Journal of Prime Research in Mathematics
Vol. 1 (2013), Issue 1, pp. 11 – 17
ISSN: 1817-3462 (Online) 1818-5495 (Print)
ISSN: 1817-3462 (Online) 1818-5495 (Print)
On grothendieck-lidskii trace formulas and applications to approximation properties
Qaisar Latif
Jacobs University Bremen, Research 1, Bremen Deutschland.
Abdus Salam School of Mathematical Sciences GC University Lahore, 68-B New Muslim
Town, 54600 Lahore Pakistan.
\(^{1}\)Corresponding Author: lubayeifr@gmail.com.
Copyright © 2013 Qaisar Latif. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Published: December, 2013.
Abstract
The purpose of this short note is to consider the questions in connection with famous the Grothendieck-Lidskii trace formulas, to give an alternate proof of the main theorem from [10] and to show some of its applications to approximation properties:
Theorem: Let \(r ∈ (0, 1]\), \(1 ≤ p ≤ 2\), \(u ∈ X^{∗}|⊗_{r,p}X\) and \(u\) admits a representation \(u=\sum \lambda_{i}x_{i}{‘} ⊗x_{i}\) with \((λi) ∈ l_r,(x_{i}^{‘})\) bounded and \((x_i) ∈ l_{p’}^{w} (X)\). If \(1/r + 1/2 − 1/p = 1\), then the system \((µ_k)\) of all eigenvalues of the corresponding operator \(\widetilde{u}\) (written according to their algebraic multiplicities), is absolutely summable and \(trace(u) =\sum µ_k\).
Theorem: Let \(r ∈ (0, 1]\), \(1 ≤ p ≤ 2\), \(u ∈ X^{∗}|⊗_{r,p}X\) and \(u\) admits a representation \(u=\sum \lambda_{i}x_{i}{‘} ⊗x_{i}\) with \((λi) ∈ l_r,(x_{i}^{‘})\) bounded and \((x_i) ∈ l_{p’}^{w} (X)\). If \(1/r + 1/2 − 1/p = 1\), then the system \((µ_k)\) of all eigenvalues of the corresponding operator \(\widetilde{u}\) (written according to their algebraic multiplicities), is absolutely summable and \(trace(u) =\sum µ_k\).
Keywords:
Eigenvalue distributions, approximation properties, trace formulas, r-nuclear operators.