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Abstract

This article introduces the concept of translation-factorable surfaces in the isotropic space I3 and presents
classification theorems for these surfaces based on their isotropic mean and isotropic Gaussian curvatures,
considering both zero and nonzero values. Furthermore, an additional investigation is conducted to classify
translation-factorable (TF) surfaces in I3 under the condition H2 = K.
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1. Introduction

An important problem in classical differential geometry is finding the mean curvature H and Gaussian
curvature K of surfaces in three-dimensional Euclidean space E3 and other spaces.
In particular, for the immersed graph z into E3, such a problem is reduced to solve the Monge-Ampère
equation given by ([18], [26]). Specifically, when considering an immersed graph z in E3, this problem can
be reduced to solving the Monge-Ampère equation, as shown in references [18] and [26]:

det

(
∂z

∂x∂y

)
= K(1 + |∇z|2)2, (1.1)
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and the equation of mean curvature type in divergence form

div

 ∇z√
1 + |∇z|2

 = H, (1.2)

where ∇ denotes the gradient of E2 ([11], [22], [21]).
One class of surfaces in E3 that is of particular interest is that of translation surfaces, which can be

locally parametrized as:
r(s, t) = (s, t, u(s) + v(t)), (1.3)

where u and v are smooth functions. Geometers have investigated these surfaces from various perspectives.
H. Liu gives a classification of translation surfaces with constant mean curvature or constant Gaussian

curvature in both E3 and three-dimensional Minkowski space E3
1 in [10]. Similarly, in [23] Z.M. Sipus classifies

translation surfaces of constant curvature created by two planar curves in isotropic space I3. In addition,
in[27] , L. Verstraelen, J. Wahare, and Y. Yaprak examine minimal translation surfaces in n-dimensional
Euclidean space. Furthermore, in [20], K. Seo provides a categorization of translation hypersurfaces with
constant mean curvature or constant Kronecker curvature in space forms.

On the other hand, a surface in E3 that is the graph of the function z(s, t) = u(s).v(t) is said to be
factorable or homothetical surface. These surfaces have been extensively studied in the Euclidian space and
semi-Euclidean space. In [2], M.E Aydin classifies such surfaces with constant Gaussian and mean curvature
in I3 and he provide a non- existence result related with the surfaces satisfying H/K =const. Y.Yu and
H.Liu [28] study the factorable minimal surfaces in E3and E3

1 and give soms classifacations theorems.
Next, we introduce an extension of surfaces in I3 based on the definitions mentioned earlier. We refer to

these surfaces as translation-factorable (TF) surfaces.

Definition 1.1. A surface M2 in the three dimensinal space I3 is T.F - surface if it can be parametrized
locally either by patch:

r(s, t) = (s, t, A(u(s) + v(t)) +Bu(s)v(t)) (1.4)

or

r(s, t) = (s,A(u(s) + v(t)) +Bu(s)v(t), t), (1.5)

where u and v are smooth functions and A,B non zero reals.

In the present study, we consider a translation-factorable (T.F)- surfaces in isotropic space I3, which can
be parametrized locally as

r(s, t) = (s, t, u(s) + v(t) + u(s)v(t), (1.6)

where u and v are smooth functions. We characterize such surfaces in terms of their isotropic mean and
isotropic Gaussian functions.
Medjahdi et al in [16] classify the Graph Translation Surface in the Lorentz-Heisenberg 3-space with constant
curvatures.
Recently, in [8] S.A. Difi and A. Hakem carried out a classification of translation-factorable (TF) surfaces
in both three-dimensional Euclidean space and Lorentz-Minkowski space. This classification was performed
under the condition that the coordinate functions of the surface, denoted by ri, satisfy the equation:

△ri = λiri. (1.7)

where △ denotes the Laplace operator and the coordinate functions λi ∈ R and ri describe the surface.
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2. Preliminaries

The concept of differential geometry in relation to isotopic spaces was first introduced by K. Strubacker
[24], H. Sachs [19], and several other researchers [15],[23].

I3 denotes an isotropic space, and its properties can be observed in [19].
The term used to describe such affine transformations is isotropic congruence transformations, commonly

referred to as i-motions.
On the contrary, the isotropic distance, referred to as the i-distance, between two points A (x1, x2, x3)

and B (y1, y2, y3) is defined as follows

∥A−B∥i =
√

(y1 − x1)
2 + (y2 − x2)

2, (2.1)

the i-motions is degenerate along the lines in z-direction and such lines are called isotropic lines.
Let v1 = (x1, x2, x3) and v2 = (y1, y2, y3) be vectors in I3. The isotropic inner product of v1 and v2 is

defined by

⟨v1, v2⟩i =
{

x3y3 if xi = yi = 0
x1y1 + x2y2 if otherwise

(2.2)

An isotropic vector in I3 is classified as a vector of the form v = (0, 0, x), otherwise, it is considered non-
isotropic. A surface M2 is immersed in I3 and is referred to as admissible if it lacks isotropic tangent planes.
For our purposes, we only consider admissible regular surfaces. Let M2 be a regular admissible graph surface
in I3, that is parameterized locally by

r (u, v) = (u, v, z (u, v)) . (2.3)

The components E,F and G of the first fundamental form I for the surface M2 can be determined by
utilizing the metric derived from I3. This gives us

E = ⟨ru, ru⟩i , F = ⟨ru, rv⟩i , G = ⟨rv, rv⟩i . (2.4)

The surface M2 exhibits complete isotropy in its unit normal vector. Additionally, the components of the
second fundamental form II are

L =
det(ruu, ru, rv)√

EG− F 2
,M =

det(ruv, ru, rv)√
EG− F 2

, N =
det(rvv, ru, rv)√

EG− F 2
. (2.5)

The mean curvature K and the Gaussian curvature H in the isotropic context are in the following manner

K =
LN −M2

EG− F 2
, 2H =

EN − 2FM +GL

EG− F 2
. (2.6)

3. Translation-factorable (TF) surfaces in isotropic space I3

Let M2 a TF- surface in I3 parametrized locally by a patch

r(s, t) = (s, t, z(s, t) = u(s) + v(t) + u(s)v(t)). (3.1)

where u and v smooth functions.
Then the coefficients of the first fundamental form of M2 are calculated by induced metric from I3as follow

E = 1, F = 0, G = 1, (3.2)
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and the coefficients of the second fundamental form of M2 are

L = (1 + v)u′′, M = u′v′, N = (1 + u)v′′. (3.3)

Where u′ = du
ds and v′ = dv

dt .
Therefore, it follows from (2.6), the definition of the isotropic mean curvature H and the isotropic

Gaussian curvature K of M2 is as follows:

2H = (1 + v)u′′ + (1 + u)v′′, (3.4)

and
K = (1 + u)(1 + v)u′′v′′ − u′2v′2. (3.5)

The surface M2 is considered isotropic minimal (or isotropic flat) when the values of H (or K) are zero.
Similarly, it is referred to as having constant isotropic mean (or isotropic Gaussian) curvature when H (or
K) remains constant throughout the whole surface.

4. TF-surfaces with zero curvatures in I3

In this section, our objective is to provide a description of the TF-surfaces where H equals zero and K
equals zero.

4.1. Isotropic minimal TF-surfaces in I3

Let M2 be a TF- surface in I3 representid as the graph of z(s, t) = u(s) + v(t) + u(s)v(t).
If M2 is isotropic minimal then from (3.4), we can derive the following equation

(1 + v)u′′ + (1 + u)v′′ = 0. (4.1)

Consequently, based on (4.1), we can conclude that

u′′

1 + u
= − v′′

1 + v
.

As both sides of this equation contain a function dependent on s and another function dependent on t, there
exists a real number λ1 ∈ R for which:

u′′

1 + u
= λ1 = − v′′

1 + v
. (4.2)

If λ1 = 0 in (4.2), then u an v becomes linear functions, denotd as u(s) = a1s + a2 and v(t) = a3t + a4,
where a1, a2, a3 and a4 are constants.

Now let us assume that λ1 ̸= 0, that is u and v are nonlinear functions. Then the equation in (4.2) can
be rewritten as

u′′ − λ1(1 + u) = 0, (4.3)

and
v′′ + λ1(1 + v) = 0. (4.4)

If λ1 > 0, by solving (4.3) and (4.4), we derive

u(s) = −1 + b1e
√
λ1s + b2e

−
√
λ1s, (4.5)

and
v(t) = −1 + b3cos(

√
λ1t) + b4 sin(

√
λ1t),

where b1, b2, b3 and b4 are constants.



B.Medjahdi, A. Belhenniche, H. Zoubir, Journal of Prime Research in Mathematics, 19(2) (2023), 60–71    64

If λ1 < 0, we obtain
u(s) = −1 + c1cos(

√
−λ1s) + c2 sin(

√
−λ1s), (4.6)

and
v(t) = −1 + c3e

√
−λ1t + c4e

−
√
−λ1t, (4.7)

where c1, c2 , c3 and c4 are constants.
Therefore we have proved the following :

Theorem 4.1. Let M2 be a isotropic minimal TF-surface which is the graph of z(s, t) = u(s)+v(t)+u(s)v(t)
in I3. Then we have either

1. u(s) = a1s+ a2 and v(t) = a3t+ a4, ai ∈ R.
2. u(s) = −1 + b1e

√
λ1s + b2e

−
√
λ1s and v(t) = −1 + b3cos(

√
λ1t) + b4 sin(

√
λ1t) , bi ∈ R and λ1 > 0.

3. u(s) = −1+ c1cos(
√
−λ1s)+ c2 sin(

√
−λ1s) and v(t) = −1+ c3e

√
−λ1t+ c4e

−
√
−λ1t , ci ∈ R and λ1 < 0.

Exercise 4.2. Let us consider TF-surfaces with constant isotropic mean curvatures H0 given by

1. z(s, t) = s+ t+ st, t, s ∈ [−1, 1].

2. z(s, t) = −2+es+e−s+cos(t)+sin(t)+(−1 + es + e−s) (−1 + cos(t) + sin(t)), t ∈ [−π, π], s ∈ [−1, 1].

These surfaces can be drawn respectively as in figures 1 and 2

Figure 1: Isotropic minimal TF-surfacez(s, t) = s+ t+ st
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Figure 2: Isotropic minimal TF-surface z(s, t) = −2 + es + e−s + cos(t) + sin(t) +
(
−1 + es + e−s

)
(−1 + cos(t) + sin(t))

4.2. Isotropic flat TF-surfaces in I3

Let M2 be a graph surface immersed in I3 corresponding to a real-valued smooth function
z(s, t) = u(s) + v(t) + u(s)v(t). Assume that M2 is a isotropic flat TF-surface.
Then from (3.5) we have

(1 + u)(1 + v)u′′v′′ − u′2v′2 = 0. (4.8)

For solving this equation, we need to address the following cases:

Case 1 If u′ = 0. we have u(s) = d1. Thus z(s, t) = (1 + d1)v(t) + d1. Analogously, if v′ = 0, we have
v(t) = d2, then z(s, t) = (1 + d2)u(s) + d2.

Case 2 If u′u′′ ̸= 0. By symmetry on the arguments, we also suppose v′v′′ ̸= 0. Then (4.8) can be rewritten
as

(1 + u)u′′

u′2
=

v′2

(1 + v)v′′
. (4.9)

Therefore, we can infer the existence of a real number λ2 ∈ R, λ2 ̸= 0, such that

(1 + u)u′′

u′2
= λ2 and

(1 + v)v′′

v′2
=

1

λ2
. (4.10)

In order to solve (4.10) we distinguish two situations :

Case 2.1 If λ2 = 1, solving (4.10) yields

u(s) = d3e
d4s − 1 and v(t) = d5e

d6t − 1, (4.11)

where d3, d4, d5 and d6 are constants.

Case 2.2 If λ2 ̸= 1, by solving (4.10), we obtain

u(s) = [(1− λ2) (d7s+ d8)]
1

1−λ2 − 1 and v(t) =

[(
λ2 − 1

λ2

)
(d9t+ d10)

] λ2
λ2−1

− 1, (4.12)

where d7, d8, d9 and d10 are constants.

Consequently, we have successfully demonstrated the following:
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Theorem 4.3. Let M2 be a isotropic flat TF-surface which is the graph z(s, t) = u(s) + v(t) + u(s)v(t) in
I3. Then this surface will be one of the following:

1. z(s, t) = a1v(t) + a2 or z(s, t) = a3u(s) + a4, ai ∈ R,
2. u(s) = b1e

b2s − 1 and v(t) = b3e
b4t − 1, bi ∈ R,

3. u(s) = [(1− λ) (c1s+ c2)]
1

1−λ − 1 and v(t) =
[
λ−1
λ (c3t+ c4)

] λ
λ−1 − 1, ci ∈ R and λ ̸= 1.

Exercise 4.4. Let us consider isotropic flat TF-surface given by

1. z(s, t) = es + et − 2 + (es − 1)
(
et − 1

)
t, s ∈ [−1, 1]

2. z(s, t) = (−s)−1 +
(
1
2 t
)2 − 2 +

(
(−s)−1 − 1

)((
1
2 t
)2 − 1

)
t, s ∈ [−1, 1]

These surfaces can be drawn respectively as in figures 3 and 4

Figure 3: Isotropic flat TF-surface z(s, t) = es + et − 2 + (es − 1)
(
et − 1

)

Figure 4: Isotropic flat TF-surface z(s, t) = (−s)−1 +
(
1
2
t
)2 − 2 +

(
(−s)−1 − 1

) ((
1
2
t
)2 − 1

)



B.Medjahdi, A. Belhenniche, H. Zoubir, Journal of Prime Research in Mathematics, 19(2) (2023), 60–71    67

5. TF-surfaces with non zero curvatures in I3

In this section we describe the TF-surfaces when H ̸= 0 and K ̸= 0.

5.1. TF-surfaces with constant isotropic mean curvature

Let M2 be a TF-surface in I3, i.e., the graph of z(s, t) = u(s) + v(t) + u(s)v(t). Assume that M2 has
constant isotropic mean curvature H0. Then, it follows from (3.4) that

2H0 = (1 + v)u′′ + (1 + u) v′′. (5.1)

For solving this equation, we distinguish the following cases :

Case 1 u = const = a1 ̸= 0. (5.1) immediately implies

v(t) =
H0

1 + a1
t2 + a2t+ a3, a2, a3 ∈ R. (5.2)

Case 2 v = b1 ̸= 0, we get

u(s) =
H0

1 + b1
s2 + b2s+ b3, b2, b3 ∈ R (5.3)

Now suppose that u and v non constants functions. Then (5.1) can be rewritten as

2H0

(1 + u) (1 + v)
=

u”

1 + u
+

v”

1 + v
. (5.4)

Upon computing partial derivatives of the equation (5.4) concerning s and t, we derive

H0

(
1

1 + v

)′( 1

1 + u

)′
= 0. (5.5)

This equation results in a contradiction since both u and v are non-constant functions. The above analysis

enables us to state the following theorem:

Theorem 5.1. Consider M2 as a TF-surface having a constant isotropic mean curvature H0 which is the
graph z(s, t) = u(s) + v(t) + u(s)v(t) in I3.Then we have either

1. z(s, t) = H0s
2 + c1s+ c2,

2. z(s, t) = H0t
2 + c3t+ c4.

Where ci ∈ R such that i = 1, 2, 3, 4.

Exercise 5.2. Let us consider TF-surfaces with constant isotropic mean curvature given by

z(s, t) = s2 + s, s ∈ [−1, 1]

.
These surfaces can be drawn as in figure 5
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Figure 5: TF-surfaces with constant isotropic mean curvature

5.2. TF-surfaces with constant isotropic Gaussian curvature K0

Suppose M2 is a TF-surface in I3 with constant isotropic Gaussian curvature. From equation (3.5), it
can be deduced that

K0 = (1 + u) (1 + v)u′′v′′
2
v′. (5.6)

In order to solve equation (5.6), we distinguish three cases.

Case 1 u′ = c1 ̸= 0, c1 ∈ R. Then (5.6) leads to

v′ =

√
−K0

c1
,K0 < 0. (5.7)

Consequently, v is also a linear function, denoted by

v(t) =

√
−K0

c1
t+ c2, c2 ∈ R. (5.8)

Case 2 v′ = c3 ̸= 0, c3 ∈ R, we deduce

u(s) =

√
−K0

c3
s+ c4 , c4 ∈ R (5.9)

Case 3 Now suppose that u is nonlinear function. From the symmetry v is also nonlinear function . By
dividing (5.6) with the product (1 + v)u′2v′′ we get

K0

(1 + v)u′2v′′
=

(1 + u)u′′

u′2
+

v′2

(1 + v) v′′
. (5.10)

Upon computing partial derivatives of equation (5.10) with respect to both s and t, we arrive at the
following expressions:

K0

(
1

u′2

)′( 1

(1 + v) v”

)′

= 0 (5.11)
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From (5.11), if
(

1
u′2

)′′
= 0, i.e., u′2 nonzero constant which is not possible because u is nonlinear function.

If
(

1
(1+v)v′′

)′
= 0, this means that (1 + v) v′′ is nonzero constant c1. Considering it into (5.10) gives

K0

c1u′2
− (1 + u)u′′

u′2
=

v′2

c1
. (5.12)

Given that v is a nonlinear function, the right-hand side of equation (5.12) depends on t. However, the
left-hand side of (5.12) is either a constant or a function of s,and both possibilities are not feasible.
We can formally state the following theorem:

Theorem 5.3. Let M2 be TF-surface with constant isotropic Gaussian curvature K0(K0 < 0) which is the
graph z(s, t) = u(s) + v(t) + u(s)v(t) in I3.Then we have either

1. u(s) = c1s+ c2 and v(t) =
√
−K0
c1

t+ c3, c1, c2, c3 ∈ R.

2. u(s) =
√
−K0
b1

s+ b2 and v(t) = b1t+ b3, b1, b2, b3 ∈ R.

6. TF-surfaces in I3 satisfying K = H2.

Consider M2 as a surface in the Euclidean three-space R3. The Euler inequality for M2 encompasses
both the Gaussian and mean curvature and can be expressed as follows

K ⩽ H2. (6.1)

The equality sign of (6.1) holds on M2 if and only if it is totally umbilical. For more generalizations, see
([4], [9], [13], [14]).

Now, we aim to classify the translation- factorable (TF) surfaces in I3 that satisfyH2 = K. By considering
(3.4) and (3.5), we have [

(1 + v)u′′ + (1 + u) v′′

2

]2
= (1 + u) (1 + v)u′′v′′ − u′2v′2, (6.2)

The previous equation may be rewritten as[
(1 + v)u′′ − (1 + u) v′′

]2
+ 4u′2v′2 = 0, (6.3)

which implies
(1 + v)u′′ − (1 + u) v′′ = 0 and u′v′ = 0, (6.4)

it follow from (6.4) that either u = const = c0 and v(t) = c1t+ c2 or v = const = b0 and u(s) = b1s+ b2.
Therfore, we have the following:

Theorem 6.1. The TF-surface which is the graph z(s, t) = u(s) + v(t) + u(s)v(t) in I3satisfying K = H2

is either

1. z(s, t) = c1s+ c2 , c1 , c2 ∈ R,
2. z(s, t) = b1t+ b2, b1, b2 ∈ R.

Exercise 6.2. Let us consider TF-surfaces in I3 with K = H2 given by

z(s, t) = s+ 1, s ∈ [−1, 1]

These surfaces can be drawn as in figure 6
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Figure 6: TF-surfaces in I3 with K = H2

7. Conclusion

In this article, we have presented an overview of factorable-translation surfaces in isotropic space
that possess constant mean and Gaussian curvatures. Additionally, we have provided a classification of
surfaces that satisfy the condition K = H2. Furthermore, our results pave the way for future research in
this field. Exploring the geometric characteristics and differential equations associated with these surfaces,
as well as analyzing their behavior under other restrictions or in alternative spacetime environments, are
potential future research paths. We can improve our grasp of factorable-translation surfaces and their unique
mathematical characteristics by going deeper into these issues.
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