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Abstract

In this article, we consider the one-dimensional system of piezoelectric beams with thermal and magnetic
effects in the presence of an infinite memory term acting on the mechanical equation. Under appropriate
assumptions on the kernel, we prove that the system is well-posed in the sense of semigroup and by con-
structing a suitable Lyapunov functional. We establish that the system is exponentially stable. Moreover,
our result does not depend on any relationship between system parameters.
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1. Introduction

Piezoelectric materials such as quartz, Rochelle salt and barium titanate have an important property
of converting mechanical energy to electro-magnetic energy under the action of a mechanical stress, this
phenomenon is known by the direct piezoelectric effect that was discovered by the brothers Pierre and
Jacques Curie in 1880. Reciprocally, the same materials have the ability to convert electro-magnetic energy
to mechanical energy and this phenomena is well called the converse piezoelectric effect that was discovered
by Gabriel Lippmann [27] in 1881. In addition, during the transformation of mechanical energy into electric
one, it also turns a small portion of it into magnetic energy [19]. This last energy has a relatively small

*Corresponding author
Email addresses: hassanmessaoudil9970gmail.com (Hassan Messaoudi), khochmanehoussem@hotmail.com (Houssem
Eddine Khochemane), abd_ardjouni@yahoo.fr (Abdelouaheb Ardjouni), zitsala@yahoo.fr (Salah Zitouni)

Received : 4 November 2022; Accepted: 20 January 2024; Published Online: 22 January 2024.



H. Messaoudi et al., Journal of Prime Research in Mathematics, 19(2) (2023), 116-134 117

effect on the general dynamics and there exist the models that neglect magnetic effects such as piezoelectric
beams. However, this magnetic contribution may limit the system performance, for example, the magnetic
effect can cause oscillations in the output which leads to system instability in closed loop [23] 29]. In [19],
by applying a variational approach, Morris and Ozer constructed a coupled model of piezoelectric beams
with magnetic effect given by

{ PVt — QUgzy + 'Yﬁpx:r: =0in (O’L) X (Oa OO) s (1 1)
Hptt — BPzz + 76”3790 =01in (07 L) X (07 OO) ) ‘

where p, a, v, i, 8 and L are positive constants represent, respectively, the mass density, elastic stiffness,
piezoelectric coefficient, magnetic permeability, water resistance coefficient of the beam and the length of
the beam. In addition, the relationship is considered

a = o + 728 with a; > 0, (1.2)
and the system is equipped by the boundary and initial conditions
v (0,t) =p(0,t) = awy (L, t) — vBpz (L,t) =0,
80 (L.8) — 980 (L.1) = -0, (1.3
v (z,0) =vo (%), ve (2,0) = w1 (z), p(z,0) =po (x), pt(x,0) =p1(2),

where V' (t) is the voltage applied at the electrode and h is the thickness of the beam. In [25], Ramos et al.
investigated the piezoelectric beams system

{ POt — QUgy + Vﬁpxz + 61)75 =01in (07 L) X (07 T) )
upst — Bpez + YBVzz = 0 in (Oa L) X (OvT) )

with the boundary and initial conditions

(1.4)

v(0,t) = avy (L, t) = vBpe (L,t) =0, 0 <t < T,
( ) (L’t) ’VUJ:(L’t):Ov OStST,
( )_UO(J;) Ut(x,()):vl(x),p(:n,()):po(:r),pt(w,()):pl(x), OSI'SL,

and they showed that the dissipation given only by the magnetic effect is strong enough to stabilize expo-
nentially the system for whatever the physical parameters of the model. In [24], Ramos et al. investigated
the one-dimensional system of piezoelectric beams with magnetic effect given by

{ PV — QUzy + ’Yﬂpxoc =01in (07 L) X (07 T) )
HPtt — BPza + 'YB'UI:E =0in (07 L) X (07 T) )

with the boundary conditions
’U(O,t) = QUy (Lat) _%Bpx (Lat) +§lw = 07 0<t< Ta
p(0,8) = Bps (L, t) — vBug (L,t) + &2 =0, 0 <t < T,

where &1 and & are positive constants. The initial conditions are given by

U($70) :Uo(l‘), Ut(l',O) =u (ZL'), p(l‘,()) ZPO(I')? Pt ($a0) =D (l‘)? Vo € (OvL)'

They showed that the system is exponentially stable regardless of any condition on the coefficients of the
system and exponential stability is equivalent to exact observability at the boundary. In [§], Freitas et al.
investigated the piezoelectric beam system with thermal and magnetic effects and with friction damping

PV — QUzg + ’Yﬁpxr + (59:2 + fl (’U,p) = hl in (07 L) X <O7 T) )
MUPtt — Bpmc + ’Y/B/U:CI + Avpt + f2 (Uup) = h2 il'l (07 L) X (07 T) 9 (]‘5)
cOy — KBz + 0vg, = 0in (0, L) x (0,7),
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with the boundary and initial conditions

(L, t) = vBpa (L,t) =0, £ >0,

e (Lyt) — v, (L,t) =0, t >0,

(L,t)zo, t >0, (1.6)
0($),vt($,0):’()1($),p(l‘,O):po(SL‘), 0<z <L,

pe(2,0) =p1(z), 0(2,0) =0 (), 0 <z <L,

where the physical constants p, «, 3, v, §, k, u and ¢ are positive, € is a temperature difference, f1, fo are
nonlinear source terms and h1, ho are external forces. They proved that the dynamical system generated by
the problem and has a smooth global attractor. Other problems related to piezoelectric systems
can be found in the following references [4, [7, [17, [I8] 28]. Motivated by the above works, in this paper, we
consider the following problem

PVt — QUzy + YBDzx + 00, + fooo g (8) Ve (t —8)ds=0in (0,L) x (0,00),
pptt — BPzx + ¥BVzz = 0 in (0, L) x (0,00), (1.7)
Oy — KOy + dvr = 0 in (0, L) x (0,00).

This system is subjected to the boundary and initial conditions

U(l‘,O):Uo(fL'), Ut(l'?o) = (ZE), p(l’,O) :p0($)a T € (O,L),
pt (2,0) = p1 (), 0(x,0) =60y (z), x€(0,L),
v(0,t) = v, (L,t) =p(0,t) = p, (L, t) =6(0,t) =6 (L, t) =0, t € (0,00),

where the integral in the infinite memory term can be regarded as a natural weak damping term, the function
g is called the relaxation function, the initial data vy, v1, pg, p1 and 6y are specified later. The purpose
of this paper is to prove a exponential decay estimate for solutions of the system . Moreover, our
results depend on the construction of a suitable Lyapunov functional and the kernel of the infinite memory
term which allows us to estimate the energy of the system. In the presence of this complementary control,
the main problem concerning the stability is determining the largest class of kernels ¢ which guarantee the
stability and the best relation between the solutions of the considered system and the decay rates. However,
it remains with great importance in the study of the asymptotic behavior of the solution for the different
types of problems that can be found in the references [3, [6] 10, [IT], 12} 13} [14], 15, 2T, 26} 30].

The article is organized as follows. We present some assumptions and transformations in Section 2. We
prove the existence and uniqueness result of solutions of applying the semigroup technique in section
3. We demonstrate that the system is exponentially stable in section 4.

2. Preliminaries

To prove our main result, in this section we present the backgrounds mathematics needed later. We
shall apply the following hypotheses. For the memory kernel g = g(s), we assume that

(H1) The function g satisfying
o
gecl (R+)QL1 (RJr)a g(S) >0, VSERJH a; —go=1>0, g(]:/ g(s)ds (21)
0
(H2) There exist two positive constants dp and d; such that

—dog(s) < g'(s) < —=dig(s), Vs € Ry, (2:2)

with 190 < g(0) < dogo-
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As noted in [5], (2.2]) implies that g(s) decays exponentially, so

lim g(s) = 0. (2.3)

§—00

Remark 2.1. The assumption ([2.2]) is a very natural inequality and can be found in several works, for
example [I], 20].

Lemma 2.2 ([12]). The nezt inequalities hold,

where di, dy are positive constants and

(gov) / / (.t — $))2dsda.

Here are some notations that will help us for the computation of energy
n'(x,s) = v(z,t) —v(z,t —s), (z,t,5) € (0,L) x Ry x Ry,
which was adopted in articles [20, 2], and n' is the relative history of v satisfies
77§+77§ — U = 07 (1"7t55) € (OaL) X R-i- X R-i—v
nt(0,8) =0, nt (L,s) =0, t,s >0, (2.8)
n'(z,0) =0, n°(z,s) =no(z,s), z € (0,L), t,s >0,

where the functional class of 79 is given by the functional class of the initial data. Now, in order to deal
with the variable 7’ in the memory term, we introduce the following weighted Hilbert space

Ly =L (R+,FI1(O,L)> - {@:R+—>FI1(O,L), /OL (/Ooog(s)gogds> dm<oo},

H'(0,L) = {f € H'(0,L) : f(0) =0},

where

The space L, is endowed with the next inner product

(1, @2 / / ) P1apozdsdr.

We now consider the linear operator 7, defined on L, and given by
T = —ps, Vo € D(T),
where @, is derivative of ¢ in distributional sense with respect to s, and

D(T)={p€ Ly, ps€ Ly, p(0)=0}.
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The operator T is the infinitesimal generator of a Cy-semigroup of contractions (see [9]). By integrating by
parts and by taking into account (| and (2.3), we get

00 L
(Te, o), = / / $) psapadsdr = — /O g9(s) /O Psaprdrds
0 L,

= —2/0 g(s)&g</0 gozdac>ds

1 L o 1 00 L
— g0 | soidx] AT / Fduds

0

- / / dsdx</ / dsdx———” 12,

Then, by the introduction of n! in the system (1.7} , the system is equivalent to

PV — OUqgq + VBDgz + 005 + fooog (8) vz (t—8)ds =01in (0,L) x (0,00),
KDt — /Bp;m; + ’Yﬂvxaﬁ =01in (O,L) X (07 OO) )
cOy — KOyzy + vy, = 0in (0, L) x (0,00),
nt+nt—v =0, (z,t,5) € (0,L) x Ry x Ry,
v(0,t) = v, (L, t) =p(0,t) = py (L, t) =0(0,t) =0 (L,t) =0, t € (0,00), (2.9)
nt(oas) :n;(lﬁs) =0, t,s€ (0,00),
v (z,0) = vy (), v (2,0) = vy (x), z € (0, L),
( 0) = (:B) pe (2, 0)_ (w),9($,0):90(.%'),$€(0,L),
\ ( )_07 770(35 3)—770@ S) G(OvL)’ t,SE(0,00),

3. The Well-Posedness of the Problem

In this section, we give the existence and uniqueness of solutions for the system (12.9)) applying semigroup
theory. [16 22]. First, we introduce the vector function U = (v,u, p,q,0,n")", with v = v; and ¢ = p;. The
first equation of (2.9)) can be rewritten as follows

o0
por — (L+2B) vow + VBPws + 60 — / 9 (s) 1y (x,5) ds = 0. (3.1)
0
Therefore, the system ([2.9)) can be rewritten as the following form

{ W AU =0, t >0,
U ([E, 0) = UO (x) = (1)07 U1, Po, P1, 907 UO)T7
where the operator A : D(A) C H — H is the linear operator defined by

(3.2)

0 —1I 0 0 0 0
I++28
( 73 )am 0 Ops 0 %81, — 5 0o 9(5) Duuds
A= 0 0 0 -I 0 0
B0 0 Ope 0 0 0 ’
0 %0, 0 0 —50u 0
0 I 0 0 0 -T
where
—Uu
++25
- . L L pra + 20, — L [ g(s)nt,ds
_ —q
AU = 18 ’
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and H is the energy space given by
H=H"'(0,L) x L*(0,L) x H' (0,L) x L*(0,L) x L? (0, L) x Ly,
such that

o' 0,L)={feH" (0,L): f(0) =0},
H?(0,L) = H?*(0,L)Nn H' (0,L).

Then H, along with the inner product

~ L L L _ L
<U, U> :p/ uﬁd:c—i—u/ chdm—i—c/ 90dx+l/ VpUpdr
H 0 0 0 0
L
+ B/O (Yvw = pe) (Y02 = Do) do + (' 11, (3:3)

is a Hilbert space for any U = (v,u,p,q,0,7")T € H and U= (0,a,p,q, 5, )T € H. The domain of A is
given by

D(A) ={UeH:vpe A2(0,L), uge A (0,L), 6 € H*(0,L) N H} (0, L),
D). [ ahbds € 220.0), 0 (D) = p (1) =0}
0

Clearly, if A is a maximal monotone operator, then D (A) is dense in H.

Definition 3.1. A bilinear form B : H x H — R is said to be coercive if there is a constant ¢ > 0 such that
B(v,v) = oflolly, Vo € H.

Lemma 3.2 (Lax-Milgram [2]). Let H be a Hilbert space equipped with the norm ||-||,,. Let B be a continuous
coercive bilinear form on H and G be a continuous linear form on H, then there exists a unique u € H such
that

B (u,v) =G (v), Yv e H.
Now, we can give the next existence result.

Theorem 3.3. Let Uy € H and assume that (H1)-(H2) holds. Then, there exists a unique solution U €
C (Ry,H) for problem (3.3). Moreover, if Uy € D (A), then

UecC(Ry,DANNCRL,H).

Proof. We apply the semigroup approach. Sufficiently, we show that A is a maximal monotone operator.
First, we prove that A is monotone. For any U € D (A), applying integration by parts, we have

—Uu

v
H+y?B
_( 0 )U:rx + %p:m: + %ex - % f()oo g(S)n;mdS U
— p
(AU, U),, = P : :

jvxz - ﬁpma: q
) K 0
Uz — Eamz t
—Tnt —u Ui

we obtain

L
(AU, U),, = — <T77t,77t>Lg + ,.;/ 62dx > 0.
0
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Thus, A is monotone.
Next, we demonstrate that the operator I 4+ A is surjective. Given F = (f1, f2, f3, f1, f5, f6)? € H, we
show that there exists a unique U € D (A) such that
I+ AU = (3.4)
That is, )
(v—u=f1 € H (0,L),
pu— (L +9%8) Vo + YBpaa + 00 — [ g(s)nkpds = pfa € L? (0, L),
p—q=fs€H(0,L), (3.5)
pq — Bpzz + VBVzz = pfa € L? (07 L) )
el — KOy + du, = cfs € L2(0,L),
nt—Tnt —u=fs €L,
Using (3.5))g, we obtain
n(s)=1-e*)u+e”® / e’ fo (1)dr (3.6)
0
Inserting u = v — f1 in .2, 5, g=p— f3in 4 and (3.6 in (3.5))2, we obtain
pU — [(l +’y2ﬁ) + fo (1—e" )ds] Uz + YBDzz + 00, = hy € L?(0, L),
Up — Bpez + VBVzz = Jl E L (07 L) ) (37)
cl) — KOyy + dv, = Q € L? (0, L),
where - s
{ hi=p(fi+f2)+ [5 9(s)e™ [ e (f6 — f1),, drds,
=p(fs+ f1), Q@ =cfs+0fiu
To solve (3.7]), we consider the next variational formulation
B((Uapa 0)7(7)17]31791)) :g(’Ul,pl,Hl), (38)

- - 2
where B : [Hl (0, L) x H' (0,L) x H} (0, L)} — R is the bilinear form defined by

L oo L
B((v,p,0), (v1,p1,01)) = P/ vvide + [l +/ g(s) (1 —e7?) ds] / VzV1zdT
0 0 0
L L
u/ pprdx + B/ (Yoz = pz) (Y12 = P1a) d
0 0
L L L
+ 5/ (Opv1 + vi01) dz + c/ 001dz + /{/ 0,01dx,
0 0 0
and G : [Hl (0,L) x H' (0,L) x H} (0, L } — R is the linear functional given by

G (vi,p1,01) = /0 hividx + /OL Jiprdz + OL Qb dz.
Now, for W = H* (0,L) x H! (0, L) x H} (0,L) equipped with the norm
(v, 2,015 = 10ll5 + lozlls + llpll5 + 1| (vee = pa)ll3 + 1015 + 16213,
applying integration by parts, we have
B((v,p,0), (v,p,0)) = pllv]; + [l + /0009(8) (1—e) dé‘] [vell3 + 12113

2 2 2
+ B 1(voe = po)lla + cllfllz + (10215 -
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Then, for some My > 0
B ((v.p.) (v,p,6)) = Mo||(v,0.9) [y

So, B is coercive. On the other hand, applying the Cauchy-Schwarz inequality, we get

1B ((v,,0), (v1,p1,01)) < na [[(v,p,0) [y (| (vi, p1, 61) |y -

Similarly
‘g (Ul7p1791)’ < na ||(U1ap1501)||W .
So, by applying the Lax-Milgram Lemma, we demonstrate the existence of a unique

(v,p,0) € H' (0,L) x H'(0,L) x H} (0, L),

satisfying
B ((v,p,0), (v1,p1,61)) = G (v1,p1,01), V(v1,p1,601) € W.

By through (3.5)1, we have u —v € H'(0,L). So, u = v+ u—v € H'(0,L). By a similar way, the

substitution of p into (3.5))3 yields ¢ € H' (0, L). Hence

(u,q) € H'(0,L) x H' (0, L).

(3.9)

Now, to show U = (v,u,p,q,0,n")T € D (A) we will prove that n* € D (7). The function given in (3.6),

satisfies (3.5))g, with n*(0) = 0. Moreover, the second term on the right side in (3.6))

seRy — e_s/ e’ fo (1) dr,
0

belongs to L,. This can be seen by changing the order within the integral

/0 T () /O ’ <es /O T fon () dr>2da;js

_ /0 T g(s) e OL ( /O e fon () dT) dads

< /OOo (s)e 2 OL </08er7) </0 €™ | fou (T)Fdf) dzds
< [Towe [ ([t par) s

_ /0 - Toog(s) e ST < /0 ’ oo (7’)|2dx> dsdr

NS

_ /OL/OOOQ(T)UM (7 drde < .

Moreover, since u € H* (0, L), we can deduce that ' € L, and as

nt(s) =e Su—e* /S e fo (1)dr + fo(s),
0
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we also have n% € L, and this way n* € D (T). Moreover, if we take (p1,60;) = (0,0) € H' (0, L) x H} (0, L)
in (3.8), then we obtain

pfo vvrde + [(l + 726) + fo (1—e" ds] fOL v%«vlzd:n (3.10)
-8B fo PeU12dT + 5f0 O v1dx = fo hividx, Yv1 € H' (0, L) . ’
Multiplying (3.7)2 by v and adding with (3.7)1, we obtain

pv+lwp+50 —h1—vJ1
Vrz =
1+ [57g(s) (1 —e*)ds]

€ L*(0,L). (3.11)
Consequently, we obtain )

ve H?(0,L).
Furthermore, if we take (v1,0;) = (0,0) € H' (0, L) x H} (0, L) in (3.8), then we obtain

L L L L
M/ pprdx + B/ Paprzdr — 75/ VgP1zdr = / Jiprdz, Vpyr € H' (0, L). (3.12)
0 0 0 0

By exploiting (3.7)2 and (3.11)), we obtain

1
Prz = VVzz + Hp —Z-J1€L?(0,L), (3.13)
g B
Consequently, we obtain .
pe H?(0,L).

Similarly, if we take (v, p1) = (0,0) € H' (0,L) x H* (0, L) in (3.8), then we have

L L L L
c/ 001dx + I@’/ 0:01.dx + 6/ vpbhidr = / QO1dx, V0, € H} (0,L). (3.14)
0 0 0 0
By exploiting (3.7))3, we obtain
J 1
Opw = 0+ vy — —~Q € L2(0,L). (3.15)
K K K

Consequently, we obtain
0 c H*(0,L)N H (0,L).

Now, by applying (3.5)2 and exploiting (3.9)), (3.11)), (3.13]), (3.15), then we get

oo
/ 9(8)lgads = pu — (L +72B) vuy +1Bpus + 00, — pfo € L* (0, L).
0
Consequently, we obtain
o0
| stomteds e 12 0.1).
0
Thus, by integrating (3.12)) and (3.10|) by parts and exploiting (3.7] 1, .2, then we obtain

(Bpz (L) — vBus (L)) p1 (L) — (Bpz (0) — vBvz (0)) p1 (0) = 0,
([(L+%8) + [~ g(s) (1 = )dS] vy (L) = 7Bpx (L)) v1 (L)
—([(1+~*8) + fg 9(s) (1 —e~*) ds] vz (0) —vBpz (0)) v1 (0) = 0.

Furthermore, if we take py = % and vy = ¥, then we get

{ ’Yﬁpx (L) - 72ﬂvx (L) =0,
[(1+728) + [" g(s) (1 —e™®) ds] v (L) —vBpa (L) = 0.

(3.16)



H. Messaoudi et al., Journal of Prime Research in Mathematics, 19(2) (2023), 116-134 125

By performing some calculations on the above expression (3.16)), we get

[z + /OOO g(s) (1 —e®)ds| vy (L) =0,

and as [l + [;° g(s) (1 — e %) ds| > 0, then we obtain

vy (L) = 0. (3.17)
By substituting into , then we get

Pz (L) = 0.

Therefore,
vy (L) = px (L) = 0.

Then, there is a unique U € D (A) such that (3.4]) is satisfied. Hence, A is a maximal monotone operator.
So, by applying the Hille-Yosida theorem, we obtain the well-posedness result. O

4. Exponential stability
In this section, we prove and state the technical lemmas needed for the proof of our stability results.

Lemma 4.1. Let (v,p,0) be a solution of @ Then, the energy functional E (t), defined by

1 [t 1
E(t) =3 /O (007 + i} 4+ 102+ B (v = p2)? + 0] dw+ 5 (g0 2) (1), (4.1)

satisfies,

L L
E'(t) = —/i/o 02dx + % (¢ ovg) () < —Ii/o 02dx — 62—1 (gowg) (t) <0. (4.2)

Proof. Multiplying (3.1)), (2.9)2 and (2.9)3 by v¢, p; and 6 respectively, integrating over (0, L), taking into
account the boundary conditions and summing them up, we obtain

Ld [*
2dt J,

L L 0o
+ K,/ 02dx —/ on (/ g(s)nt, (z,s) ds> dx = 0. (4.3)
0 0 0
We estimate the last term of (4.3) as follows
L 00
o ([ sttt as ) as
0 0
L oo
= —/0 (ni + ng) (/0 9(8)n§;x(ﬂc,8)d8> dz
00 L 00 L
— [T ([ ntntatesiae) as— [ gto) ( [ttt st ) as.
0 0 0 0

Integrating by parts, we have

L o0
1d 1/
[ ([ omtatesias ) de = 5 5 (9o @) 5 (90 0 (14)
By substituting (4.4)) into (4.3]), bearing in mind (4.1)), yields (4.2)). O]

[pvf + ,upt2 + lvg + B (yvz — pm)2 + 692} dx
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Lemma 4.2. Let (v,p,0) be a solution of (2.9). Then, the functional

L L
Li(t) = p/ vpvdx + 7#/ vpedzx, t >0,
0 0

satisfies for any 1 > 0,

l L L ,YZHZ L 526 L
I(t) < —4/ vidr + 61/ pidr + <p + ) / vide + l/ 02 dx
0 0 €1 0 0

+ %J (gowvg) (t), ¥t > 0. (4.5)

Proof. By differentiating I;(t), applying (2.9} 1, .2 and integrating by parts together with the boundary

conditions, we obtain
L L L
IN(t) = —al/ v2dx —|—,0/ vidx —|—’y,u/ prurda
0 0 0

L L 00
-6 | Opvdr+ / Vg (/ g(s)vz(x,t —s) ds> dx. (4.6)
0 0 0
The Young inequality leads to
L L 2 (L
'y,u/ prugdx < 81/ pidx + / vid, (4.7)
0 0 4e1 Jo
L [ (L 52¢ L
—5/ O vdr < / vidz + / 62dz, (4.8)
0 4 Jo L Jo

and

/OL% </Ooog(8)vx(x,t—s)ds> du
:_/0va (/OMQ(S)(Ux(JJ,t)—v;,;(a:,t—s))d3> dx+90/0Lva2:dx

< (51+90)/Lv da:+421/L (/Ooog(s)(vz(m,t)—vx(aﬁ,t—s))ds>2dx

L
< (01 + ) / o+ 20 (gou,) (1), (19)

l
Substltutlng and in and letting 1 = —, we get (4 O

Lemma 4.3. Let (v,p, 0) be a solution of (@) Then, the functional

L
Ir(t) = / (pve + yupe) (yo — p) dz, t >0,
0
satisfies, for any €2 > 0,

TH g 2 1 t
It < —= | pldx+ 462/ (Y — pg)*dx + — (gg + a%) / v2dx
2 0 0 482 0

2 2 L 2 L
- §
+ ('yp + Wp)) / v2da + S / 02dz + 22 (gowy,) (t). (4.10)
0 452 0 482

2vp
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Proof. By differentiating I2(t), applying (2.9))1, (2.9)2 and integrating by parts together with the boundary

conditions, we obtain

L
Ié(t) = _al/ z (Yz — pz) dx — 5/ (yv —p)dzx
0
L L
+ (Y —p) / viprd + yp / vida
0 0

—w/OLp?der/OL(wx—pm) </Ooog(8)vx (m7t—8)d8> dx.

Using the Young inequality, we get

L L 2 04% L 2
— o] / Vg (’Y'Um - px) dr < 52/ (va - p:):) dr + — / Umdxa
0 0 dea o

4eg

L
(Vu—p
('yzu—p)/ ’Utptdx< / ) / vtzd:r.
2vp 0
Using the fact that

/Ome—pz) (/Ooog<s>vm<x,t—s>ds) da

L L 52¢ L
- (5/ 0 (yv —p)dx < 52/ (Ywr — pe)* dz + — Hﬁdx,
0

:—/OL (0 — pa) (/Omg@) (0s (2,) — v, <m,t—s>>ds) dx+90/0L (05 — Pa) vade.

By applying the Young inequality again, we have
L 0o
[ ([0 ) v ot ) ds) o
0 0

L
<e [ Ou-p) e 2 (gou) ()
0 2

and
L L 2 [t
go/ (Y0 — pg) Vzpdx < 52/ (Y0z — pe)* dz + 22 / v2dz.
0 0 deg

Inserting (4.12))—(4.16)) in (4.11)), we obtain (4.10]).
Lemma 4.4. Let (v,p,0) be a solution of (@ Then, the functional

L L
I3(t) = p/ vvpda + u/ ppedz, t >0,
0 0

satisfies

L L
UaQ:dm - B/ ('Y'ULE _px)2 dr + :U’/ pfdl’
0
L 2 L

5
tp [ v2de+ 5| 02de+ L (gou) (1)
A U o 2l

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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Proof. By differentiating I3(t), applying (2.9))1, (2.9)2 and integrating by parts together with the boundary

conditions, we obtain

L L L L
IL(t) = 5/ (Yuy — pa)? da + p/ v2dr — oy / v2dr — 5/ 0 vdx
0 0 0 0

—l—,u/OLp%dx—l—/Ova </Ooog(s)vz(x,t—s)ds>d:c. (4.18)

Using the Young inequality, we arrive at

/0va (/OOOQ(S)Ux(ﬂc,t—s)ds> dz

:—/0va (/Ooog(s)(vm(m,t)—Uw(:n,t—s))ds> d:l:—l—go/OLvidx
<Gra) [ ot g [C([T o0 @0 vt )b

L
< (61 + 90) / v2dz + 90 (gowvg) (1), (4.19)
0 461
and
L Lot s (L,
-0 | Opvdr < — vydr + — 0rdx. (4.20)
0 4 Jo L Jo
l
Substituting (4.19) and (4.20) into (4.18]) and letting d; = o0 e get (4.17)). O
Lemma 4.5. Let (v,p,0) be a solution of (@) Then, the functional
) L o0
10 == [“u ([ a0t - ot = s ) s
YJo 0
satisfies, for any €3,e4 > 0, the following estimate
pgo [F L L
It < e vidr + 253/ v2ds + 64/ (Ywz — po)? dz:
27 Jo 0 0
L
+ [ o+ Coilgora ) (4.21)
0
where )
2 2 2 2
(a -7 ﬁ) 90 B“g0 90 90 0°dy pdado
C = = (1 :
s ( Ie? oz 4 e T A T g,
Proof. First, we have
a [o.¢]
5 (] 0 — vt —s)as
o t
— 5 ([t =50 = otesas)
t t
= [ -9t~ otwsds+ [ gt sue s

= govt + /000 g (s)(v(z,t) —v(x,t — s))ds.
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By differentiating I,(t), applying (2.9))1 and integrating by parts, we get

B = (2-9) | “u ([ s untet) — vatont = s ) o

+8 [ (o= (/Ooo 9(3) (s (1) — v (1, — 5))ds) du

+ j/OL Oz </0°° g(s)(v(x,t) —v(x,t — s))ds) dx

_ i/OL (/Ooog(s) ve (2,1 — 8) ds> </Ooog(s)(vx(:r,t) vyt — s))ds> do

_ P9 ngd;C _ f;/OL s (/OOO g(s)(w(z,t) —v(z, t — s))ds) d. (4.22)

7 Jo
Using the Young inequality, (2.6 and (2.7, we have

<: _ 75) /OL v </O°o 9(8) (0 (2, £) — va (£ — s))ds) dr (4.23)

L (o — 725)2 90
<e / vid + ———=—"=(g o vy)(t),
7 o)

N . " () (0(st) — vt — 8))ds ) da
T8y )

IA
‘b
N
(e}
Sl ]
I~y
|
‘b
Y
[N}
—~
Q\
O
(o
8
N—
—~
S~
N—

A
‘b
NS
S
<
o
s
i)
%)
o2
S

‘ 7 (g ovz)(t), (4.24)

j/OL O </0°0 g(s)(v(z,t) —v(x,t — s))ds> dz
= /OL 0rdx + (id;(g o vg)(t), (4.25)

L

0

74(9 0 vg)(t), (4.26)

T vy en et —syds) ([ a(s)onlnt) — on(nt— ))ds ) de
Ty )(/ )

- i /0 ’ ( /0 " () (0al,t) — vt — s))ds)2dx

and

-2 [t ([ s ento.) watst = 5)ts ) d
< %0 (1 + 4?37) (govs)(t) +e3 /OL vida. (4.27)

Estimate (4.21)) follows by substituting (4.23)—(4.27)) into (4.22)). O
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Now, we define the Lyapunov functional £(t) by
L(t) = NE(t) + Nily (t) + Nolo (t) + N3l3 () + Naly (1), (4.28)
where N, Ny, No, N3 and N4 are positive constants.

Lemma 4.6. Let (v,p,0) be a solution of (@) Then, there exist two positive constants k1 and kg such
that the Lyapunov functional satisfies

K1E (t) < L(t) < kB (1), V>0, (4.29)

and
L'(t) < —-pLE(t), Vt > 0. (4.30)

Proof. From (4.28)), we have

L L
£6) = NE ()] < pNy [ [useldo+rus [ fopi]do
0 0

L
+N2/0 |(pve + yppe)| | (yv — p)| da

L L
+ pN3/ |vvy| v + N3 / |ppe| e
0 0

22 g ([7 o)10te.0) = ot = )l as )

By applying the Young, Poincaré, Cauchy-Schwarz inequalities and the hypothesis (2.4), we obtain
|L(t) — NE (t)| < TE (t),

which yields
(N—-T)E({t)<L(t)<(N+71)E(t),

by choosing N (depending on N, No, N3 and Ny) sufficiently large we obtain (4.29)). Now, By differentiating
L (t), using Lemma {4.1] to Lemma we get

l 1 L
L£(t) < — [4 (N3 + Np) — . (gg + a%) Ny — 253N4] / v2dx
€9 0

L
— [%NQ — 51N1 — ,LLNg] / p%d:n
0

2,2 2, _ )2 L
0

2y deq 2y

L
— [BN3 — 42Ny — €4N4]/ (Yo — pz)* dz
0
52 52 L
— N = ZE (N + N3) = N2 - Ny / 02dz
l 482 0

N
_ |:2(51 — %? (Nl + Ng) — qu Ny — 053,€4N4:| (g o ’L)m)(t). (4.31)
)
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B tti L L L
se = — = — = = —
y mg €1 N1 , €2 NQ’ €3 €4 N47
/ ! L9 2\ A2 Loy
L' (t) < — 1(N1+N3)—1(90+041)N2 —2 /0 vpdx
ot g
- {—NQ — uN3 — 1} / p%dl‘
2 0
2,2 2, _ )2 L
2y 4 2vp 0
L 2
~ 5% =5 [ G~ po) e
0
52 52 L
— |:,‘<.',N — TC (N1 + N3) — NQQTC — N4} / 62 dx
0
N 90 90 2
— | 561 — 57 (N1 + N3) — =-Ny — CNy| (g ovg)(2).
2 21 4
Now, we select our parameters appropriately as follows. First, we choose N3 large enough so that
6 =pFN3—5>0.
Next, we select Ny large enough so that
52:%N2—1—MN3>0.
We take Nj large such that
l 1
03 = 7 (Nu + N3) = 4 (98 +af) N3 —2>0.
We select Ny large enough so that
22 2, 2
54:@]\[4_ p—}—MNl Ny — ’YP‘FM Ny — pN3 > 0.
2y 4 2vp
Finally, we choose N large enough so that (4.29)) remains valid, further
52 52
05 = HN—TC<N1+N3)—N§TC—N4>O,
N 90 90 2
0 = —01—=(N1+ N3)—=N5—CN. .
6 5 01 2l( 1+ N3) 1 V2 CNy >0
So, we end up with
L L L
L'(t) < —5/ (Yvz — pa)* da — 52/ pide — (53/ v2da
0 0 0
L L
— 54/ vidr — 55/ 02dx — 56(g o vy)(1).
0 0
Use the Poincaré inequality to substitute — fOL 62dx by — fOL 0%dx, we get
L L L
L£'(t) < —5/ (Y0z — po)? da — 52/ prdx — 63/ vidz
0 0 0
L L
- 54/ vZdx — 655/ 62dx — 06(g o vy)(1)
0 0
L
<-w [/ [vi +p? o+ (yvr — pu)® FvE 92} dz + (go Ux)(t)} : (4.32)
0



H. Messaoudi et al., Journal of Prime Research in Mathematics, 19(2) (2023), 116-134 132

where © = min (6, d2, 03, d4, ¢d5, ) > 0. On the other hand, we have

By <e] [ [+ (e o 407 o+ (gou)()].

which implies that

L
- [/ [v% +pf 4 (Yve — o) 0 + 02] dz + (go vx)(t)] < -cE(t). (4.33)
0
The combination of (4.32)) and (4.33)) gives (4.30). O

Now, we will use the equivalence relation (4.29)) to estimate the energy of (2.9) by applying the estimation
(4.30). Hence, we can state and prove the next stability result.

Theorem 4.7. Let (v,p,0) be a solution of (@) Then, the solution (v, p,0) decays exponentially, i.e. there
exist two positive constants \1 and Ao such that

E(t) < g™ Vit > 0. (4.34)
Proof. By applying Lemma 4.6 we get
L'(t) < -pE(), Vt>0. (4.35)

By exploiting the equivalence relation (4.29)), we infer that

—BE((t) < —%E(t), vVt > 0. (4.36)
2
By substituting (4.36]) into (4.35)), we get
L'(t) < —-ML(t), Vt >0, (4.37)

where A\ = 81/k2 > 0. A simple integration of gives
L(t) < L(0)e™ M, Wt > 0.

By applying the other side of the equivalence relation ie. k1 E (t) < L(t), we obtain
E (t) < Xge™ Mt Wt >0,

where Ay = £(0)/k1 > 0. The proof is complete. O

Acknowledgements:

The authors are grateful to the anonymous referees for their detailed comments, which helped clarify
this manuscript.

Data Availability. No data were used to support this study.
Conflict of interest. The authors declare no conflict of interest.



H. Messaoudi et al., Journal of Prime Research in Mathematics, 19(2) (2023), 116-134 133

References

[1] F. Ammar-Khodja, A. Benabdallah, J.E. Muifioz Rivera and R. Racke, Energy decay for Timoshenko systems of
memory type, Journal of Differential Equations 194:1 (2003), 82-115.

[2] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer Science, Business
Media, 2011. 32|

[3] A. Choucha and D. Ouchenane, Well posedness and stability result for a microtemperature full von Kdrmdn beamn
with infinite-memory and distributed delay terms, Mathematical Methods in the Applied Sciences 45:10 (2022),
6411-6434. [

[4] Ph. Destuynder, I. Legrain, L. Castel and N. Richard, Theoretical, numerical and experimental discussion of
the use of piezoelectric devices for control-structure interaction, European journal of mechanics. A. Solids 11:2
(1992), 181-213.

[5] M.J. Dos Santos, R.F.C. Lobato, S.M.S. Cordeiro and A.C.B. Dos Santos, Quasi-stability and attractors for a
nonlinear coupled wave system with memory, Bollettino dell’Unione Matematica Italiana 14:2 (2021), 297-321.

[6] M. Douib, S. Zitouni and A. Djebabla, Ezponential stability to a laminated beam in thermoelasticity of type III
with delay, Malaya Journal of Matematik 10:1 (2022), 20-35.

[7] H.D. Ferndndez Sare, B. Miara and M.L. Santos, A note on analyticity to piezoelectric systems, Mathematical
Methods in the Applied Sciences 35:18 (2012), 2157-2165.

[8] M.M. Freitas, A.J.A. Ramos, A.O. Ozer and D.S. Almeida Junior, Long-time dynamics for a fractional piezo-
electric system with magnetic effects and Fourier’s law, Journal of Differential Equations 280 (2021), 891-927.
m

[9] M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory, Evolution
Equations, Semigroups and Functional Analysis (Milano, 2000), Progr. Nonlinear Differential Equations Appl.,
Birkhéuser, Basel 50 (2002), 155-178.

[10] A. Guesmia, On the stabilization for Timoshenko system with past history and frictional damping controls, Pales-
tine Journal of Mathematics 2:2 (2013), 187-214.

[11] A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory, Journal of mathematical
analysis and applications 382:2 (2011), 748-760.

[12] J. Hao and F. Wang, Energy decay in a Timoshenko-type system for thermoelasticity of type III with distributed
delay and past history, Electronic Journal of Differential Equations 2018:75 (2018), 1-27.

[13] M. Houasni, S. Zitouni and A. Djebabla, Global existence and general decay of a weakly nonlinear damped Timo-
shenko system of thermoelasticity of type III with infinite memory, Journal of Applied Nonlinear Dynamics 11:1
(2022), 195-215.

[14] H.E. Khochemane, L. Bouzettouta and S. Zitouni, General decay of a nonlinear damping porous-elastic system
with past history, Annali Dell’Universita’ Di Ferrara 65:2 (2019), 249-275.

[15] H.E. Khochemane, A. Djebabla, S. Zitouni and L. Bouzettouta, Well-posedness and general decay of a nonlinear
damping porous-elastic system with infinite memory, Journal of Mathematical Physics 61:2 (2020), 021505.

[16] Z. Liu and S. Zheng, Semigroups associated with dissipative systems, CRC Press, 1999.

[17] H. Messaoudi, S. Zitouni, H.E. Khochemane and A. Ardjouni, General stability for piezoelectric beams with a
nonlinear damping term, Annali dell’ Universita di Ferrara 69 (2022), 443-462.

[18] B. Miara and M. L. Santos, Energy decay in piezoelectric systems, Applicable Analysis 88:7 (2009), 947-960.

[19] K. Morris and A.O. Ozer, Strong stabilization of piezoelectric beams with magnetic effects, In 52nd IEEE Confer-
ence on Decision and Control (2013), 3014-3019.

[20] J.E. Mufloz Rivera and H.D. Ferndndez Sare, Stability of Timoshenko systems with past history, Journal of
Mathematical Analysis and Applications 339:1 (2008), 482-502.

[21] P.X. Pamplona, J.E. Mufoz Rivera and R. Quintanilla, On the decay of solutions for porous-elastic systems with
history, Journal of mathematical analysis and applications 379:2 (2011), 682-705.

[22] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, New York,
1983. B

[23] D.W. Pohl, Dynamic piezoelectric translation devices, Review of Scientific Instruments 58:1 (1987), 54-57.

[24] A.J.A. Ramos, M.M. Freitas, D.S. Almeida, S.S. Jesus and T.R.S. Moura, Equivalence between exponential
stabilization and boundary observability for piezoelectric beams with magnetic effect, Zeitschrift fir angewandte
Mathematik und Physik 70:2 (2019), 1-14.

[25] A.J.A.Ramos, C.S.L. Gongalves and S.S. Corréa Neto, Exzponential stability and numerical treatment for piezoelec-
tric beams with magnetic effect, ESAIM: Mathematical Modelling and Numerical Analysis 52:1 (2018), 255-274.
m

[26] M. Saci, H.E. Khochemane and A. Djebabla, On the stability of linear porous elastic materials with microtem-
peratures effects and frictional damping, Applicable Analysis 101:8 (2022), 2922-2936.

[27] K. Uchino, Chapter 1, The development of piezoelectric materials and the new perspective. In Kenji Uchino,

editor, Advanced Piezoelectric Materials, Woodhead Publishing in Materials, pages 1-92. Woodhead Publishing,
Second Edition, 2017.



H. Messaoudi et al., Journal of Prime Research in Mathematics, 19(2) (2023), 116-134 134

[28] J. Yang, An Introduction to the Theory of Piezoelectricity, New York: Springer, 2005.

[29] T.J. Yeh, H. Ruo-Feng and L. Shin-Wen, An integrated physical model that characterizes creep and hysteresis in
piezoelectric actuators, Simulation Modelling Practice and Theory 16:1 (2008), 93—-110.

[30] S. Zitouni, A. Ardjouni, K. Zennir and R. Amiar, Well-posedness and decay of solution for a transmission problem
in the presence of infinite history and varying delay, Nonlinear Studies 25:2 (2018), 445-465.



	1 Introduction
	2 Preliminaries
	3 The Well-Posedness of the Problem
	4 Exponential stability

