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A NUMERICAL APPROACH FOR SOLVING
HAMMERSTEIN INTEGRAL EQUATIONS IN BANACH
SPACES

MOSTEFA NADIR

ABSTRACT. In this work, we give a weaker conditions guarantee the bound-
edness of the Hammerstein integral equation in LP spaces, also we study
conditions of the convergence of the approximate solution to the exact one
of the integral equation using the successive approximations method. Fi-
nally, we treat numerical examples compared with other papers in order
to confirm the efficiency of our results.
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1. INTRODUCTION

Many problems which arise in mathematical physics, lead to mathematical
models described by nonlinear integral equations. In particular, Hammerstein
integral equations are of high applicability in different areas of applied mathe-
matics, physics, potential theory and electostatics. Also, they are widely used
in many applied areas, which include engineering, radiation of surface water
wave, geophysics, electricity and magnetism, kinetic theory of gases, hered-
itary phenomenal in biology, quantum mechanics, mathematical economics,
and queuing theory. generally, we can say Hammerstein integral equation is
one of the most practical ones. Many different methods have been used to
approximate the solution of such integral equations. In [1, 4], an iterative
scheme based on the homotopy analysis method has been used to solve this
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integral equations, in [10] an approach based on single-term Walsh series is
proposed. We Note that, due to the Green’s function we can transform any
ordinary differential equation of the second order with boundary conditions
into an Hammerstein integral equation of the general form

b
wlto) = | Ko, 01t 0(0)dt = Flto), 1)
or equivalently

b
ﬂm:/k@wmmmw, (2)

where k(tg,t) is a map from [a, b] X [a, b], into R and I(¢, ¢(t)) a nonlinear map
from [a,b] x R, into R, % () and f(tg) are in LP([a,b]). The goal of this paper
is to give sufficient conditions for the existence and uniqueness of a solution
@ € LP([a,b]) of the equation (1) under weaker hypotheses; where we shall
assume that
1) the function (¢, p(t)) is strongly measurable in ¢ and continuous in .
2) ||t o) < ao(t) + by ||| for t € [a,b] and ¢(t) € R, where ag €

Li([a,b]) such that —+— =1 and by > 0. Let us recall that, another existence

theorems for LP-solutions of (2) with a kernel k € L? were proved in the papers
[7, 11]Obviously, in this paper the kernel & is not necessary LP-integrable.

2. MAIN RESULTS

Theorem 1. Suppose that the functions k(to,t), and I(t, p(t)) satisfy the fol-
lowing conditions
(A1) The kernel k(to,t) is measurable on [a,b] X [[a,b] and such that

q—1

b p—0 p—o
(/ (o, )] 41 dt0> < M, for allt € [, 1],

where 0 < p and o,p,q > 1.
(A2) The kernel k(to,t) is measurable on [a,b] X [[a,b] and such that
ptq

b q—pto q—pto
(/ lke(to, )| 7+ dt> < My, for all to € [a, b]

(A3) The function l(t,p(t)) is a nonlinear map from [a,b] x R, into R
satisfying the Carathéodory condition and such that

|1(t, o(8))] < ao(t) + bo |¢(t)]

1 1
where ag(t) € Li([a,b],R), by >0 and — 4+ — = 1.
p q

ISEiS]
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Under conditions (A1),(A2),(A8)and q < p the operator

b
Agtta) = [ Klto. Ot o(0)), Q
is a map from LP([a,b]) into LP([a,b]).

Proof. From the condition (A3), we can write

It ()] < <|ao<t>\ by \so(t)rf?) ,

and therefore
1

o —(/ i, |th) g(/ab <\ao<t>r+borso(t>|5)th>q

Using Minkovski’s inequality, it comes

it @)l < e (( / b|ao<t>|q); ([ m},)é)

p
< c \Iao(t)\\q+bo!\<p(t)!!z§’)-

)) is a continuous element of L%([a,b]) [12].

Hence the operator (¢, p(t
P([a,b]) we consider,

However, on the space L

b
Ap(to) = / K(to, DL, () dt, (4)

where following [3], we have

b
[Ap(to)| = k(to, )I(L, ¢(t))dt]| ,

b
< / (to, DIt 9(1))] dt,

q—p+o

1
b p—o P g
-/ <|k<to,t>|q1 |z<t,so<t>>|Q) Kt D)0 (it 0(e))] 7 dt,

< (/ab|k(to,t>|’f3_ff|Z< \th) (/ bt )] Pt ) (/ (e ()"t
1

q—pto

L p—o
Ap(to)l < My 7T it o)) 7 ( / k(to, )] 1 [1(t, (1 >>|th> |
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or again,
q—pto p+o o 117 p
Apto)l? < (M, P70 it o)) T ( / (o, 1) - 11<t,so<t>>|qczt)
b % q—pto L %
([ astarran)” < a0 e oten)s (/ ( [ ke, 015 Tt pteplar) an )
q—g-ﬁ-a p—o U % %
< M, T it e(t)) T (/ h(to, )] =T dm) (/ 1t () rth)
Q*I;ro L a
< M 7T )T MY UL o))
(p—0) p-0

[Ae(tolll, < My P My T (it o))l -

Hence, the operator Ap(ty) is well defined from LP([a,b]) to LP([a,b]). O

3. EXISTENCE AND UNIQUENESS OF LP([a,b]) SOLUTION

Consider the nonlinear integral equation

o(to) = /bk(to,t)l(tvw(t))dt,

we would like to know what conditions one require on k(tg,t) and I(¢, ¢(t)) in
order for this equation to have a solution ¢(t) € LP([a,b]).

Theorem 2. Suppose that the functions k(to,t) and I(t, p(t)) satisfy the fol-
lowing conditions
(B1)The kernel k(tg,t) belongs to the space LP for all ty € [a, b]

1
b P
(/ \k(to,tﬂpdt) < Ni(to), Vto € [[a,b].

(B2)the function l(t,p(t)) belongs to the space LY for all t € [[a,b]

(/ 0, |th)1<0

and satisfying the Lipschitz condition

[(t, p1(2)) — U(t, pa())] < L(2) | (t) — w2()]
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_pq
with the function L(t) belongs to the space LP—1 with q < p,

pP—q

Pq
(/ |L(t)|P— th> < No.

Under assumptions (B1) and (B2), the successive approximation

b
(o) = / K(to, DI(E, ou (1)),

converges almost everywhere to the solution of the equation (2)provided
b
Ng’/ NP(t)dt = NP < 1.
a

Proof. For this method we put ¢o(t) as an identically null function and suc-
cessively

b
%H(to):/ k(to, )Lt on(D)dt, 1 =0,1,2,...n

and therefore, we obtain

b
onst — oul < / (to, )] [1(t, pn(£)) — (£, gn1 (1)) dt,

b
onst — onl < / k(to, D)) L(E) |n — pns] dt,
a

< </ab|k(to,t)|pdt> (/ |L(t)|P— q>ppqq</ab|%_%l|pdt>

b
Nf(tO)Ng/ lon _Spn—1|p dt, (5)

A
S =

IN

’SOn—i-l - @n|p

using the condition ¢g(t) = 0,we get

P
b q
|1 (t0)[” < NT(to) </ ]l(t,O)\th> = N{(t0)C",
and from (5), it comes

b
lpa(to) — w1(to)|” < Nf(tO)sz/ NY (to)CPdty = CPNP N7 (to),
a

b
alto) — ealto)l? < NP(to)NE / CPNP(t0) NPdto = CPN?P NP (1),
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more generally
|n+1(to) — ¢n(to)|” < CPN*" N (1),
or again after simplification

[ont1(to) — en(to)] < CN*"Ni(to).

This expression gives that the sequence ¢, (to) taken by the series

p1(to) + (p2(to) — @1(to)) + - + (@p(to) — p-1(to)) + -,
has the majorant

CNi(to)(14+ N + N? + ..NP71 ¢ .

Naturally, this series converges. Hence the sequence ¢, (tg) converges to the
solution of the equation (2). O

4. NUMERICAL EXPERIMENTS

In this section we describe some of the numerical experiments performed
in solving the Hammerstein integral equation (1). In all cases, the interval is
[0, 1] and we chose the right hand side f(¢) in such way that we know the exact
solution. This exact solution is used only to show that the numerical solution
obtained with the method is correct [8, 9][8,9]. In each table, ¢ represents the
given exact solution of the Hammerstein equation and @ corresponds to the
approximate solution of the equation produced by the iterative method

Example 1. In the following Hammerstein integral equation (1) we seek the

1 1
solution into LP space for p > 1 and q < p with — + — =1,
p q

1
olto) - [ 2pexpl(—gHe)it = b

where the function f(to) is chosen so that the solution ¢(t) is given by
p(t) =t

Values of t | Exact solution ¢ | Approx solution @ | Error Error [5]

0.000000 | 0.000000e+000 | 0.000000e+000 0.000000e+000 | 2.45505e-007
0.200000 | 2.000000e-001 2.000000e -001 2.252524e-009 | 2.45505e-007
0.400000 | 4.000000e-001 4.000000e -001 4.505049e-009 | 2.45505e-007
0.600000 | 6.000000e-001 6.000000e -001 6.757573e-009 | 2.45505e-007
0.800000 | 8.000000e-001 8.000000e -001 9.010097e-009 | 2.45505e-007

Table 1. The exact and approximate solutions of example 1 in some arbitrary points,
and the error compared with the ones treated in [5].
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Example 2. In the following Hammerstein integral equation (1) we seek the

1 1
solution into LP space for p > 1 and ¢ < p with — + — =1,
p q

! 1
o(to) — /0 ttop?(t)dt = cos(ty) — éto(l + cos(2) +sin(2)),

where the right hand function f(ty) is chosen so that the solution (t) is given
by

o (t) = cos(t)

Values of t | Fxact solution ¢ | Approx solution @ | Error Error 2]
0.000000 | 1.000000e+000 | 1.000000e+000 0.000000e+000 | 0.000000e+000
0.200000 | 9.800666e-001 9.800666e-001 4.185778e-009 | 6.05778e-005
0.400000 | 9.210610e-001 9.210610e-001 8.271556e-009 | 1.21999e-004
0.600000 | 8.253356e-001 8.258356e-001 1.240733e-008 | 1.83615e-004
0.800000 | 6.967067e-001 6.967067e-001 1.654311e-008 | 2.44709e-004

Table 2. The exact and approximate solutions of example 2 in some arbitrary points,
and the error compared with the ones treated in (2.

Example 3. In the following Hammerstein integral equation (1) we seek the

1 1
solution into LP space for p > 1 and ¢ < p with — + — =1,
p q

1 .
4tty + mto sin(nt) .
to) — dt = sin(=to) — 2toIn(3
#(to) /0 P2(t) + 12 +1 sin(3 o) = 2o In(3),

where the function f(to) is chosen so that the solution ¢(t) is given by

o(t) = sin( 1)

2
Values of t | Exact solution ¢ | Approx solution ¢ | Error Error (6]
0.000000 | 1.000000e+000 | 1.000000e+000 0.000000e+000 | 7.1385e-005
0.200000 | 3.090170e-001 3.090249e-001 7.857684€e-006 | 7.1385e-005

0.400000 | 5.877853e-001 5.878010e-001 1.571587e-005 | 7.1385e-005
0.600000 | 8.090170e-001 8.090406e-001 2.357305e-005 | 7.15385e-005
0.800000 | 9.510565e-001 9.510879e-001 3.143074e-005 | 7.1385e-005

Table 3. The exact and approrimate solutions of example & in some arbitrary points,
and the error compared with the ones treated in [6].
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5. CONCLUSION

In this work we remark the convergence of the successive approximation
method to the exact solution with a considerable accuracy for the Hammerstein
integral equation under conditions of the theorems cited above, This numerical
results show that the accuracy improves with increasing of the number of
iterations. Finally, we confirm that, the theorems cited above lead us to the
good approximation of the exact solution.
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