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ZAGREB INDICES AND COINDICES OF PRODUCT
GRAPHS

K. PATTABIRAMAN1 S. NAGARAJAN2 M. CHENDRASEKHARAN3

Abstract. For a (molecular) graph, the first Zagreb index M1 is equal to
the sum of squares of the degrees of vertices, and the second Zagreb index
M2 is equal to the sum of the products of the degrees of pairs of adjacent
vertices. Similarly, the first and second Zagreb coindices are defined as
M1(G) =

P
uv /∈E(G)

(dG(u) + dG(v)) and M2(G) =
P

uv /∈E(G)

dG(u)dG(v). In

this paper, we compute the Zagreb indices and coindices of strong, tensor
and edge corona product of two connected graphs. We apply some of our
results to compute the Zagreb indices and coindices of open and closed
fence graphs.

Key words : Zagreb index, Zagreb coindex, strong product, tensor prod-
uct, edge corona product.
AMS SUBJECT : 05C12, 05C76.

1. Introduction

All the graphs considered in this paper are connected and simple. For vertex
u ∈ V (G), the degree of the vertex u in G, denoted by dG(u), is the number
of edges incident to u in G. The strong product of graphs G and H, denoted
by G£H, is the graph with vertex set V (G)×V (H) = {(u, v) : u ∈ V (G), v ∈
V (H)} and (u, x)(v, y) is an edge whenever (i) u = v and xy ∈ E(H), or
(ii) uv ∈ E(G) and x = y, or (iii) uv ∈ E(G) and xy ∈ E(H). For two
simple graphs G and H their tensor product, denoted by G × H, has vertex
set V (G)× V (H) in which (g1, h1) and (g2, h2) are adjacent whenever g1g2 is
an edge in G and h1h2 is an edge in H, see Fig.1. Note that if G and H are
connected graphs, then G×H is connected only if at least one of the graph is
nonbipartite.
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Fig.1. The tensor and strong product of P3 and C4

Let G and H be two graphs on disjoint sets of n and m vertices, p and q edges,
respectively. The edge corona product G•H of G and H is defined as the graph
obtained by taking one copy of G and p copies of H, and then joining two end
vertices of the ith edge of G to every vertex in the ith copy of H.

A topological index of a graph is a parameter related to the graph; it does
not depend on labeling or pictorial representation of the graph. In theoreti-
cal chemistry, molecular structure descriptors (also called topological indices)
are used for modeling physicochemical, pharmacologic, toxicologic, biological
and other properties of chemical compounds [7]. Several types of such indices
exist, especially those based on vertex and edge distances. One of the most
intensively studied topological indices is the Wiener index. Two of these topo-
logical indices are known under various names, the most commonly used ones
are the first and second Zagreb indices.

The Zagreb indices have been introduced more than thirty years ago by
Gutman and Trinajestic [8]. They are defined as M1(G) =

∑
u∈V (G)

dG(u)2

and M2(G) =
∑

uv∈E(G)

dG(u)dG(v). Note that the first Zagreb index may also

written as M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v)). The Zagreb indices are found to

have appilications in QSPR and QSAR studies as well, see [4].
Noticing that contribution of nonadjacent vertex pair should be taken into

account when computing the weighted wiener polynomials of certain composite
graphs, see [5], Ashrafi et al. [1, 2] defined the first Zagreb coindex and
second Zagerb coindex as M1(G) =

∑
uv/∈E(G)

(dG(u) + dG(v)) and M2(G) =
∑

uv/∈E(G)

dG(u)dG(v), respectively. Notation and definitions which are not given

here can be found in [3] or [11].
For the survey on theory and application of Zagreb indices, see [9]. Feng et

al.[12] have given a sharp bounds for the Zagreb indices of graphs with a given
matching number. Khalifeh et al. [6] have obtained the Zagreb indices of the
Cartesian product, composition, join, disjunction and symmetric difference of
graphs. Ashrafi et al. [2] determined the extremal values of Zagreb coindices
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over some special class of graphs. Hua and Zhang [10] have given some rela-
tions between Zagreb coindices and some other topolodical indices. Ashrafi et
al. [1] have obtained the Zagreb indices of the Cartesian product, composi-
tion, join, disjunction and symmetric difference of graphs. In this paper, we
compute the Zagreb indices and coindices of strong, tensor and edge corona
product of two connected graphs. We apply some of our results to compute
the Zagreb indices and coindices of open and closed fence graphs.

2. The first and second Zagreb indices of G £ H.

In this section, we compute the first and second Zagreb indices of the strong
product of graphs. The following lemma is easily follows from the structure
of G £ H.

Lemma 1. Let G and H be two graphs. Then
(i) |V (G £ H)| = |V (G)| |V (H)| .
(ii) |E(G £ H)| = |V (G)| |E(H)|+ |E(G)| |V (H)|+ 2 |E(G)| |E(H)| .
(iii) The degree of the vertex (ur, vi) of V (G £ H) is dG(ur) + dH(vi) +
dG(ur)dH(vi), that is, dG£H((ur, vi)) = dG(ur) + dH(vi) + dG(ur)dH(vi).

Theorem 2. Suppose G and H are graphs with |V (G)| = n, |V (H)| =
m, |E(G)| = p and |E(H)| = q. Then M1(G £ H) = (m + 4q)M1(G) +
(n + 4p)M1(H) + M1(G)M1(H) + 8pq.

Proof. By the definition of first Zagreb index

M1(G £ H) =
∑

(ui,vj)∈V (G£H)

dG£H((ui, vj))2

=
∑

ui∈V (G)

∑

vj∈V (H)

(
dG(ui) + dH(vj) + dG(ui)dH(vj)

)2
, by Lemma 1

=
∑

ui∈V (G)

∑

vj∈V (H)

dG(ui)2 +
∑

ui∈V (G)

∑

vj∈V (H)

dH(vj)2

+
∑

ui∈V (G)

∑

vj∈V (H)

dG(ui)2dH(vj)2 + 2
∑

ui∈V (G)

∑

vj∈V (H)

dG(ui)dH(vj)

+2
∑

ui∈V (G)

∑

vj∈V (H)

dG(ui)2dH(vj) + 2
∑

ui∈V (G)

∑

vj∈V (H)

dG(ui)dH(vj)2

= (m + 4q)M1(G) + (n + 4p)M1(H) + M1(G)M1(H) + 8pq.

In G £ H, define, E1 = {(u, v)(x, y) ∈ E(G £ H) |ux ∈ E(G) and v = y},
E2 = {(u, v)(x, y) ∈ E(G £ H) |ux ∈ E(G) and vy ∈ E(H)} and E3 =
{(u, v)(x, y) ∈ E(G £ H) |u = x and vy ∈ E(H)}. Clearly, E1 ∪ E2 ∪ E3 =
E(G £ H). Also, |E1| = |E(G)| |V (H)| , |E2| = 2 |E(G)| |E(H)| and |E3| =
|V (G)| |E(H)| .
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Theorem 3. Let G and H be two connected graphs with n and m vertices,
p and q edges, respectively. Then M2(G £ H) = mM2(G) + nM2(H) +
2M2(G)M2(H) + 3M1(G)

(
q + M1(H) + M2(H)

)
+ 3M1(H)

(
p + M2(G)

)
+

6
(
qM2(G) + pM2(H)

)
.

Proof. From the above partition of the edge set in G £ H, we have

M2(G £ H) =
∑

(ui,vj)(uk,vr)∈E(G£H)

dG£H((ui, vj))dG£H((uk, vr))

=
∑

(ui,vj)(uk,vj)∈E1

dG£H((ui, vj))dG£H((uk, vj))

+
∑

(ui,vj)(uk,vr)∈E2

dG£H((ui, vj))dG£H((uk, vr))

+
∑

(ui,vj)(ui,vr)∈E3

dG£H((ui, vj))dG£H((ui, vr)). (1)

We shall obtain the above sums separately.

∑

(ui,vj)(uk,vj)∈E1

dG£H((ui, vj))dG£H((uk, vj))

=
∑

uiuk∈E(G)

∑

vj∈V (H)

(
dG(ui) + dH(vj) + dG(ui)dH(vj)

)

(
dG(uk) + dH(vj) + dG(uk)dH(vj)

)
, by Lemma 1

=
∑

uiuk∈E(G)

∑

vj∈V (H)

dG(ui)dG(uk) +
∑

uiuk∈E(G)

∑

vj∈V (H)

(dG(ui) + dG(uk))dH(vj)

+
∑

uiuk∈E(G)

∑

vj∈V (H)

dH(vj)2 + 2
∑

uiuk∈E(G)

∑

vj∈V (H)

dG(ui)dG(uk)dH(vj)

+
∑

uiuk∈E(G)

∑

vj∈V (H)

(dG(ui) + dG(uk))dH(vj)2

+
∑

uiuk∈E(G)

∑

vj∈V (H)

dG(ui)dG(uk)dH(vj)2

= mM2(G) + 2qM1(G) + pM1(H) + 4qM2(G) + M1(G)M1(H)
+M2(G)M1(H). (2)
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∑

(ui,vj)(uk,vr)∈E2

dG£H((ui, vj))dG£H((uk, vr))

= 2
∑

uiuk∈E(G)

∑

vjvr∈E(H)

(
dG(ui) + dH(vj) + dG(ui)dH(vj)

)

(
dG(uk) + dH(vr) + dG(uk)dH(vr)

)
, by Lemma 1

= 2
∑

uiuk∈E(G)

∑

vjvr∈E(H)

dG(ui)dG(uk) + 2
∑

uiuk∈E(G)

∑

vjvr∈E(H)

dG(ui)dH(vr)

+2
∑

uiuk∈E(G)

∑

vjvr∈E(H)

dG(ui)dG(uk)dH(vr) + 2
∑

uiuk∈E(G)

∑

vjvr∈E(H)

dH(vj)dG(uk)

+2
∑

uiuk∈E(G)

∑

vjvr∈E(H)

dH(vj)dH(vr) + 2
∑

uiuk∈E(G)

∑

vjvr∈E(H)

dG(uk)dH(vj)dH(vr)

+2
∑

uiuk∈E(G)

∑

vjvr∈E(H)

dG(ui)dG(uk)dH(vj) + 2
∑

uiuk∈E(G)

∑

vjvr∈E(H)

dG(ui)dH(vj)dH(vr)

+2
∑

uiuk∈E(G)

∑

vjvr∈E(H)

dG(ui)dH(vj)dG(uk)dH(vr)

= 2qM2(G) + 2pM2(H) + 2M2(G)M2(H) + 2M2(G)M1(H)
+2M1(G)M2(H) + M1(G)M1(H). (3)

∑

(ui,vj)(ui,vr)∈E3

dG£H((ui, vj))dG£H((ui, vr))

=
∑

ui∈V (G)

∑

vjvr∈E(H)

(
dG(ui) + dH(vj) + dG(ui)dH(vj)

)

(
dG(ui) + dH(vr) + dG(ui)dH(vr)

)
,by Lemma 1

=
∑

ui∈V (G)

∑

vjvr∈E(H)

d(ui)2 +
∑

ui∈V (G)

∑

vjvr∈E(H)

(dG(ui) + dG(uk))dH(vj)

+
∑

uiuk∈E(G)

∑

vj∈V (H)

dH(vj)2 + 2
∑

uiuk∈E(G)

∑

vj∈V (H)

dG(ui)dG(uk)dH(vj)

+
∑

uiuk∈E(G)

∑

vj∈V (H)

(dG(ui) + dG(uk))dH(vj)2

+
∑

uiuk∈E(G)

∑

vj∈V (H)

dG(ui)dG(uk)dH(vj)2

= qM1(G) + 2pM1(H) + nM2(H) + 4pM2(H) + M1(G)M1(H)
+M1(G)M2(H). (4)
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Using (1) and the sums in (2), (3) and (4) respectively, we have
M2(G£H) = mM2(G)+nM2(H)+2M2(G)M2(H)+3M1(G)

(
q+M1(H)+

M2(H)
)

+ 3M1(H)
(
p + M2(G)

)
+ 6

(
qM2(G) + pM2(H)

)
.

One can easily see that M1(Cn) = 4n, n ≥ 3, M1(P1) = 0, M1(Pn) =
4n− 6, n > 1 and M1(Kn) = n(n − 1)2. Similarly, M2(Cn) = 4n, n ≥ 3 and
M2(Pn) = 4(n − 2), n > 2. Moreover M2(P1) = 0 and M2(P2) = 1. Also,
M2(Kn) = n(n−1)3

2 .
As an application we present formulae for Zagreb indices of open and closed

fences, Pn £ K2 and Cn £ K2, see Fig. 2.

Fig.2. Closed and open fence graphs

Example 1. (i) M1(Pn £ K2) = 2(25n− 32).
(ii) M1(Cn £ K2) = 50n.
(iii) M2(Pn £ K2) = 125n− 212.
(iv) M2(Cn £ K2) = 125n.

3. Zagreb indices of G×H.

In this section, we compute the first and second Zagreb indices of the tensor
product of graphs. The following lemma is follows from the structure of G×H.

Lemma 4. Let G and H be two graphs. Then
(i) |V (G×H)| = |V (G)| |V (H)| .
(ii) |E(G×H)| = 2 |E(G)| |E(H)| .
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(iii) The degree of a vertex (ur, vi) of G × H is given by dG×H((ur, vi)) =
dG(ur)dH(vi).

For a positive integer, we let Na(G) =
∑

u∈V (G)

(dG(u))a. One can easily see

that N0(G) = |V (G)| , N1(G) = 2 |E(G)| and N2(G) = M1(G).

Theorem 5. Let G and H be two connected graphs. Then Na(G × H) =
Na(G)Na(H).

Proof.

Na(G×H) =
∑

(ui,vj)∈V (G×H)

(d((ui, vj)))a

=
∑

ui∈V (G)

∑

vj∈V (H)

dG(ui)adH(vj)a, by Lemma 4

=
( ∑

ui∈V (G)

dG(ui)a
)( ∑

vj∈V (H)

dH(vj)a
)

= Na(G)Na(H).

In the above theorem, if we set a = 2, we obtain the following corollary.

Corollary 6. Let G and H be two connected graphs. Then M1(G × H) =
M1(G)M1(H).

Theorem 7. Let G and H be two connected graphs. Then M2(G × H) =
2M2(G)M2(H).

Proof. By the definition of second Zagreb index

M2(G×H) =
∑

(ui,vj)(uk,vr)∈E(G×H)

dG×H((ui, vj))dG×H((uk, vr))

= 2
∑

uiuk∈E(G)

∑

vjvr∈E(H)

dG(ui)dH(vj))dG(uk)dH(vr), by Lemma 4

= 2
( ∑

uiuk∈E(G)

dG(ui)dG(uk)
)( ∑

vjvr∈E(H)

dH(vr)dH(vj)
)

= 2M2(G)M2(H).

4. Zagreb coindices of G×H and G £ H

In this section, we compute the first and seconf Zagreb coindices of tensor
and strong product of two graphs. One can easily check that the contribution
of each vertex u ∈ V (G) to M1(G) is exactly (|V (G)|−dG(u)−1)dG(u). Thus
we have M1(G) =

∑
u∈V (G)

(|V (G)| − dG(u)− 1)dG(u).
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Theorem 8. Let G and H be two connected graphs with n, m vertices and
p, q edges, respectively. Then M1(G×H) = 4pq

(
nm− 1

)−M1(G)M1(H).

Proof. By the definition of first Zagreb coindex

M1(G×H) =
∑

(ui,vj)∈V (G×H)

(
nm− dG×H((ui, vj))− 1

)
dG×H((ui, vj))

=
∑

ui∈V (G)

∑

vj∈V (H)

(
nm− dG(ui)dH(vj)− 1

)
dG(ui)dH(vj), by Lemma 4

= nm
( ∑

ui∈V (G)

dG(ui)
)( ∑

vj∈V (H)

dH(vj)
)
−

( ∑

ui∈V (G)

dG(ui)2
)( ∑

vj∈V (H)

dH(vj)2
)

−
( ∑

ui∈V (G)

dG(ui)
)( ∑

vj∈V (H)

dH(vj)
)

= 4pq
(
nm− 1

)−M1(G)M1(H).

Lemma 9. [1] Let G be a connected graphs with p edges. Then M2(G) =
2p2 −M2(G)− M1(G)

2 .

The following theorem is follows from Lemma 9. Corollary 6 and Theorem
7.

Theorem 10. Let G and H be two connected graphs with n, m vertices
and p, q edges, respectively. Then M1(G × H) = 8p2q2 − 2M2(G)M2(H) −
M1(G)M1(H)

2 .

Theorem 11. Let G and H be two connected graphs with n, m vertices
and p, q edges, respectively. Then M1(G £ H) = mM1(G) + nM1(H) −
M1(G)M1(H)−4

(
qM1(G)+pM1(H)

)
+4(nm−3)pq+2nm

(
(n−1)q+(m−1)p

)
.



88 K. Pattabiraman

Proof.

M1(G £ H) =
∑

(ui,vj)∈V (G£H)

(
nm− dG£H((ui, vj))− 1

)
dG£H((ui, vj))

=
∑

ui∈V (G)

∑

vj∈V (H)

(
nm− (dG(ui) + dH(vj) + dG(ui)dH(vj))− 1

)

(
dG(ui) + dH(vj) + dG(ui)dH(vj)

)
, by Lemma 1

=
∑

ui∈V (G)

∑

vj∈V (H)

(
nm− (dG(ui) + dH(vj) + dG(ui)dH(vj))− 1

)
dG(ui)

+
∑

ui∈V (G)

∑

vj∈V (H)

(
nm− (dG(ui) + dH(vj) + dG(ui)dH(vj))− 1

)
dH(vj)

+
∑

ui∈V (G)

∑

vj∈V (H)

(
nm− (dG(ui) + dH(vj) + dG(ui)dH(vj))− 1

)
dG(ui)dH(vj)

=
∑

ui∈V (G)

∑

vj∈V (H)

(
n− dG(ui)− 1

)
dG(ui)

+
∑

ui∈V (G)

∑

vj∈V (H)

(
nm− n− dH(vj)− dG(ui)dH(vj)

)
dG(ui)

+
∑

ui∈V (G)

∑

vj∈V (H)

(
m− dH(vj)− 1

)
dH(vj)

+
∑

ui∈V (G)

∑

vj∈V (H)

(
nm−m− dG(ui)− dG(ui)dH(vj)

)
dH(vj)

+
∑

ui∈V (G)

∑

vj∈V (H)

(
nm− (dG(ui) + dH(vj) + dG(ui)dH(vj))− 1

)
dG(ui)dH(vj)

= mM1(G) + nM1(H)−M1(G)M1(H)− 4
(
qM1(G) + pM1(H)

)

+4(nm− 3)pq + 2nm
(
(n− 1)q + (m− 1)p

)
.

The following theorem is follows from Lemma 9, Theorems 2 and 3.

Theorem 12. Let G and H be two connected graphs with n, m vertices and
p, q edges, respectively. Then M2(G £ H) = 2(mp + nq)2 − 2M2(G)M2(H)−
M1(G)

(
3M2(H) + q − m

2

)
−M1(H)

(
3M2(G) + p − n

2

)
−M2(G)(6q + m) −

M2(H)(6p + n)− 7
2M1(G)M1(H).

It can be verified that M1(Kn) = 0, M1(Pn) = 2(n − 2)2 and M1(Cn) =
2n(n− 3). Using M1(Pn), M1(Cn) and Theorems 11 and 12, we compute the
formulae for first and second Zagreb coindices of open and closed fence graphs.
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Example 2. (i) M1(Pn £ K2) = 4(5n2 − 19n + 18).
(ii) M1(Cn £ K2) = 20n(n− 3).
(iii) M2(Pn £ K2) = 50n2 − 192n + 200.
(iv) M2(Cn £ K2) = 18n2 − 108n.

5. Zagreb indices and coindices of G •H.

In this section, we compute the Zagreb indices and coindices of edge corona
product of two graphs.

Lemma 13. Let G and H be two graphs. Then
(i)|V (G •H)| = |V (G)|+ |E(G)| |V (H)| .
(ii)|E(G •H)| = |E(G)|+ |E(G)| |E(H)|+ 2 |E(G)| |V (H)| .
(iii) For each vertex x ∈ V (G), we have dG•H(x) = dG(x)(|V (H)| + 1) and
for each vertex y ∈ V (Hi), dG•H(y) = dH(y) + 2.

Theorem 14. Let G and H be two connected graphs with n and m vertices, p
and q edges, respectively. Then (i)M1(G •H) = (m + 1)2M1(G) + pM1(H) +
4mp + 8pq.
(ii)M2(G •H) = (m+1)2M2(G)+ pM2(H)+ 2pM1(H)+ 4pq +2(m+1)(m+
q)M1(G).
(iii)M1(G•H) = (m+1)

(
M1(G)+2mp2−mM1(G)

)
+p

(
2
(
n+mp−3

)
(m+

q)−M1(H)− 4q
)
.

(iv) M2(G • H) = 2p2(2m + q + 1)2 − (m + 1)2M2(G) − pM2(H) − (m +
1)M2(G)

(
m+1

2 + 2(m + q)
)

+ 3
2pM1(H)− 2mp− 8pq.

Proof.

(i) M1(G •H) =
∑

x∈V (G•H)

dG•H(x)2

=
∑

x∈V (G)

dG(x)2(m + 1)2 +
p∑

i=1

∑

x∈V (Hi)

(dH(x) + 2)2,

by Lemma 13
= (m + 1)2M1(G) + pM1(H) + 4mp + 8pq.
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(ii)M2(G •H) =
∑

xy∈E(G•H)

dG•H(x)dG•H(y)

=
∑

xy∈E(G)

(m + 1)2dG(x)dG(y) +
p∑

i=1

∑

xy∈E(H)

(dH(x) + 2)(dH(y) + 2)

+2
∑

xy∈E(G)

∑

u∈V (H)

(m + 1)(dG(x) + dG(y))(dH(u) + 2), by Lemma 13

= (m + 1)2M2(G) + pM2(H) + 2pM1(H) + 4pq + 2(m + 1)(m + q)M1(G).

(iii)M1(G •H) =
∑

x∈V (G•H)

(
n + mp− dG•H(x)− 1

)
dG•H(x)

=
∑

x∈V (G)

(
n + mp− dG(x)(m + 1)− 1

)
dG(x)(m + 1)

+
p∑

i=1

∑

x∈V (Hi)

(
n + mp− (dH(x) + 2)− 1

)
(dH(x) + 2), by Lemma 13

= (m + 1)
∑

x∈V (G)

((
n− dG(x)− 1

)
dG(x) + mpdG(x)−md2

G(x)
)

+
p∑

i=1

∑

x∈V (Hi)

((
n + mp− 3

)
dH(x)− d2

H(x) + 2
(
n + mp− 3

)− 2dH(x)
)

= (m + 1)
(
M1(G) + 2mp2 −mM1(G)

)

+p
(
2
(
n + mp− 3

)
(m + q)−M1(H)− 4q

)
.

The formula (iv) is follows from Lemma 9 and part (i) and (ii).
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