec1
6,9 = {κλ ∈ E(B)|τ(κ) = 6, τ(λ) = 9}, Ec2

6,9 = {κλ ∈
E(B)|τ(κ) = 6, τ(λ) = 9}, Ec1

9,9 = {κλ ∈ E(B)|τ(κ) = 9, τ(λ) = 9}, Ec2
9,9 = {κλ ∈ E(B)|τ(κ) = 9, τ(λ) = 9},

Ec1
9,12 = {κλ ∈ E(B)|τ(κ) = 9, τ(λ) = 12}, Ec2

9,12 = {κλ ∈ E(B)|τ(κ) = 9, τ(λ) = 12} and Ec
12,12 =

{κλ ∈ E(B)|τ(κ) = 12, τ(λ) = 12}, where |Ec
3,3| = 6, |Ec

3,6| = 6, |Ec1
6,6| = 8, |Ec2

6,6| = 4p − 4, |Ec1
6,9| = 8,

|Ec2
6,9| = 16p − 22, |Ec1

9,9| = 8p − 12, |Ec2
9,9| = 8p − 14, |Ec1

9,12| = 8p − 16, |Ec2
9,12| = 6p2 − 20p + 16 and

|Ec
12,12| = 6p2 − 24p + 24. Therefore, |E(B)| = |Ec

3,3| + |Ec
3,6| + |Ec1

6,6| + |Ec2
6,6| + |Ec1

6,9| + |Ec2
6,9| + |Ec1

9,9| +
|Ec2

9,9|+ |Ec1
9,12|+ |Ec2

9,12|+ |Ec
12,12| = 12p2. This edge partitions according to connection number is shown in

Table 15.

4. Main Results under Rhombus Oxide Network (RHOX(p))

This section computes the main results for the first general Zagreb connection index, first, second, third and
fourth generalized Zagreb connection indices of rhombus oxide network. We also compute first, second &
modified first, second, third and fourth Zagreb connection indices of rhombus oxide network RHOX(p) on
dimension p ≥ 3.

Theorem 4.1.
Let A ∼= RHOX(p) be a rhombus oxide network on dimension p ≥ 3. Then, the first general Zagreb
connection index of network A is

Gm,n(A) = 4(2m×2n)+8(2m×4n)+4(4m×4n)+(8p−12)(4m×6n)+(3p2−10p+8)(4m×8n).
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Table 14: The partitions of network B vertices with respect to degree and connection number.

Vd,τ 3,3 3,6 3,9 6,6 6,9 6,12

|Vτ | 6 8p− 8 8p− 16 4 8p− 12 3p2 − 10p+ 8

Table 15: The partitions of network B edges with respect to connection numbers.

Ec
τ(κ),τ(λ) |Ec

τ(κ),τ(λ)| Ec
τ(κ),τ(λ) |Ec

τ(κ),τ(λ)|
Ec

3,3 6 Ec1
9,9 8p− 12

Ec
3,6 6 Ec2

9,9 8p− 14

Ec1
6,6 8 Ec1

9,12 8p− 16

Ec2
6,6 4p-4 Ec2

9,12 6p2 − 20p+ 16

Ec1
6,9 8 Ec

12,12 6p2 − 24p+ 24

Ec2
6,9 16p− 22 - -

Proof.By definition,

Gm,n(Q) =
∑

λ∈V (Q)

[d(λ)m×τ(λ)n]

Gm,n(A) =
∑

λ∈V2,2

[d(λ)m×τ(λ)n]+
∑

λ∈V2,4

[d(λ)m×τ(λ)n]+
∑

λ∈V4,4

[d(λ)m×τ(λ)n]

+
∑

λ∈V4,6

[d(λ)m×τ(λ)n]+
∑

λ∈V4,8

[d(λ)m×τ(λ)n]

By using Table 10, we have

= 4(2m×2n)+8(2m×4n)+4(4m×4n)+(8p−12)(4m×6n)+(3p2−10p+8)(4m×8n).

Corollary 4.1. By putting m = 0 and n = 2 in the Theorem 4.1, we get the first Zagreb connection index
as

ZC1(A) = G0,2(A) = 192p2−352p+288.

Theorem 4.2.
Let A ∼= RHOX(p) be a rhombus oxide network on dimension p ≥ 3. Then, the generalized first Zagreb
connection index of network A is

Cm,n(A) = 2(2m2n+2m2n)+4(2m4n+4m2n)+4(4m4n+4m4n)+(8p−12)(4m6n+6m4n)+8(4m6n+6m4n)

+(8p−14)(6m6n+6m6n)+(8p−16)(6m8n+8m6n)+(6p2−24p+24)(8m8n+8m8n).

Proof.By definition,

Cm,n(Q) =
∑

κλ∈E(Q)

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]

Cm,n(A) =
∑

κλ∈Ec
2,2

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]+
∑

κλ∈Ec
2,4

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]

+
∑

κλ∈Ec
4,4

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]+
∑

κλ∈Ec1
4,6

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]+
∑

κλ∈Ec2
4,6

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]
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+
∑

κλ∈Ec
6,6

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]+
∑

κλ∈Ec
6,8

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]+
∑

κλ∈Ec
8,8

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]

By using Table 11, we have

= 2(2m2n+2m2n)+4(2m4n+4m2n)+4(4m4n+4m4n)+(8p−12)(4m6n+6m4n)+8(4m6n+6m4n)

+(8p−14)(6m6n+6m6n)+(8p−16)(6m8n+8m6n)+(6p2−24p+24)(8m8n+8m8n).

Corollary 4.2. By putting m = 1 and n = 1 in the Theorem 4.2, we get the second Zagreb connection
index as

ZC2(A) =
1

2
C1,1(A) = 384p2−672p+272.

Corollary 4.3. By puttingm = 1 and n = 0 in the Theorem 4.2, we get the modified first Zagreb connection
index as

ZC∗
1 (A) = C1,0(A) = 96p2−96p+16.

Theorem 4.3.
Let A ∼= RHOX(p) be a rhombus oxide network on dimension p ≥ 3. Then, the generalized second Zagreb
connection index of network A is

C2
m,n(A) = 2(2m2n+2m2n)+4(2m4n+4m2n)+4(2m4n+4m4n)+(8p−12)(2m6n+4m4n)+8(4m6n+4m4n)

+(8p−14)(4m6n+4m6n)+(8p−16)(4m8n+4m6n)+(6p2−24p+24)(4m8n+4m8n).

Proof. By definition,

C2
m,n(Q) =

∑
κλ∈E(Q)

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]

C2
m,n(A) =

∑
κλ∈Ec

2,2

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]+
∑

κλ∈Ec
2,4

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]

+
∑

κλ∈Ec
4,4

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]+
∑

κλ∈Ec1
4,6

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]+
∑

κλ∈Ec2
4,6

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]

+
∑

κλ∈Ec
6,6

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]+
∑

κλ∈Ec
6,8

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]+
∑

κλ∈Ec
8,8

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]

By using Table 11, we have

= 2(2m2n+2m2n)+4(2m4n+4m2n)+4(2m4n+4m4n)+(8p−12)(2m6n+4m4n)+8(4m6n+4m4n)

+(8p−14)(4m6n+4m6n)+(8p−16)(4m8n+4m6n)+(6p2−24p+24)(4m8n+4m8n).

Corollary 4.4. By putting m = 1 and n = 1 in the Theorem 4.3, we get the modified second Zagreb
connection index as

ZC∗
2 (A) = C2

1,1(A) = 384p2−480p+128.

Theorem 4.4.
Let A ∼= RHOX(p) be a rhombus oxide network on dimension p ≥ 3. Then, the generalized third Zagreb
connection index of network A is

C3
m,n(A) = 2(2m2n+2m2n)+4(2m2n+4m4n)+4(2m4n+4m4n)+(8p−12)(2m4n+4m6n)+8(4m4n+4m6n)
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+(8p−14)(4m6n+4m6n)+(8p−16)(4m6n+4m8n)+(6p2−24p+24)(4m8n+4m8n).

Proof. By definition,

C3
m,n(Q) =

∑
κλ∈E(Q)

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]

C3
m,n(A) =

∑
κλ∈Ec

2,2

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]+
∑

κλ∈Ec
2,4

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]

+
∑

κλ∈Ec
4,4

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]+
∑

κλ∈Ec1
4,6

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]+
∑

κλ∈Ec2
4,6

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]

+
∑

κλ∈Ec
6,6

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]+
∑

κλ∈Ec
6,8

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]+
∑

κλ∈Ec
8,8

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]

By using Table 11, we have

= 2(2m2n+2m2n)+4(2m2n+4m4n)+4(2m4n+4m4n)+(8p−12)(2m4n+4m6n)+8(4m4n+4m6n)

+(8p−14)(4m6n+4m6n)+(8p−16)(4m6n+4m8n)+(6p2−24p+24)(4m8n+4m8n).

Corollary 4.5. By putting m = 1 and n = 1 in the Theorem 4.4, we get the modified third Zagreb
connection index as

ZC∗
3 (A) = C3

1,1(A) = 384p2−448p+96.

Theorem 4.5.
Let A ∼= RHOX(p) be a rhombus oxide network on dimension p ≥ 3. Then, the generalized fourth Zagreb
connection index of network A is

C4
m,n(A) = 2(2m2n×2m2n)+4(2m2n×4m4n)+4(2m4n×4m4n)+(8p−12)(2m4n×4m6n)+8(4m4n×4m6n)

+(8p−14)(4m6n×4m6n)+(8p−16)(4m6n×4m8n)+(6p2−24p+24)(4m8n×4m8n).

Proof. By definition,

C4
m,n(Q) =

∑
κλ∈E(Q)

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]

C4
m,n(A) =

∑
κλ∈Ec

2,2

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]+
∑

κλ∈Ec
2,4

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]

+
∑

κλ∈Ec
4,4

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]+
∑

κλ∈Ec1
4,6

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]+
∑

κλ∈Ec2
4,6

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]

+
∑

κλ∈Ec
6,6

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]+
∑

κλ∈Ec
6,8

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]+
∑

κλ∈Ec
8,8

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]

By using Table 11, we have

= 2(2m2n×2m2n)+4(2m2n×4m4n)+4(2m4n×4m4n)+(8p−12)(2m4n×4m6n)+8(4m4n×4m6n)

+(8p−14)(4m6n×4m6n)+(8p−16)(4m6n×4m8n)+(6p2−24p+24)(4m8n×4m8n).

Corollary 4.6. By putting m = 1 and n = 1 in the Theorem 4.5, we get the modified fourth Zagreb
connection index as

ZC∗
4 (A) = C4

1,1(A) = 6144p2−12288p+5792.
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5. Main Results under Rhombus Silicate Network (RHSL(p))

This section computes the main results for the first general Zagreb connection index (ZCI), first, second,
third and fourth generalized Zagreb connection indices of rhombus silicate network. We also compute first,
second & modified first, second, third and fourth Zagreb connection indices of rhombus silicate network
RHSL(p) on dimension p ≥ 3.

Theorem 5.1.
Let B ∼= RHSL(p) be a rhombus silicate network on dimension p ≥ 3. Then, the first general Zagreb
connection index of network B is

Gm,n(B) = 6(3m×3n)+(8p−8)(3m×6n)+(8p−16)(3m×9n)+4(6m×6n)+(8p−12)(6m×9n)

+(3p2−10p+8)(6m×12n).

Proof. By definition,

Gm,n(Q) =
∑

λ∈V (Q)

[d(λ)m×τ(λ)n]

Gm,n(B) =
∑

λ∈V3,3

[d(λ)m×τ(λ)n]+
∑

λ∈V3,6

[d(λ)m×τ(λ)n]+
∑

λ∈V3,9

[d(λ)m×τ(λ)n]+
∑

λ∈V6,6

[d(λ)m×τ(λ)n]

+
∑

λ∈V6,9

[d(λ)m×τ(λ)n]+
∑

λ∈V6,12

[d(λ)m×τ(λ)n]

By using Table 14, we have

= 6(3m×3n)+(8p−8)(3m×6n)+(8p−16)(3m×9n)+4(6m×6n)+(8p−12)(6m×9n)+(3p2−10p+8)(6m×12n).

Corollary 5.1. By putting m = 0 and n = 2 in the Theorem 5.1, we get the first Zagreb connection index
as

ZC1(B) = G0,2(B) = 432p2+144p−1206.

Theorem 5.2.
Let B ∼= RHSL(p) be a rhombus silicate network on dimension p ≥ 3. Then, the generalized first Zagreb
connection index of network B is

Cm,n(B) = 6(3m3n+3m3n)+6(3m6n+6m3n)+8(6m6n+6m6n)+(8p−4)(6m6n+6m6n)+8(6m9n+9m6n)

+(16p−22)(6m9n+9m6n)+(8p−12)(9m9n+9m9n)+(8p−14)(9m9n+9m9n)+(8p−16)(9m12n+12m9n)

+(6p2−20p+16)(9m12n+12m9n)+(6p2−24p+24)(12m12n+12m12n).

Proof. By definition,

Cm,n(Q) =
∑

κλ∈E(Q)

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]

Cm,n(B) =
∑

κλ∈Ec
3,3

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]+
∑

κλ∈Ec
3,6

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]

+
∑

κλ∈Ec1
6,6

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]+
∑

κλ∈Ec2
6,6

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]+
∑

κλ∈Ec1
6,9

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]



U. Ali, T. Amjad, M. Javaid, Journal of Prime Research in Mathematics, 19(2) (2023), 96–115 108

+
∑

κλ∈Ec2
6,9

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]+
∑

κλ∈Ec1
9,9

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]+
∑

κλ∈Ec2
9,9

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]

+
∑

κλ∈Ec1
9,12

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]+
∑

κλ∈Ec2
9,12

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]+
∑

κλ∈Ec
12,12

[τ(κ)mτ(λ)n+τ(λ)mτ(κ)n]

By using Table 15, we have

= 6(3m3n+3m3n)+6(3m6n+6m3n)+8(6m6n+6m6n)+(4p−4)(6m6n+6m6n)+8(6m9n+9m6n)+(16p−22)

(6m9n+9m6n)+(8p−12)(9m9n+9m9n)+(8p−14)(9m9n+9m9n)+(8p−16)(9m12n+12m9n)+(6p2−20p+16)

(9m12n+12m9n)+(6p2−24p+24)(12m12n+12m12n).

Corollary 5.2. By putting m = 1 and n = 1 in the Theorem 5.2, we get the second Zagreb connection
index as

ZC2(B) =
1

2
C1,1(A) = 1512p2−2448p+900.

Corollary 5.3. By puttingm = 1 and n = 0 in the Theorem 5.2, we get the modified first Zagreb connection
index as

ZC∗
1 (B) = C1,0(B) = 270p2−252p+36.

Theorem 5.3.
Let B ∼= RHSL(p) be a rhombus silicate network on dimension p ≥ 3. Then, the generalized second Zagreb
connection index of network B is

C2
m,n(B) = 6(3m3n+3m3n)+6(3m6n+6m3n)+8(3m6n+6m6n)+(4p−4)(3m6n+3m6n)+8(6m9n+6m6n)

+(16p−22)(3m9n+6m6n)+(8p−12)(6m9n+3m9n)+(8p−14)(6m9n+6m9n)+(8p−16)(6m12n+6m9n)

+(6p2−20p+16)(3m12n+6m9n)+(6p2−24p+24)(6m12n+6m12n).

Proof. By definition,

C2
m,n(Q) =

∑
κλ∈E(Q)

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]

C2
m,n(B) =

∑
κλ∈Ec

3,3

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]+
∑

κλ∈Ec
3,6

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]

+
∑

κλ∈Ec1
6,6

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]+
∑

κλ∈Ec2
6,6

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]+
∑

κλ∈Ec1
6,9

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]

+
∑

κλ∈Ec2
6,9

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]+
∑

κλ∈Ec1
9,9

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]+
∑

κλ∈Ec2
9,9

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]

+
∑

κλ∈Ec1
9,12

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]+
∑

κλ∈Ec2
9,12

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]+
∑

κλ∈Ec
12,12

[d(κ)mτ(λ)n+d(λ)mτ(κ)n]

By using Table 15, we have

= 6(3m3n+3m3n)+6(3m6n+6m3n)+8(3m6n+6m6n)+(4p−4)(3m6n+3m6n)+8(6m9n+6m6n)+(16p−22)

(3m9n+6m6n)+(8p−12)(6m9n+3m9n)+(8p−14)(6m9n+6m9n)+(8p−16)(6m12n+6m9n)
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+(6p2−20p+16)(3m12n+6m9n)+(6p2−24p+24)(6m12n+6m12n).

Corollary 5.4. By putting m = 1 and n = 1 in the Theorem 5.3, we get the modified second Zagreb
connection index as

ZC∗
2 (B) = C2

1,1(B) = 1404p2−1584p+342.

Theorem 5.4.
Let B ∼= RHSL(p) be a rhombus silicate network on dimension p ≥ 3. Then, the generalized third Zagreb
connection index of network B is

C3
m,n(B) = 6(3m3n+3m3n)+6(3m3n+6m6n)+8(3m6n+6m6n)+(4p−4)(3m6n+3m6n)+8(6m6n+6m9n)

+(16p−22)(3m6n+6m9n)+(8p−12)(3m9n+6m9n)+(8p−14)(6m9n+6m9n)+(8p−16)(6m9n+6m12n)

+(6p2−20p+16)(3m9n+6m12n)+(6p2−24p+24)(6m12n+6m12n).

Proof. By definition,

C3
m,n(Q) =

∑
κλ∈E(Q)

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]

C3
m,n(B) =

∑
κλ∈Ec

3,3

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]+
∑

κλ∈Ec
3,6

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]

+
∑

κλ∈Ec1
6,6

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]+
∑

κλ∈Ec2
6,6

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]+
∑

κλ∈Ec1
6,9

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]

+
∑

κλ∈Ec2
6,9

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]+
∑

κλ∈Ec1
9,9

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]+
∑

κλ∈Ec2
9,9

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]

+
∑

κλ∈Ec1
9,12

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]+
∑

κλ∈Ec2
9,12

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]+
∑

κλ∈Ec
12,12

[d(κ)mτ(κ)n+d(λ)mτ(λ)n]

By using Table 15, we have

= 6(3m3n+3m3n)+6(3m3n+6m6n)+8(3m6n+6m6n)+(4p−4)(3m6n+3m6n)+8(6m6n+6m9n)+(16p−22)

(3m6n+6m9n)+(8p−12)(3m9n+6m9n)+(8p−14)(6m9n+6m9n)+(8p−16)(6m9n+6m12n)+(6p2−20p+16)

(3m9n+6m12n)+(6p2−24p+24)(6m12n+6m12n).

Corollary 5.5. By putting m = 1 and n = 1 in the Theorem 5.4, we get the modified third Zagreb
connection index as

ZC∗
3 (B) = C3

1,1(B) = 1458p2−1620p+342.

Theorem 5.5.
Let B ∼= RHSL(p) be a rhombus silicate network on dimension p ≥ 3. Then, the generalized fourth Zagreb
connection index of network B is

C4
m,n(B) = 6(3m3n×3m3n)+6(3m3n×6m6n)+8(3m6n×6m6n)+(4p−4)(3m6n×3m6n)+8(6m6×6m9n)

+(16p−22)(3m6n×6m9n)+(8p−12)(3m9n×6m9n)+(8p−14)(6m9n×6m9n)+(8p−16)(6m9n×6m12n)

+(6p2−20p+16)(3m9n×6m12n)+(6p2−24p+24)(6m12n×6m12n).
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Proof. By definition,

C4
m,n(Q) =

∑
κλ∈E(Q)

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]

C4
m,n(B) =

∑
κλ∈Ec

3,3

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]+
∑

κλ∈Ec
3,6

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]

+
∑

κλ∈Ec1
6,6

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]+
∑

κλ∈Ec2
6,6

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]+
∑

κλ∈Ec1
6,9

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]

+
∑

κλ∈Ec2
6,9

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]+
∑

κλ∈Ec1
9,9

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]+
∑

κλ∈Ec2
9,9

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]

+
∑

κλ∈Ec1
9,12

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]+
∑

κλ∈Ec2
9,12

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]+
∑

κλ∈Ec
12,12

[d(κ)mτ(κ)n×d(λ)mτ(λ)n]

By using Table 15, we have

= 6(3m3n×3m3n)+6(3m3n×6m6n)+8(3m6n×6m6n)+(4p−4)(3m6n×3m6n)+8(6m6n×6m9n)+(16p−22)

(3m6n×6m9n)+(8p−12)(3m9n×6m9n)+(8p−14)(6m9n×6m9n)+(8p−16)(6m9n×6m12n)+(6p2−20p+16)

(3m9n×6m12n)+(6p2−24p+24)(6m12n×6m12n).

Corollary 5.6. By putting m = 1 and n = 1 in the Theorem 5.5, we get the modified fourth Zagreb
connection index as

ZC∗
4 (B) = C4

1,1(B) = 42768p2−80352p+35478.

6. Comparison and Conclusions

In this section, we compare degree based ZIs (M1,M2,M3,
mM1,

mM2 & ReZ3) and connection number
based ZIs (ZC1, ZC2, ZC∗

1 , ZC∗
2 , ZC∗

3 & ZC∗
4 ) for both rhombus oxide network (RHOX(p) ∼= A) and rhom-

bus silicate network (RHSL(p) ∼= B). For this comparison, we make Tables 16 and 17 by using Corollary
2.1-2.2 and Corollary 4.1-4.6 respectively, for network A. We also make Table 18 and 19 by using Corollary
2.3-2.4 and Corollary 5.1-5.6 respectively, for network B. These Tables 16-19 are demonstrated with the
help of numerical values for indicated ZIs. The graphical depictions of these indicated ZIs for both networks
A and B are shown in Figures 3-6.

By observing Tables 16-21 and Figures 3-6, they help us to make the conclusions of the comparative study
for ZIs and ZCIs of two rhombus oxide network (RHOX ∼= A) and rhombus silicate network (RHSL ∼= B)
on dimensions 3 ≤ p ≤ 10.

(i) From Tables 16-19 and Figures 3-6, we observe that the level of degree and connection number based
ZIs for networks A and B have the following orders:
a. ReZ3(A) ≥ M3(A) ≥ M2(A) ≥ M1(A) ≥m M1(A) ≥m M2(A),
b. ZC∗

4 (A) ≥ ReZ3(A) ≥ ZC∗
3 (A) ≥ ZC∗

2 (A) ≥ ZC2(A) ≥ ZC1(A) ≥ ZC∗
1 (A),

c. ReZ3(B) ≥ M3(B) ≥ M2(B) ≥ M1(B) ≥m M1(B) ≥m M2(B),
d. ZC∗

4 (B) ≥ ReZ3(B) ≥ ZC∗
3 (B) ≥ ZC∗

2 (B) ≥ ZC2(B) ≥ ZC1(B) ≥ ZC∗
1 (B).

(ii) From Tables 16-19 and Figures 3-6, we observe that modified fourth ZCI (ZC∗
4 ) gives more values and

most upper lines than other ZIs and ZCIs. These relations show that ZC∗
4 gives better results for correlation
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coefficient values of both networks A and B than ZC∗
1 .

(iii) Tables 20 and 21 show that rhombus silicate network B of dimension p for the above mentioned
indices has gained supreme position than rhombus oxide network A.

(iv) Moreover, these general relations (Tables 20-21) conclude that the physicochemical properties of
rhombus silicate network B is more predict than rhombus oxide network A on dimension p.

Table 16: Numerical values for ZIs of rhombus oxide network A.
p M1(A) M2(A) M3(A) mM1(A) mM2(A) ReZ3(A)

3 400 712 1504 7.3125 5.125 5344
4 720 1320 2752 10.5 8.25 10080
5 1136 2120 4384 14.0625 12.125 16352
6 1648 3112 6400 18 16.75 24160
7 2256 4296 8800 22.3125 22.125 33505
8 2960 5672 11584 27 28.25 44384
9 3760 7240 14752 32.0625 35.125 56800
10 4656 9000 18304 37.5 42.75 70752

Figure 3. Comparisons for ZIs of network A on dimensions 3 ≤ p ≤ 10.

Table 17: Numerical values for ZCIs of rhombus oxide network A.
p ZC1(A) ZC2(A) ZC∗

1(A) ZC∗
2(A) ZC∗

3(A) ZC∗
4(A)

3 960 1712 592 2144 2208 24224
4 1952 3728 1168 4352 4448 54944
5 3328 6512 1936 7328 7456 97952
6 5088 10064 2896 11072 11232 153248
7 7232 14384 4048 15584 15776 220832
8 9760 19472 5392 20864 21088 300704
9 12672 25328 6928 26912 27168 392864
10 15968 31952 8656 33728 34016 497312
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Figure 4. Comparisons for ZCIs of network A on dimensions 3 ≤ p ≤ 10.

Table 18: Numerical values for ZIs of rhombus silicate network B.
p M1(B) M2(B) M3(B) mM1(B) mM2(B) ReZ3(B)

3 1026 2394 5346 3.9167 5.8889 24624
4 1872 4482 9936 6.4444 9.8333 46980
5 2970 7218 15930 9.5833 14.7778 76464
6 4320 10602 23328 13.3333 20.7222 113076
7 5922 14634 32130 17.6944 27.6667 156816
8 7776 19314 42336 22.6667 35.6111 207684
9 9882 24642 53946 28.25 44.5556 265680
10 12240 30618 66960 34.4444 54.5 330804

Figure 5. Comparisons for ZIs of network B on dimensions 3 ≤ p ≤ 10.
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Table 19: Numerical values for ZCIs of rhombus silicate network B.
p ZC1(B) ZC2(B) ZC∗

1(B) ZC∗
2(B) ZC∗

3(B) ZC∗
4(B)

3 3114 7164 1710 8226 8604 179334
4 6282 15300 3348 16470 17190 398358
5 10314 26460 5526 27522 28692 702918
6 15210 40644 8244 41382 43110 1093014
7 20970 57852 11502 58050 60444 1568646
8 27594 78084 15300 77526 80694 2129814
9 35082 101340 19638 99810 103860 2776518
10 43434 127620 24516 124902 129942 3508758

Figure 6. Comparisons for ZCIs of network B on dimension 3 ≤ p ≤ 10.

Table 20: Comparisons of ZIs for all p.

ZIs B − A = RHSL(p) − RHOX(p) Results

M1 78p2 − 20p− 16 B > A
M2 96p2 + 64p− 40 B > A
M3 510p2 − 228p− 64 B > A

mM1
17
144p

2 − 107
72 p B > A

mM2
1
8p

2 − 1
18p−

7
36 B > A

ReZ3 2796p2 − 1952p− 28 B > A

Table 21: Comparisons of ZCIs for all p.

ZCIs B − A = RHSL(p) − RHOX(p) Results

ZC1 240p2 + 496p− 1494 B > A
ZC2 1128p2 − 1776p+ 628 B > A
ZC∗

1 174p2 − 156p+ 20 B > A
ZC∗

2 1020p2 − 1104p+ 214 B > A
ZC∗

3 1074p2 − 1172p+ 246 B > A
ZC∗

4 36624p2 − 68064p+ 29686 B > A

These general versions Zagreb indices based on connection number can be computed for the other molecular
networks.
Conflicts of Interest: No any conflict of interest from our side.
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