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MAGNETOHYDRODYNAMICS OF ROTATING
FRACTIONAL SECOND GRADE FLUID IN POROUS
MEDIUM

AZHAR ALI ZAFAR"®, DUMITRU VIERU?, SHAHRAZ AKHTAR/'

ABSTRACT. Exact solution for the unsteady flow of a fractional second
grade fluid through the porous medium under the influence of magnetic
field in the direction normal to the flow has been investigated using the
integral transforms. Expressions for dimensionless velocity have been ob-
tained and are presented in terms of Fox’s H—function. The influence of
the fractional parameter on the fluid motion is studied and a comparison
between velocity of the fractional and classical fluid is made.
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1. INTRODUCTION

Non-Newtonian fluids play an active and significant role in comparison with
Newtonian fluids in a large number of industries and the branches of knowl-
edge concerned with applied sciences. The dynamics of non-Newtonian fluids
is much more complex and delicate enough to analyze [3]. The distinctive
character of the response of non-Newtonian fluids cannot be studied by the
classical Navier-Stokes equations but a huge count of models are in agreement
to justify the rheological response of non-Newtonian fluids [8], [38]. A number
of investigators in the field, propose/quotes a large number of applications of
non-Newtonian fluids in rheological problems, geophysics, petroleum, chemi-
cal industries and biological sciences [50].
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Generally, the non-Newtonian fluids are categorized as differential, rate and
integral type fluids. Amongst them, the fluids of differential type have received
special attention [5], [6], [9], [11], [12], [13], [14], [15], [39], [45]. The second
grade fluids form a subclass of non-Newtonian fluids and is the simplest sub-
class of differential type fluids which can show the normal stress effects. The
flow of electrically conductive fluids in the presence of magnetic field is known
as magnetohydrodynamics (MHD). The subject MHD seems to be initiated by
H. Alfven [1]. The principle of MHD is helpful in stabilizing a flow against the
transition from laminar to turbulent. In recent years, the utility of MHD led
the researchers to renew their investigation of hydrodynamics in the setting
of MHD. The dynamics of non-Newtonian fluids with and without influence
of magnetic field has a lot of applications e.g. boundary layer control in aero-
dynamics [28], the handling of molten metals, biological fluids, polymers and
fossil fuels etc. For further studies regarding MHD we refer [32].

Over the last few years, fractional calculus has attracted much attention in
the mathematical modeling of dynamical systems. It also has been employed
with success in the constitutive modeling of certain non-Newtonian fluid mod-
els. The major reason is that, a fractional model has the ability to explain with
simplicity the complex response of viscoelastic fluid. Few major contributions
in the discussion of viscoelastic fluids flows with a fractional calculus approach
can be seen in [16], [17], [18], [22], [24], [26], [30], [33], [37], [42], [43], [44], [46],
[47], [48], [49]. Several researchers have discussed flows of second grade fluid
in different configurations, and there are on hand few attempts which include
the effects of rotation and MHD (for instance, see studies in [4], [7], [20], [21],
[27], [29], [31], [34], [36], [40], [41] and references therein). Recently, Imran et
al. [25] analyzed the unsteady MHD flow of a rotating second grade fluid in a
porous medium over an oscillating plate.

To the best of authors knowledge, so far no study has been reported to
analyze the unsteady MHD flow of a rotating fractional second grade fluid
in a porous medium past an oscillating plate. Therefore, it is here proposed
to make such an attempt. The main aim of the current study is to establish
analytic solutions for the velocity field of a fractional second grade fluid which
flows in the presence of an applied magnetic field. The fluid occupies a half
porous space bounded by a rigid and nonconducting plate and, the whole
system is in a rigid-rotating motion. The boundary plate also has a secondary
motion, namely, a translation in its plane with the time dependent velocity
of the form V, sin(wt) or V, cos(wt) or V,(a + be™*!). The closed-form of the
complex velocity field is obtained by means of Laplace transform method and is
expressed in an elegant form using the Fox functions [19]. The Fox function,
also referred as the Fox H-function, generalizes the Mellin-Barnes function.
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The importance of the Fox function lies in the fact that it includes nearly all
special functions occurring in applied mathematics and statistics as special
cases. From our general solutions the flow of an ordinary fluid as well as the
hydrodynamic flow appear as limiting cases of the fractional model.

2. STATEMENT OF THE PROBLEM

Consider an incompressible rotating fractional second grade fluid bounded
by a rigid plate at z = 0. The fluid is electrically conducting and fills the
porous region z > 0. The z—axis is taken to be normal to the plate. Initially,
the fluid and plate are at rest. At time ¢ = 0T, the fluid and plate start
rotating around the z—axis as a solid body with a constant angular velocity (2.
The plate is also subject to translation motion in its plane along the z-axis.
A uniform transverse magnetic field of strength B, is applied parallel to the
axis of rotation. It is assumed that the induced magnetic field and the electric
field due to polarization of charges are negligible. The motion of the second
grade fluid is governed by the following partial differential equation [20], [27].

oF . oB? O’F oy O3F v o O

Bt T OE = S - A SR )
where F(z,t) = u(z,t) + iv(z,t) is the complex velocity of the fluid, v and
v are the velocity components along z and y axis respectively, p is the fluid
density, p is the dynamic viscosity, a; the normal stress module, v is the kine-
matic viscosity, o is the electrical conductivity of the fluid, (0 < ¢ < 1) is
the porosity and k& > 0 is the permeability of the porous medium.

The governing equation corresponding to such a motion of fractional second
grade fluids is [46], [48]

OF oB? O*F s0*F  v¢
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where Df f is the Caputo fractional derivative operator defined as [24],

n
1 S
Dlf(t) =< 0= b[ G—npdm, 0< B <1,
df(t) 1
dt .
Into Eq. (2), 7 [m?s°~1] is a material coefficient and 1 = %.

The appropriate initial and boundary conditions are
F(z,0)=0; z>0, (3)

a0
w ot

), (2)

F(0,t) = V,sin(wt) or V, cos(wt) or V,(a+be™*"); ¢ >0, (4)

F(z,t) — 0 as z — oo, (5)
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where V,, and w are constants, w > 0.
Introducing the dimensionless variables

w F Q ngw”
=zt =wh F = — Q= — = — 6
z z V7 wt, ‘/;]7 wanﬁ v ( )
into Egs.(2)-(5) and dropping the asteriks we get,
8F 1 o B2 82 582 l/qb ajw 0
F=%" 1yD a4+ Mg 7
or
O*F O*F OF
82+nﬁDfﬁ_aoa_boF:0a (8)
subject to
F(z,00)=0; z>0, (9)
F(0,t) =sint orcost or a+be”"; t>0
F(z,t) -0 as z — oo, (10)
whereaozl—i—%,a:“pl;",b—K+2ZQ+M2 = %andMQZUp—]ig

3. CALCULATION OF THE VELOCITY FIELD

Let us denote by F(z,t), Fc(z,t) and F.(z,t) the solutions of Eq. (8)
related to the boundary conditions (10)1, (10)2 and (10)s, respectively. In the
following, in order to avoid repetition, we shall present calculi for Fy(z,t) only.
Applying the Laplace transform to Eq. (8), and having the initial conditions
(9) in mind we find that

62E(2, Q) Qg + bo

= F, 11
5,2 T o s(z,q) (11)

with the boundary conditions
F(0,q) = T Fy(z,q) = 0as z — oo, (12)

where F(z, q) is the Laplace transform of F'(z,t) and ¢ is transform parameter.
Solution of the equation (11) satisfying (12) is

— 1 aoq—i—bO)
Fo(z,q) = —— exp| — 24/ —— 13
5(2,9) 211 p< \/1+nﬁqﬂ (13)

Application of inverse Laplace transform to Eq. (13), leads to

t
Fys(z,t) = (F1 * F5)( /F1 (t — s)Fy(z, s)ds, (14)
0
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where F(z,t) and Fy(z,t) are inverse Laplace transforms of F1(z,q) =
and

° bo . .
Fo(z,q) =2 exp ( Z4 /%) respectively. Now, we write

= 1 aoq + b,
Fs(z,q :exp<—z )
(9) q 1+ ngq°

) i (—zaénﬂgl)k i (‘i")m i —ng" T(n + %)p(m _ %) 1

n! F(%)F(—g) q(6—1)§+6n+m+1

q
a*+1

.(15)

k=0 m=0 n=0

Applying the inverse Laplace transform, we obtain
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ol T(HD(-5T((B—- 15+ Bn+m+1)
or
1 -1 k m
() o ()
o _ E m
Pa(ant) = 30 gt S A
k=0 ’ m=0 ’
(1-£1),1-m+%,0)
uﬁﬂ%w } (17)
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where Hj 2 is the Fox functions [19]. Finally, as F(z,t) = cost, it results

k+m aoSP 1 1 boS\m
mm)/}%tsgg%mw Sy
(1-%,1),(1-m+% 0)
xHj j [775136 ]ds (18)
(0,1),(1-%,0),(1+£,0),(L2E —m, )
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To avoid repetition, we present the final form for F.(z,t) and F.(z,t)

k+
=y 3 E Ry beymagem
k=0 m=0 k'm' g~ Go
(17g71)7(17m+§’0)
x H} Z[nﬁ—ltﬂ ] _
(0.1),(1=5,0),(1+5,0),( 4525 ~m. 5)
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}ds (19)
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0o o0 (_1)k+m g\ k bo m 6—15 .
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k=0 m=0
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k—l—m B—-1 b s
e SEZ Tt yE ()
I
/ k=0 m=0 km "8 o
(1—5,1),(1—m+§,0)
x Hj 4{17 }ds. (20)
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4. CONCLUSIONS AND DISCUSSION

In this paper the unsteady flow of a second grade fluid in a rotating frame
is studied. By introducing a complex field of velocity, the flow problem is
formulated in a non-dimensional, suitable form. Solutions of studied problems
are determined by means of the Laplace transform method and are expressed
by Fox functions. Some existing results can be obtained as particular cases
from our general solutions. Also it is worth to note that, by customizing our
solutions for Newtonian fluids we obtained solutions for many problems that
could be formulated for these fluids. Some of the results are known and others
are novel in literature. So, by making 8 — 1 into Eqs. (18) and (19) we recover
the solutions obtained by Imran et al. [[25] , Eq(17) and (20)] as it results
from Figs. 1 and 2. For Q — 0 and b — 0 into Eq. (20) we recover the similar
solutions obtained in [[10], Eq. (26)]. By making Q@ — 0 and 5 — 1 in Egs.
(18) and (20) we recover the solutions obtained by Ali et al. [[2] ,Eq(15) and
(16)]. Further by making M = 0 (hydrodynamic fluid), - = 0 (non porous
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space) and € — 0 into Egs. (18) and (19), we get

—k

t = (1t
= — LB (D5
F5<2,t) —/0 COS(t S)Z il S 2 X
k=0
(1_%71)7(1""%70)
S I R
(0’1)7(1_3’0)1(14‘%,0),(%15)
> ( 1)]““2]"7]_71€ . (1-E1),1+%0)
k=0 kit (0,1),(1—-%,0),(1+%,0),(1=2% )
—k
¢ < (=1)kzFn2 (1-£,1),(1+% 0)
_/ Sin(t_s)Z()iv%s(ﬁfl)%H% Z[ng i ]ds(22)
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Now for § — 1 in Egs. (21) and (22) we get similar results obtained by Nazar
et al. [[35] , Egs. (13) and (14)].
Making ng = 0 into Eq. (13) we find the velocity field corresponding to

Newtonian fluids. Firstly, Fon(2,q) = qgile*'zmv ateo ¢, =b,/a,,

or, the equivalent form Fyn(z,q) = 2% {ql_z — qil:| e~ #Va@oVatco with the orig-

inal function [23],

Fen(z,t) = i[A1(2,t) — Aa(z,1)], (23)
where
e - z\/a b 1a
A ,t _ —zvVbo—1a, < o o ot> +
1(z,t) [e efrc 2V o
2v/bo—iae 24/ 0o bo Qo >:|
+e efre + 24
Vi, f (2 z N (24)
and
et - z/a b, + ia
A 1) = — —2v/bo+tao o _ o °t
2(z, 1) 1 [e efre Vi o +
2vbo+1a, 24/ Qo bo+iao >]
e efre + t)]. 25
VBT, f (2 2 - (25)
Similarly,

Fun(z,t) = A1z, ) + As(z, 1), (26)
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Fen(z,t) :;[ez b"efr(:('z\/c? — l;oot> +e* b"efrc<z2\[ +4/— bt >] +
) e

It is worth pointing out that the above solutions contain as partlcular cases
much problems regarding to Newtonian fluids. For example;

Classical first problem of Stokes, by setting % =0, M=0,Q2=0b=0,
a, =1, b, =0 into Eq. (27)

FeN(z,t):g[erfc<2\[> +erfe <2\[)] :aerfc<2;2/£> (28)

and the classical second Stokes’ problem, (sin(wt)), by setting % =0, M =0,
Q2=0,a,=1,0b, =0 into Eq. (23)

or

Pt = 2 [ e erfc<2\z/i - \/—Tt> T ezﬁerfc<2f/E n m)] -

iett i z - i Z -
—4|:€ erfc(m—\/ﬁ>+e erfc(M—i-\/ﬁ)],(%)

etc.

In order to analyze the influence of the fractional parameter 5 on the velocity
components, the figures 3 and 4 were plotted. From these figures it is observed
that, for high values of the fractional parameter 3, the fluid flows more slowly
for cosine oscillations and faster for the sine oscillations of the plate. Influence
of fractional parameter is significant in the vicinity of the plate and far from the
plate the motion of the fluid is mitigated. There, the fluid velocity approaches
to zero. In figures 5 and 6 are presented comparisons between the classical
fluid (8 = 1) and the fractional fluid (8 = 0.4), for two different values of the
strength of the magnetic field. For both types of the oscillations, the increasing
of strength of the magnetic field leads to a decreasing of the absolute values
of velocity.
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FIGURE 3. . Profile of the components u(z,t) and v(z,t) of the
complex field Fi(z,t) given by Eq. (18) with M = 2.5, K = 2,
0 =0.05, w=2and a = 1.2 at t = 15 and different values of
3.

FIGURE 4. . Profile of the components u(z,t) and v(z,t) of the
complex field F,(z,t) given by Eq. (19) with M = 2.5, K = 2,
Q2 =0.05, w=2and a = 1.2 at t = 15 and different values of
B.
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FIGURE 5. . Profile of the components u(z,t) and v(z, t) of the
complex field Fs(z,t) given by Eq. (18) with K =2, Q = 0.05,
w=2and a = 1.2 at t = 15 and different values of 5 and M.
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FIGURE 6. . Profile of the components u(z,t) and v(z, t) of the
complex field Fi(z,t) given by Eq. (19) with K =2, Q = 0.05,
w=2and a = 1.2 at t = 15 and different values of 5 and M.
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