TOPOLOGICAL STRUCTURE OF 2-NORMED SPACE AND SOME RESULTS IN LINEAR 2-NORMED SPACES ANALOGOUS TO BAIRE'S THEOREM AND BANACH STEINHAUS THEOREM

P RIYAS¹, K T RAVINDRAN²

ABSTRACT. In this paper we construct the topological structure of linear 2-normed space. This enable us to define the concept of open sets in linear 2-normed space and derive an analogue of Baire's theorem and Banach Steinhaus theorem in linear 2-normed spaces..

 $Key\ words$: linear 2-normed space, locally convex topological vector space, 2-Banach space, equi-continuity, locally bounded set, equi-bounded.. $AMS\ SUBJECT$: 46A03, 46A19, 46B07,46B20 46B25.

1. Introduction

The concept of a linear 2-normed space was introduced as a natural 2-metric analogue of that of a normed space. In 1963, Siegfried Gähler, a German Mathematician introduced the notion of a 2-metric space, a real valued function of point-triples on a set X, whose abstract properties were suggested by the area function for a triangle determined by a triple in Euclidean space[5]. Many Mathematician have intensively studied this concept in the last three decades and obtained new applications of these notions in some abstract settings. Recently R Pilakkat and S Thirumangalath proved Baire's theorem for 2-Banach(K) Spaces in [8],[9]. However there is yet no complete proof for Baire's theorem for 2-Banach Spaces. In this paper, we prove an analogue of Baire's theorem and Banach Steinhaus theorem in linear 2-normed spaces X by constructing a locally convex topology for X. We now state some definitions before presenting our main results.

 $^{^1\}mathrm{Department}$ of Mathematics, K M M Govt. Women's College, Kannur, India-670004, Email-riyas
mankadavu@gmail.com

²P G Departmentof Mathematics, Payyannur College, Kannur, India-670627, Email: ktravindran@rediffmail.com.

Let X be a linear space of dimension greater than 1 over \mathbb{R} . Suppose $\|\cdot\|$ is a real valued function on $X \times X$ satisfying the following conditions:

- a). ||x,y|| = 0 if and only if x and y are linearly dependent.
- b). ||x,y|| = ||y,x|| for all $x, y \in X$.
- c). $\|\alpha x, y\| = |\alpha| \|x, y\|$ for all $\lambda \in \mathbb{R}$ and all $x, y \in X$.
- d). $||x + y, z|| \le ||x, z|| + ||y, z||$, for all x, y and $z \in X$.

Then $\|\cdot\|$, $\|\cdot\|$ is called a 2-norm on X and the pair $(X,\|\cdot\|)$ is called a linear 2-normed space. Some basic properties of linear 2-normed space can be immediately obtained as follows:

- $||x,y|| \ge 0$, for all $x,y \in X$
- $||x, y + \alpha x|| = ||x, y||$, for all $x, y \in X$ and for all $\alpha \in \mathbb{R}$

A standard example of a linear 2-normed space is \mathbb{R}^2 equipped with the 2norm: ||x,y|| = area of the parallelogram determined by the vector x and y as the adjacent sides. In any given 2-normed space, we can define a function p_e on X by

$$p_e(x) = ||x, e||$$

for some $e \in X$. It is easy to see that this function satisfies the following conditions:

- (1) $p_e(x+y) \le p_e(x) + p_e(y)$ (2) $p_e(\alpha x) = |\alpha| p_e(x)$

Any function defined on X and satisfying the conditions (1) and (2) is called seminorm on X. Since X is of dimension ≥ 2 , corresponding to each $x \neq 0$ there exist some $e \in X$ such that x and e are linearly independent and therefore $p_e(x) \neq 0$. Thus if X is a 2-normed space, the collection $\mathbb{P} = \{p_e : e \in X\}$ forms a separating family of seminorms on X.

2. Main Results Baire's Theorem in Linear 2-normed space

In this section we investigate the structure of open sets in linear 2-normed space and using this structure we formulate an analogue of Baire's Theorem in linear 2-normed space.

Theorem 1. Let X be a real linear 2-normed space. Then the subset $B_e(0,1) =$ $\{x \in X : ||x,e|| < 1\}$ of X is convex, symmetric, balanced and absorbing.

Proof. For any $x, y \in B_e(0,1)$ and $t \in [0,1]$,

$$||tx + (1 - t)y, e|| \le ||tx, e|| + ||(1 - t)y, e||$$

$$= |t|||x, e|| + |(1 - t)|||y, e||$$

$$< t + (1 - t) = 1$$

implying that $tx + (1-t)y \in B_e(0,1)$. Hence $B_e(0,1)$ is convex. Also for any $x \in X$, ||-x,e|| = |-1|||x,e|| = |x,e|| implies that $B_e(0,1) = -B_e(0,1)$. This shows that $B_e(0,1)$ is symmetric.

For all α with $|\alpha| \leq 1$ and $x \in B_e(0,1)$,

$$\begin{array}{rcl} \|\alpha x,e\| & = & |\alpha|\|x,e\| \\ & \leq & \|x,e\| < 1 \end{array}$$

That is, $\alpha x \in B_e(0,1)$, for all $x \in B_e(0,1)$.

Hence $B_e(0,1)$ is balanced.

We shall now show that $B_e(0,1)$ is absorbing. Let $x \in X$. If x and e are linearly dependent then ||x,e|| = 0 < 1 and so $x \in B_e(0,1) = tB_e(0,1)$ where t = 1. On the other hand, if we take t = 2||x,e|| > 0, then $||\frac{1}{t}x,e|| = \frac{1}{t}||x,e|| = \frac{1}{2} < 1$. This shows that $x \in tB_e(0,1)$ for some t > 0. Hence $B_e(0,1)$ is absorbing. \square

Theorem 2. Let X be a linear 2-normed space and $\mathbb{P} = \{p_e : e \in X\}$ where $p_e(x) = \|x, e\|$. Associate to each $p_e \in \mathbb{P}$ and each positive integer n set $V(p_e, n) = B_e(0, \frac{1}{n})$. Let \mathbb{B} be the collection of all finite intersection of the sets $V(p_e, n)$. Then \mathbb{B} is a convex balanced local base for a topology \mathbb{T} on X which turns X into a locally convex space such that

- 1) Every $p_e \in \mathbb{P}$ is continuous.
- 2) A set $E \subseteq X$ is bounded if and only if every $p_e \in \mathbb{P}$ is bounded on E.

Proof. Define a family \mathbb{T} of subsets of X by $A \in \mathbb{T}$ if and only if A is a (possibly empty) union of translates of members of \mathbb{B} . For any $x \in X$, $||x,e|| < n_x$ implies that $x \in n_x B_e(0,1) = n_x V(p_e,1)$ and so $X = \bigcup_{n_x} n_x V(p_e,1) \in \mathbb{T}$. clearly $\emptyset \in \mathbb{T}$

and closed under arbitrary union and finite intersection. This shows that \mathbb{T} is a translation invariant topology on X. Since \mathbb{B} is the family of finite intersection of convex and balanced subset $V(p_e,n)$ of X, each member of \mathbb{B} is convex and balanced, and \mathbb{B} forms a local base for \mathbb{T} . Next we shall prove that X is a locally convex topological vector space. Let $0 \neq x \in X$. The family \mathbb{P} being separating, there exist $p_e \in \mathbb{P}$ such that $p_e(x) > 0$. Note that x is not in $V(p_e,n)$ if $np_e(x) = n||x,e|| > 1$. This shows that 0 is not in the neighbourhood $x - V(p_e,n) = x - B_e(0,\frac{1}{n}) = B_e(x,\frac{1}{n})$ of x and so x is not in the closure of $\{0\}$. Since \mathbb{T} is translation invariant, every singleton set $\{x\} = x + \{0\}$ is a closed set.

We now show that addition and scalar multiplication are continuous. Let U be a neighbourhood of 0. Then as \mathbb{B} is a local base, there exist $p_{e_1}, p_{e_2}, \dots, p_{e_m}$ in \mathbb{P} and some positive integers n_1, n_2, \dots, n_m such that

$$V(p_{e_1}, n_1) \cap V(p_{e_2}, n_2) \cap ... \cap V(p_{e_m}, n_m) \subseteq U.$$

Put $V = V(p_{e_1}, 2n_1) \cap V(p_{e_2}, 2n_2) \cap ... \cap V(p_{e_m}, 2n_m)$ For any $z = x + y \in V + V$,

$$||z, e_i|| = ||x + y, e_i|| \le ||x, e_i|| + ||y, e_i|| < \frac{1}{2n_i} + \frac{1}{2n_i} = \frac{1}{n_i}, \text{ for all } i,$$

implying that $z=x+y\in V(p_{e_i},n_i)$, for all i and so $z\in U$. Therefore $V+V\subseteq U$. This shows that vector addition is continuous. Suppose that $x\in X$, α is any scalar and U and V are as above. Then $x\in sV$ for some s>0. If we take $t=\frac{s}{1+|\alpha|s}$ and $|\beta-\alpha|<\frac{1}{s}$, then

$$|\beta|t = |(\beta - \alpha) + \alpha|t \le (|\beta - \alpha| + |\alpha|) \frac{s}{1 + |\alpha|s}$$

$$< \left(\frac{1}{s} + |\alpha|\right) \frac{s}{1 + |\alpha|s} = 1.$$

Therefore if $y \in x + tV$ and $|\beta - \alpha| < \frac{1}{s}$, then as V is balanced,

$$\beta y - \alpha x = \beta (y - x) + (\beta - \alpha)x \in |\beta|tV + |\beta - \alpha|sV \subseteq V + V \subseteq U$$

Thus for any neighbourhood $\alpha x + U$ of αx , there exist a neighbourhood W = x + tV of x such that $\beta W \subseteq \alpha x + U$ for all β with $|\beta - \alpha| < \frac{1}{s}$. This proves that scalar multiplication is continuous. Hence X is a locally convex topological vector space. If $U = (-\epsilon, \epsilon)$ is any neighbourhood of $p_e(0) = 0$ in $\mathbb R$ then we can find a neighbourhood $V = V(p_e, \frac{1}{\epsilon})$ of 0 in X such that $p_e(V) \subseteq U$. This shows that p_e is continuous at 0. Now let U be any neighbourhood of $p_e(x)$. Then $p_e(x) - U$ is a neighbourhood of 0 and therefore there exist some neighbourhood V of 0 in V such that V0 is a neighbourhood of 0 and therefore there exist some neighbourhood V1 of 0 in V2 such that V3 is a seminorm, it follows that V4. Hence V6 is continuous on V6.

Now suppose that E is bounded and let $p_e \in \mathbb{P}$. Then corresponding to the neighbourhood $V(p_e, 1)$ of 0, there exist some k > 0 such that $E \subseteq kV(p_e, 1)$. Thus for any $x \in E$, $p_e(x) < k$. It follows that every $p_e \in \mathbb{P}$ is bounded on E.

Conversely suppose that every $p_e \in \mathbb{P}$ is bounded on E and let U be a neighbourhood of 0 in X. Then as E is a local base, there exist $P_{e_1}, P_{e_2}, \dots, P_{e_m}$ in \mathbb{P} and some positive integers $P_{e_1}, P_{e_2}, \dots, P_{e_m}$ such that

$$V(p_{e_1}, n_1) \cap V(p_{e_2}, n_2) \cap ... \cap V(p_{e_m}, n_m) \subseteq U.$$

By our assumption, corresponding to each p_{e_i} there exist numbers M_i such that $P_{e_i}(x) < M_i$, for all $x \in E$ and $1 \le i \le m$. For any $x \in E$, $p_{e_i}(x) < M_i < \frac{n}{n_i}$,

if $n > M_i n_i$. Then,

$$p_{e_i}\left(\frac{1}{n}x\right) < \frac{1}{n_i} \text{ for all } i.$$

$$x \in nV(p_{e_i}, n_i) \text{ for all } i.$$
That is $x \in nU$ and so $E \subseteq nU$.

Hence E is bounded.

Definition 1. Let A be a convex and absorbing set in a topological vector space X. The Minkowski's functional μ_A of A is defined by

$$\mu_A(x) = \inf\{t > 0 : t^{-1}x \in A\} \text{ for } x \in X.$$

Theorem 3. Let X be a linear 2-normed space and let \mathbb{B} be the collection of all finite intersection of the sets of the form $V(p_e,n)=B_e(0,\frac{1}{n})$. Then $V=\{x\in X: \mu_V(x)<1\}$ for all $V\in \mathbb{B}$, where μ_V is the Minkowski's functional on X.

Proof. For any $V \in \mathbb{B}$, we can take it as

$$V = \bigcap_{i=1}^{m} V(p_{e_i}, n_i) \tag{1}$$

Then for any $x \in V$, $||x, e_i|| < \frac{1}{n_i}$ for $1 \le i \le m$. Choose t such that $n_i ||x, e_i|| < t < 1$ for all i. But then $||\frac{x}{t}, e_i|| < \frac{1}{t} \frac{t}{n_i} = \frac{1}{n_i}$, for all i implies that $\frac{x}{t} \in V$. Thus if $x \in V$ then $\frac{x}{t} \in V$, for some t < 1 and so $\mu_V(x) < 1$.

Conversely if $x \notin V$, then $\frac{x}{t} \in V$ would imply that $||x, e_i|| < \frac{t}{n_i}$ for all i.

Also from (1), if $x \notin V$ then $||x, e_i|| \ge \frac{1}{n_i}$ for some i and so $t > n_i ||x, e_i|| \ge 1$. It follows that $\mu_V(x) \ge 1$. Equivalently if $\mu_V(x) < 1$ then $x \in V$. Hence $V = \{x \in X : \mu_V(x) < 1\}$.

Many authors have described an open set in a linear 2-normed space in different ways. Here by using theorem (2), we define open and closed sets in a linear 2-normed space as follows:

Definition 2. A subset A of a linear 2-normed space X is said to be open if for any $x \in A$ then there exist $e_1, e_2, ..., e_n$ in X and $r_1, r_2, ..., r_n > 0$ such that

$$\begin{aligned} x + V(p_{e_1}, r_1) \cap V(p_{e_2}, r_2) \cap \ldots \cap V(p_{e_n}, r_n) &= B_{e_1}(x, r_1) \cap B_{e_2}(x, r_2) \cap \ldots \cap B_{e_n}(x, r_n) \\ &\subseteq A \\ where \ B_{e_i}(x, r_i) &= \{z \in X \ : \ \|x - z, e_i\| < r_i\} \ . \end{aligned}$$

A subset B of a linear 2-normed space X is said to be closed if its complement is open in X.

Theorem 4. Let X be a linear 2-normed space. Then the ball $B_e(0,r) = \{x : ||x,e|| < r\}$ is open in X

Proof. Let $x \in B_e(0,1)$. Choose $e_m = me$ and $r_m = m(1 - ||x,e||)$ for m = 1, 2, 3, ..., n. If $y \in \bigcap_{m=1}^n B_{e_m}(x, r_m)$ then $||y - x, e_m|| < r_m$, for all m and

$$||y,e|| \leq ||y-x,e|| + ||x,e||$$

$$= ||y-x,\frac{e_m}{m}|| + ||x,e||$$

$$= \frac{1}{m}||y-x,e_m|| + ||x,e||$$

$$< \frac{1}{m}r_m + ||x,e||$$

$$= \frac{1}{m}\left[m(1-||x,e||)\right] + ||x,e|| = 1.$$

This shows that $y \in B_e(0,1)$.

Hence $B_e(0,1)$ is open in X.

Corollary 5. The ball $B_e(a,r) = \{x : ||x-a,e|| < r\}$ is open in a linear 2-normed space X for all $a, e \in X$ and r > 0.

Proof. Let $x = a + ry \in a + rB_e(0, 1) = B_e(a, r)$. Since $B_e(0, 1)$ is open in X, there exist $e_1, e_2, ..., e_n$ in X and $r_1, r_2, ..., r_n > 0$ such that

$$\bigcap_{m=1}^{n} B_{e_m}(y, r_m) \subseteq B_e(0, 1).$$

This implies that $a + r \cap_{m=1}^{n} B_{e_m}(y, r_m) \subseteq a + rB_e(0, 1) = B_e(a, r)$.

That is,
$$\bigcap_{m=1}^{n} B_{e_m}(x,R) = \bigcap_{m=1}^{n} B_{e_m}(a+ry,R) \subseteq B_e(a,r).$$

Hence $B_e(a,r)$ is open in X

Example 1. Let $X = \mathbb{R}^2$ be a linear 2-normed space with 2-norm defined by $||x,y|| = |x_1y_2 - x_2y_1|$, where $x = (x_1, x_2)$ and $y = (y_1, y_2)$ and let $e = (e_1, e_2)$. Then,

$$B_e(0,1) = \{(x_1, x_2) : ||x, e|| < 1\}$$

$$= \{(x_1, x_2) : |x_1 - x_2| < 1\}$$

$$= \{(x_1, x_2) : x_1 - 1 < x_2 < x_1 + 1\} \text{ is open in } X.$$

Definition 3. A sequence $\{x_n\} \longrightarrow x$ in a linear 2-normed space X if for any open set V containing 0 there exist a positive integer N such that $x_n - x \in V$ for all n > N.

Theorem 6. A sequence $\{x_n\} \longrightarrow x$ in a 2-normed space X if and only $\lim_{n\to\infty} ||x_n-x,e|| = 0$, for all $e\in X$.

Proof. Consider the open set $V = B_e\left(0, \frac{1}{n}\right)$ containing 0 and for any $e \in X$. If the sequence $\{x_n\}$ converges to x then we can find some positive integer N such that $x_n - x \in B_e\left(0, \frac{1}{n}\right)$ for all $n \geq N$. Then

$$||x_n - x, e|| < \frac{1}{n}$$
, for all $n \ge N$ and $e \in X$.

Letting $N \to \infty$, we get $\lim_{n \to \infty} ||x_n - x, e|| = 0$, for all $e \in X$.

Conversely, suppose that $\lim_{n\to\infty} ||x_n-x,e|| = 0$, for all $e\in X$ and V is any open set containing 0. Then there exist $e_1,e_2\ldots e_n$ in X and $r_1,r_2,\ldots r_n$ such that

$$B_{e_1}(0,r_1) \cap B_{e_2}(0,r_2) \cap ... \cap B_{e_n}(0,r_n) \subseteq V.$$

But then by our assumption corresponding to each $r_i > 0$, there exist a positive integer N_i such that

$$||x_n - x, e|| < r_i$$
, for all $n \ge N_i$ and for all $e = e_i$.

In other words, $x_n - x \in B_{e_i}(0, r_i)$, for all $n \ge N = \max_i(N_i)$ and for all i. It follows that $x_n - x \in V$, for all $n \ge N$. Hence $\{x_n\} \longrightarrow x$.

Definition 4. A sequence $\{x_n\}$ in a linear 2-normed space X is said to be Cauchy sequence if there exist two linearly independent elements y and z such that $\lim_{m,n\to\infty} ||x_n - x_m, y|| = 0$ and $\lim_{m,n\to\infty} ||x_n - x_m, z|| = 0$.

Definition 5. Let X be a linear 2-normed space and $A \subseteq X$. Then a point $x \in X$ is called limit point of A in X if for any open set U containing x, $A \cap (U - \{x\}) \neq \emptyset$.

Theorem 7. Let X be a linear 2-normed space and $A \subseteq X$. If x is a limit point of A then corresponding to each $e \in X$ there exist a sequence $\{x_n\}$ in A such that $\lim_{n\to\infty} ||x_n-x,e|| = 0$.

Proof. If x is a limit point of A then corresponding to each open ball $B_e\left(x,\frac{1}{n}\right)$ we can choose $x_n \in A \cap \left(B_e\left(x,\frac{1}{n}\right) - \{x\}\right)$. Then $x_n \in A$ and $\|x_n - x, e\| < \frac{1}{n}$ for all n. Thus for any $e \in X$, there exist $\{x_n\}$ in A such that $\lim_{n \to \infty} \|x_n - x, e\| = 0$.

Definition 6. Let X be a linear 2-normed space and $A \subseteq X$. A point $x \in X$ is called a closure point of A if every open set containing x intersects A. The set of all closure points of A, denoted by \overline{A} is called closure of A.

Definition 7. Let X be a linear 2-normed space and $A \subseteq X$. Then A is said to be dense in X if every open set U in X intersects A.

Definition 8. A linear 2-normed space in which every Cauchy sequence is convergent, is called a 2-Banach space or a complete space.

We now prove the main objective of this section:

Theorem 8 (Analogue of Baire's Theorem in Linear 2-normed space). Let X be a 2-Banach space. Then intersection of a countable number of dense open subsets of X is dense in X.

Proof. Let $V_1, V_2, ...$ be dense open subsets of X. For $x_0 \in X$, consider an arbitrary non-empty open subset B_0 of X containing x_0 . Then there exist $f_1, f_2, ..., f_i$ in X and $p_1, p_2, ..., p_i > 0$ such that

$$B_{f_1}(x_0, p_1) \cap B_{f_2}(x_0, p_2) \cap ... \cap B_{f_i}(x_0, p_i) \subseteq B_0.$$

Since V_1 is dense in X and $\cap_{k=1}^i B_{f_k}(x_0, p_k)$ is open, $V_1 \cap \left(\cap_{k=1}^i B_{f_k}(x_0, p_k) \right) \neq \emptyset$. Choose an element $x_1 \in V_1 \cap \left(\cap_{k=1}^i B_{f_k}(x_0, p_k) \right)$. Then as $V_1 \cap \left(\cap_{k=1}^i B_{f_k}(x_0, p_k) \right)$ is open in X, we can find an open set B_1 containing x_1 such that $\overline{B_1} \subseteq V_1 \cap \left(\cap_{k=1}^i B_{f_k}(x_0, p_k) \right) \subseteq V_1 \cap B_0$. B_1 being an open set containing x_1 , there exist $g_1, g_2, ..., g_j$ in X and $g_1, g_2, ..., g_j > 0$ such that

$$B_{g_1}(x_1, q_1) \cap B_{g_2}(x_1, q_2) \cap ... \cap B_{g_i}(x_1, q_j) \subseteq B_1.$$

Note that V_2 is dense in X and $\bigcap_{k=1}^j B_{g_k}(x_1,q_k)$ is open in X. Consequently, $V_2 \cap \left(\bigcap_{k=1}^j B_{g_k}(x_1,q_k)\right) \neq \emptyset$. Let $x_2 \in V_2 \cap \left(\bigcap_{k=1}^j B_{g_k}(x_1,q_k)\right)$. Then as above, we can choose an open set B_2 containing x_2 such that $\overline{B_2} \subseteq V_2 \cap \left(\bigcap_{k=1}^j B_{g_k}(x_1,q_k)\right) \subseteq V_2 \cap B_1$. Thus proceeding inductively we can find a sequence $\{x_n\}$ such that $x_n \in V_{m+1} \cap \left(\bigcap_{i=1}^k B_{e_i}(x_m,r_i)\right)$ for all n > m and a decreasing sequence $\{R_n\}$ of positive real numbers such that $R_n < \frac{1}{n}$. where $R_1 = \max\{p_1,p_2,...,p_i\}$, $R_2 = \max\{q_1,q_2,...,q_j\}$, . . . , $R_m = \max\{r_1,r_2,...,r_k\}$.

$$||x_n - x_m, e_i|| < R_m < \frac{1}{m}$$
, for all $n > m$ and for all i .
 $||x_n - x_r, e_i|| \le ||x_n - x_m, e_i|| + ||x_m - x_r, e_i||$
 $< \frac{1}{m} + \frac{1}{m} = \frac{2}{m}$, for all $n, r > m$ and for all i .

If we let $m \to \infty$, we obtain $\lim_{n,r \to \infty} \|x_n - x_r, e\| = 0$, for all $e \in \text{span}\{e_1, e_2, ...e_k\}$. This shows that $\{x_n\}$ is a Cauchy sequence in a 2-Banach space X and hence there exist some $x \in X$ such that $x_n \to x$ in X. Since $x_n \in B_m$, for all $n \ge m$, it follows that $x \in \overline{B_m}$ and as $\overline{B_m} \subseteq V_m \cap B_0$ for m = 1, 2, 3... we see that

 $x \in (\bigcap_{m=1}^{\infty} V_m) \cap B_0$. Hence B_0 intersects $\bigcap_{m=1}^{\infty} V_m$ and therefore dense in X.

3. Banach Steinhaus Theorem in Linear 2-normed space

In this section, we will consider linear operators defined on a linear 2-normed space into a linear 2-normed space. We will formulate Banach Steinhaus Theorem for a family of continuous linear operators.

Definition 9. Let X and Y be linear 2-normed spaces over \mathbb{R} . Then a linear map $T: X \longrightarrow Y$ is continuous at x if for any open ball $B_d(T(x), R)$ in Y there exist an open ball $B_e(x, r)$ in X such that $T(B_e(x, r)) \subseteq B_d(T(x), R)$. In other words for any $d \in Y$ and R > 0, there exist some $e \in X$ and r > 0 such that ||T(y) - T(x), d|| < R whenever ||y - x, e|| < r and for all $y, x \in X$

Theorem 9. Let X and Y be linear 2-normed spaces over \mathbb{R} . If a linear operator $T: X \longrightarrow Y$ is continuous at 0 then it is continuous on X.

Proof. Assume that the linear operator $T: X \longrightarrow Y$ is continuous at 0. For any open ball $B_d(0,R)$ in Y, we can find an open ball $B_e(0,r)$ such that

$$T(B_e(0,r)) \subseteq B_d(0,R)$$

Then by linearity, $T(y) - T(x) \in B_d(0, R)$ whenever $y - x \in B_e(0, r)$. Thus if $y \in x + B_e(0, r) = B_e(x, r)$ then $T(y) \in T(x) + B_d(0, R) = B_d(T(x), R)$. Hence

$$T(B_e(x,r)) \subseteq B_d(T(x),R)$$

implying that T is continuous on X.

Definition 10. Let X and Y be linear 2-normed spaces over \mathbb{R} and $T: X \longrightarrow Y$ be a linear operator. The operator T is said to be sequentially continuous at $x \in X$ if for any sequence $\{x_n\}$ of X converging to x we have $T(x_n) \longrightarrow T(x)$.

Theorem 10. Every continuous linear map T from a linear 2-normed space X into a linear 2-normed space Y is sequentially continuous on X.

Proof. Let $T: X \longrightarrow Y$ be continuous at $x \in X$. If $B_d(T(x), R)$ is any open ball in Y, then by the continuity of T, there exist some open ball $B_e(x, r)$ in X. Such that

$$T\left(B_e(x,r)\right) \subseteq B_d(T(x),R) \tag{2}$$

Let $\{x_n\}$ be any sequence in X such that $x_n \to x$ in X. Then corresponding to the open ball $B_e(x,r)$, there exist some K>0 such that

$$x_n \in B_e(x,r), \text{ for all } n \ge K$$
 (3)

$$||x_n - x, e|| < r$$
, for all $n \ge K$

(2) and (3) shows that $T(x_n) \in B_d(T(x), R)$, for all $n \geq K$

$$||T(x_n) - T(x), d|| < R$$
, for all $n \ge K$

Since $B_d(T(x), R)$ is arbitrary, it follows that $T(x_n) \longrightarrow T(x)$. Hence T is sequentially continuous on X.

Theorem 11. Let X and Y be linear 2-normed spaces over \mathbb{R} . If X is finite dimensional, then every linear map from X into Y is sequentially continuous.

Proof. Let X be finite dimensional and $T: X \longrightarrow Y$ be linear. If $X = \{0\}$ then there is nothing to prove. Let now $X \neq \{0\}$ and $\{e_1, e_2, ..., e_m\}$ be a basis for X. For a sequence $\{x_n\}$ in X, let $x_n = a_{n,1}e_1 + a_{n,2}e_2 + ... + a_{n,m}e_m$ where $a_{nj} \in \mathbb{R}$. If $x_n \longrightarrow x = a_1e_1 + a_2e_2 + ... + a_me_m$ in X, then

$$\begin{aligned} \|x_n - x, e_j\| &= \|(a_{n,1} - a_1)e_1 + (a_{n,2} - a_2)e_2 + \dots + (a_{n,m} - a_m)e_m, e_j\| \\ &= \|(a_{n,j} - a_j)e_j + y^j, e_j\| \\ &\quad where \ y^j \in Y_j = span\{e_i \ : \ i = 1, 2, \dots m \ and \ i \neq j\} \\ &= |a_{n,j} - a_j| \|e_j + y_j, e_j\|, \ where \ y_j = \frac{1}{|a_{n,j} - a_j|} y^j \\ &\geq |a_{n,j} - a_j| dist(e_j, Y_j), \\ &\quad where \ dist(e_j, Y_j) = \inf\{\|y, e_j\| \ : \ y \in Y_j\} \\ |a_{n,j} - a_j| &\leq \frac{\|x_n - x, e_j\|}{dist(e_j, Y_j)} \longrightarrow 0 \ as \ n \to \infty \ and \ for \ all \ j. \end{aligned}$$
 That is,
$$a_{n,j} \longrightarrow a_j \ \text{for all } j.$$

By the linearity of T, it then follows that

$$T(x_n) = T(a_{n,1}e_1 + a_{n,2}e_2 + \dots + a_{n,m}e_m)$$

$$= a_{n,1}T(e_1) + a_{n,2}T(e_2) + \dots + a_{n,m}T(e_m)$$

$$\longrightarrow a_1T(e_1) + a_2T(e_2) + \dots + a_mT(e_m)$$

$$= T(a_1e_1 + a_2e_2 + \dots + a_me_m)$$

$$= T(x)$$

Thus every linear map T from X to Y is sequentially continuous.

Definition 11. Let X and Y be two real linear 2-normed spaces, $\{T_{\lambda}\}_{{\lambda}\in\Lambda}$ a family of linear operator from X to Y. We say that $\{T_{\lambda}\}_{{\lambda}\in\Lambda}$ is equi-continuous if for any neighbourhood $B_d(0,R)$ in Y there exist some $B_e(0,r)$ in X such that

$$T_{\lambda}(B_e(0,r)) \subseteq B_d(0,R), \text{ for all } \lambda \in \Lambda.$$

In other words if for any $d \in Y$ and R > 0, there exist $e \in X$ and r > 0 such that ||T(x), d|| < R, whenever ||x, e|| < r and for all $\lambda \in \Lambda$.

Definition 12. A subset E of a linear 2-normed space X is said to be locally bounded if there exist some $e \in X - \{0\}$ and r > 0 such that $E \subseteq B_e(0, r)$.

A subset E of a linear 2-normed space X is bounded if for any open ball $B_e(0,r)$ there exist some t>0 such that $E\subseteq tB_e(0,r)\subset B_e(0,R)$.

A linear map $T: X \to Y$ is bounded if and only if it maps bounded set into bounded set.

Theorem 12. Suppose X and Y are linear 2-normed spaces over \mathbb{R} . Let $\{T_{\lambda}\}_{{\lambda}\in\Lambda}$ be an equi-continuous collection of linear mappings from X into Y and B be a bounded subset of X. Then $T_{\lambda}(B)$ is a bounded subset of Y for all ${\lambda}\in\Lambda$, that is, $\{T_{\lambda}\}_{{\lambda}\in\Lambda}$ is equi-bounded.

Proof. Let $\{T_{\lambda}\}_{{\lambda}\in\Lambda}$ be an equi-continuous collection of linear mappings from X into Y. For any open ball $B_d(0,R)$ in Y, we can find an open ball $B_e(0,r)$ in X such that $T_{\lambda}(B_e(0,r))\subseteq B_d(0,R)$ for all $\lambda\in\Lambda$.

That is
$$||T_{\lambda}(x), d|| < R$$
, whenever $||x, e|| < r$ and for all $\lambda \in \Lambda$ (4)

Since B is bounded, corresponding to the open ball $B_e(0,r)$ there exist some t > 0 such that

$$B \subseteq tB_e(0,r) \tag{5}$$

If $x \in B$ then $\|\frac{x}{t}, e\| < r$. But then from (4), we obtain

$$||T_{\lambda}(x), d|| < tR = R^1$$
, for all $\lambda \in \Lambda$, $d \in Y$ and $x \in B$.

This shows that $T_{\lambda}(B)$ is a bounded subset of Y for all $\lambda \in \Lambda$, that is, $\{T_{\lambda}\}_{{\lambda} \in \Lambda}$ is equi-bounded.

Theorem 13 (Banach Steinhauss Theorem in Linear 2-normed space). Let X and Y be linear 2-normed spaces over \mathbb{R} . If X is a 2-Banach space and $\{T_{\lambda}\}_{{\lambda}\in\Lambda}$ is a family of continuous linear operator from X to Y such that for any $x\in X$, there exist $c_x>0$ such that

$$||T_{\lambda}(x), y|| < c_x ||x, e||, \text{ for all } \lambda \in \Lambda, y \in Y \text{ and } e \notin span\{x\}$$
 (6)

then the family $\{T_{\lambda}\}_{{\lambda}\in\Lambda}$ is equi-continuous.

Proof. Let $B_d(0,R)$ be any open ball in Y. Note that $B_d(0,R)$ is absorbing in Y. choose a positive real number r such that $\overline{B_d(0,r)} + \overline{B_d(0,r)} \subseteq B_d(0,R)$.

$$Define \ A_n = \left\{ x \in X : T_{\lambda}(x) \in n\overline{B_d(0,r)}, \text{ for all } \lambda \in \Lambda \right\}$$

$$= \left\{ x \in X : \frac{x}{n} \in T_{\lambda}^{-1} \left(\overline{B_d(0,r)} \right), \text{ for all } \lambda \in \Lambda \right\}$$

$$= \left\{ x \in X : x \in nT_{\lambda}^{-1} \left(\overline{B_d(0,r)} \right), \text{ for all } \lambda \in \Lambda \right\}$$

$$= \bigcap_{\lambda \in \Lambda} nT_{\lambda}^{-1} \left(\overline{B_d(0,r)} \right).$$

Then A_n is closed for all n and by using the given condition (1), we obtain $X = \bigcup_{n \in \mathbb{N}} A_n$. Since X is a 2-Banach space, Baire's theorem shows that at least

one of A_n has non-empty interior. Let x_0 be an interior point of A_{n_0} . Then there exist an open ball $B_e(0,t)$ such that

$$x + B_{e}(0,t) \subseteq B_{e}(x,t) \subseteq A_{n_{0}}$$

$$T_{\lambda}(B_{e}(0,t)) \subseteq T_{\lambda}(A_{n_{0}}) - T_{\lambda}(x)$$

$$\subseteq n_{0}\overline{B_{d}(0,r)} - n_{0}\overline{B_{d}(0,r)}$$

$$= n_{0}\left(\overline{B_{d}(0,r)} + \overline{B_{d}(0,r)}\right)$$

$$\subseteq n_{0}B_{d}(0,R), \text{ for all } \lambda \in \Lambda.$$

$$T_{\lambda}\left(B_{e}(0,\frac{t}{n})\right) \subseteq B_{d}(0,R), \lambda \in \Lambda.$$

This shows that $\{T_{\lambda}\}_{{\lambda}\in\Lambda}$ is equi-continuous and hence equi-bounded.

ACKNOWLEDGEMENT: The authors are thankful to the referees for giving the suggestions for the improvement of this work.

References

- [1] Y. J. Cho, P.C.S. Lin, S.S. Kim and A. Misiak: *Theory of 2-Inner product spaces*, Nova Science, New York, 2001.
- [2] C. Constantinescu: C *-Algebra, Volume 1: Banach spaces, Elsevier-2001.
- [3] S. Gähler, A.H. Siddiqi and S.C. Gupta: Contributions to non-archimedean functional analysis, Math. Nachr., 69(1975), 162-171.
- [4] S. Gähler: Uber 2-Banach räume, Math. Nachr., 42(1969), 335-347.
- [5] S. Gähler: Siegfrid 2-metrische Räume und ihre topologische struktur, Math.Nachr.26(1963), 115-148.
- [6] S. Gähler: Lineare 2- normierte Räume, Math. Nachr. 28(1964)1-43.
- [7] W. A. George, Jr., 2-Banach spaces, Math. Nachr., 42(1969), 43-60.
- [8] R. Pilakkat and Sivadasan Thirumangallath, Baire's theorem for linear 2-normed k-Space, Int. J. Math. Analysis, 44. No.5(2011), 2177-2183.
- R. Pilakkat and Sivadasan Thirumangallath, Results in linear 2-normed spaces analogous to Baire's theorem and Closed Graph Theorem, Int. J. Pure Appl. Math, 74(2012), 509-517.
- [10] F. Raymond W and C. Yeol Je: Geometry of Linear 2-normed spaces, Nova science publishers, Inc., Hauppauge, Ny, 2001.
- [11] F. Raymond W and C. Yeol Je: Geometry of Linear 2-normed spaces, Nova science publishers, Inc., Hauppauge, Ny, 2001.
- [12] P. Riyas and K T Ravindran: 2-NSR lemma and Quotient Space in 2-normed Space, Matematiqki Vesnik, Vol-63.1(2011),1-6, March 2011.
- [13] P. Riyas and K T Ravindran, Open Mapping Theorem in 2-normed space, Acta Universitatis Apulensis, Vol-26(2011),29-34, 2011.
- [14] W. Rudin, Functional Analysis; Vol-2, Tata McGraw-Hill Pub.Com.Ltd, New Delhi.
- [15] A. H. Siddiqui, 2-normed spaces, Aligarh Bull. math., (1980), 53-70.