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TOPOLOGICAL STRUCTURE OF 2-NORMED SPACE AND
SOME RESULTS IN LINEAR 2-NORMED SPACES
ANALOGOUS TO BAIRE’S THEOREM AND BANACH
STEINHAUS THEOREM

P RIYAS!, K T RAVINDRAN?

ABSTRACT. In this paper we construct the topological structure of linear
2-normed space. This enable us to define the concept of open sets in linear
2-normed space and derive an analogue of Baire’s theorem and Banach
Steinhaus theorem in linear 2-normed spaces..

Key words : linear 2-normed space, locally convex topological vector space,
2-Banach space, equi-continuity, locally bounded set, equi-bounded..
AMS SUBJECT : 46A03, 46A19, 46B07,46B20 46B25.

1. INTRODUCTION

The concept of a linear 2-normed space was introduced as a natural 2-metric
analogue of that of a normed space. In 1963, Siegfried Géhler, a German
Mathematician introduced the notion of a 2-metric space, a real valued func-
tion of point-triples on a set X, whose abstract properties were suggested by
the area function for a triangle determined by a triple in Euclidean space[5].
Many Mathematician have intensively studied this concept in the last three
decades and obtained new applications of these notions in some abstract set-
tings. Recently R Pilakkat and S Thirumangalath proved Baire’s theorem
for 2-Banach(K) Spaces in [8],[9]. However there is yet no complete proof for
Baire’s theorem for 2-Banach Spaces. In this paper, we prove an analogue of
Baire’s theorem and Banach Steinhaus theorem in linear 2-normed spaces X
by constructing a locally convex topology for X. We now state some defini-
tions before presenting our main results.
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Let X be a linear space of dimension greater than 1 over R. Suppose || , || is
a real valued function on X x X satisfying the following conditions:
a). ||z,y|| = 0 if and only if x and y are linearly dependent.
b). [z, yll = lly, ]l for all @ ,y € X.
). |lax,y|| = |al||z,y| for all A € R and all z ,y € X.
d). [z 4y, z|| < |z, z|| + ||y, z||, for all z ,y and z € X.
Then || , || is called a 2-norm on X and the pair (X,| , ||) is called a lin-
ear 2-normed space. Some basic properties of linear 2-normed space can be
immediately obtained as follows:
o |z,y|| >0, forallz,y € X
o ||z,y+ az| = ||z,y|,for all z,y € X and for alla € R
A standard example of a linear 2-normed space is R? equipped with the 2-
norm: ||z, y|| = area of the parallelogram determined by the vector z and y as

the adjacent sides. In any given 2-normed space, we can define a function pe
on X by

Pe(x) = ||z, €]l

for some e € X. It is easy to see that this function satisfies the following
conditions:

(1) pe(x + y) < pe(m) +pe(y)

(2) pe(ax) = ‘a‘pe(x)
Any function defined on X and satisfying the conditions (1) and (2) is called
seminorm on X. Since X is of dimension > 2, corresponding to each x # 0
there exist some e € X such that « and e are linearly independent and therefore
Pe(x) # 0.Thus if X is a 2-normed space, the collection P = {p. : e € X} forms
a separating family of seminorms on X.

2. MAIN RESULTS
BAIRE’S THEOREM IN LINEAR 2-NORMED SPACE

In this section we investigate the structure of open sets in linear 2-normed
space and using this structure we formulate an analogue of Baire’s Theorem
in linear 2-normed space.

Theorem 1. Let X be a real linear 2-normed space. Then the subset B.(0,1) =
{z € X : ||z e|| <1} of X is convex, symmetric, balanced and absorbing.

Proof. For any z, y € B.(0,1) and ¢ € [0, 1],
[t + (1 =t)y,ell < itz el + (1 =)y, ell
[t ell + 1(1 = D)llly; ell
< t+(1-t)=1
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implying that tz + (1 —t)y € Be(0,1). Hence B.(0, 1) is convex. Also for any
rxeX, | —xze|| =|—1]||z el = |z, e| implies that B.(0,1) = —B.(0,1). This
shows that B.(0,1) is symmetric.

For all o with || <1 and = € B.(0,1),

oz, el = |al]z,e]
< el <1
€

That is, azx B¢(0,1), for all x € B(0,1).

Hence B.(0,1) is balanced.
We shall now show that B (0, 1) is absorbing. Let x € X. If x and e are linearly
dependent then ||z,e]| =0 < 1l andsox € Bc(0,1) = tB.(0,1) wheret = 1. On

1
the other hand, if we take ¢ = 2||z,e|| > 0, then ||¥x,e|] = EHx,eH =5< 1.
This shows that « € tB.(0, 1) for some ¢t > 0. Hence B(0, 1) is absorbing. [

Theorem 2. Let X be a linear 2-normed space and P = {p. : e € X} where
pe(z) = |lx,e|. Associate to each p. € P and each positive integer n set

1
V(pe,n) = Be(0,—). Let B be the collection of all finite intersection of the
n

sets V(pe,n). Then B is a convex balanced local base for a topology T on X
which turns X into a locally convex space such that

1) Every p. € P is continuous.
2) A set E C X is bounded if and only if every p. € P is bounded on E.

Proof. Define a family T of subsets of X by A € T if and only if A is a (possibly
empty) union of translates of members of B. For any = € X, ||z, e|]| < n, implies

that © € ngBe(0,1) = nyV(pe, 1) and so X = UnJCV(pe, 1) eT.clearly D € T

Ny
and closed under arbitrary union and finite intersection. This shows that
T is a translation invariant topology on X. Since B is the family of finite
intersection of convex and balanced subset V' (pe,n) of X, each member of B
is convex and balanced, and B forms a local base for T. Next we shall prove
that X is a locally convex topological vector space. Let 0 # x € X. The
family P being separating, there exist p. € P such that p.(x) > 0. Note that
x is not in V(pe,n) if npe(x) = n||x,e|| > 1. This shows that 0 is not in

1
the neighbourhood = — V(pe,n) =  — Be(0, —) = Be(x,—) of x and so z is
n n

not in the closure of {0}. Since T is translation invariant, every singleton set
{z} =z + {0} is a closed set.

We now show that addition and scalar multiplication are continuous. Let U
be a neighbourhood of 0. Then as B is a local base, there exist pe,, Deys -+ s Pe,,
in P and some positive integers ny, ng, ..., N, such that

V(peysn1) NV (pey,n2) N e NV (pe,, , nm) C U.



Topological Structure of 2-normed Space and Some results in Linear 2-Normed Spaces 95

Put V=V (pe,,2n1) NV (pey, 2n2) N ... NV (pe,, s 270m)
Forany z =2 +ycV +V,
1 1 1 )
Iz eill = 1o+ o exll < o eall + g esll < + = —, for all 4

implying that z = =z +vy € V(pe,,n;), forall i and so z € U. Therefore
V +V C U. This shows that vector addition is continuous. Suppose that
r € X, « is any scalar and U and V are as above. Then = € sV for some
1
s> 0. If we take t = ——— and |f — a| < —, then
1+ |afs s

1Bl = (B —a)+alt < (I8 —al+laf)

1 s
< |=+lof)—F—F=1
s 1+ |als

1
Therefore if y € x +tV and | — a| < —, then as V is balanced,
s

_5
1+ |als

By~ az = Aly )+ (3 —a)e € |BtV + |3~ alsV CV +V CU

Thus for any neighbourhood ax + U of ax, there exist a neighbourhood W =
1

x4tV of x such that BW C ax+U for all 8 with |#—«| < —. This proves that
S

scalar multiplication is continuous. Hence X is a locally convex topological
vector space. If U = (—¢,€) is any neighbourhood of p.(0) = 0 in R then

1
we can find a neighbourhood V' = V(p,,—) of 0 in X such that p.(V) C U.
€

This shows that p. is continuous at 0. Now let U be any neighbourhood of
Pe(z). Then pe(z) — U is a neighbourhood of 0 and therefore there exist some
neighbourhood V of 0 in X such that p.(z) — pe(V) C U. Since V is balanced
and pe is a seminorm, it follows that p.(x + V) C U. Hence p. is continuous
on X.

Now suppose that E is bounded and let p. € P. Then corresponding to the
neighbourhood V'(pe, 1) of 0, there exist some k > 0 such that £ C kV (pe, 1).
Thus for any z € E |, pe(z) < k. It follows that every p. € P is bounded on E.

Conversely suppose that every p, € P is bounded on E and let U be a
neighbourhood of 0 in X. Then as B is a local base, there exist pe,, Peys--- , De,,
in P and some positive integers ny, ng, ..., Ny, such that

V(p617n1) N V(pezan2) n..n V(p6m7nm) cU.

By our assumption, corresponding to each p., there exist numbers M; such that
n

P, (x) < M;, for all x € E and 1 <i < m. For any =z € E, p,,(z) < M; < —,
n

(2
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if n > M;n;. Then,

1 1
De; <a:) < — foralli.
n n;
r € nV(pe,,n;) for alli.
Thatisz € nU andso E CnU.

Hence F is bounded. U

Definition 1. Let A be a conver and absorbing set in a topological vector
space X. The Minkowski’s functional ua of A is defined by

pa(z) =inf{t >0 : t 'z € A} for z € X.
Theorem 3. Let X be a linear 2-normed space and let B be the collection
1
of all finite intersection of the sets of the form V(pe,n) = Be(0,—). Then
n

V={rxeX : uy(x) <1} forall V € B, where puy is the Minkowski’s
functional on X.

Proof. For any V € B, we can take it as

m
V= ﬂ V(peivni) (1)
i=1
1
Then for any x € V, |jz,e]] < — for 1 < ¢ < m. Choose ¢ such that
1
11 1
nillz, e;|| <t <1 for all i. But then Hg,eiH < —— = —, for all ¢ implies that
t t n; n;
x x
7€ V. Thus if x € V then 7€ V, for some ¢t < 1 and so py(x) < 1.

t
Conversely if x ¢ V, then % € V would imply that ||z,e;|| < — for all 4.
n;

1

Also from (1) , if ¢ V then ||z, e;|| > — for some i and so t > n;||z, e;]| > 1.
n

It follows that py (z) > 1. Equivalently if py(x) <1 then z € V.

Hence V={re X : py(z)<1}. O

Many authors have described an open set in a linear 2-normed space in
different ways. Here by using theorem (2), we define open and closed sets in
a linear 2-normed space as follows :

Definition 2. A subset A of a linear 2-normed space X is said to be open
if for any x € A then there exist eq, eo, ..., e, in X and ri,ra,...r, > 0 such that

T4V (pey s 1)V (Deg, r2)Nee.NV (De,, , ) = Be, (2, 71)NBey (2, 72)N...NBe, (x, 1)
CA
where Be,(z,1i) ={z € X : ||z — 2,6 <mi}.
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A subset B of a linear 2-normed space X is said to be closed if its comple-
ment is open in X.

Theorem 4. Let X be a linear 2-normed space. Then the ball B.(0,7) =
{z: ||z, e|]| <7} is open in X

Proof. Let © € B.(0,1). Choose e, = me and r,, = m(1 — ||z, ¢||) for m =
1,2,3,..,n. Ifyenl,_, B, (x,ry) then ||y — z, ey < rp, for all m and

ly,ell < Ny — =€l + €l

e
= Hy—x,—mH—l—Hx,eH
m
1
= —ly—zenl + el

1
< —rmt s
m

1
—[m(1 — |l el)] + [z, €]
This shows that y € B(0,1).
Hence B.(0,1) is open in X. O

Corollary 5. The ball B.(a,7) = {x: || —a,e|l| <r} is open in a linear
2-normed space X for all a, e € X and r > 0.

Proof. Let x = a+ry € a+rB.(0,1) = Be(a, ). Since B¢(0,1) is open in X,
there exist eg, e9,...,e, in X and ry, 7o, ...,7, > 0 such that

(=1 Be (¥, 7m) € Be(0,1).

This implies that a +r N)_; Be,,(y,7m) C a+1rBc(0,1) = Be(a,r).
That is, N1 Be,,(x, R) = N1 Be,,(a+71y,R) C Be(a,r).
Hence Be(a,r) is open in X O

Example 1. Let X = R? be a linear 2-normed space with 2-norm defined by
|z, y|| = |x1y2 — z2y1|, where x = (x1,x2) and y = (y1,y2) and let e = (e1, e2).
Then,

Be(0,1) = {(w1,22) : [|z,e] <1}
= {(z1,22) : |1 — 22| < 1}
= {(z1,22) : x1 — 1 <mo <1+ 1} isopenin X.

Definition 3. A sequence {x,} — x in a linear 2-normed space X if for any
open set V' containing 0 there exist a positive integer N such that x, —x €V
for alln > N.

Theorem 6. A sequence {x,} — x in a 2-normed space X if and only
lim |z, —x,e|| =0, for all e € X.
n—oo
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1

Proof. Consider the open set V = B, <O, > containing 0 and for any e € X.
n

If the sequence {x,} converges to x then we can find some positive integer N

1
such that =z, — z € B, <0, > for all n > N. Then
n
1
|lxn —x,e|| < —,forall n >N and e € X.
n

Letting N — oo, we get lim ||z, —x,e|| =0, for all e € X.
n—oo

Conversely, suppose that lim ||z, — z,e| = 0, for all e € X and V is any
n—oo
open set containing 0. Then there exist ej, ez ... e, in X and 71,79, ... 7, such
that

B, (0,71) N Bey(0,72) N ..M Be, (0,1y,) C V.
But then by our assumption corresponding to each r; > 0, there exist a positive
integer NV; such that
|zn, — x,e|| <, for allm > N; and for all e = e;.
In other words, z,, — x € Be,(0,7;), for alln > N = max(N;) and for all i . It
follows that x,, —x € V, for all n > N. Hence {x,} . x. O
Definition 4. A sequence {z,} in a linear 2-normed space X is said to be

Cauchy sequence if there exist two linearly independent elements y and z such

that lim ||z, — Zm,y|| =0 and lim ||z, — zm, 2| = 0.
m,n—0o0 m,n— o0

Definition 5. Let X be a linear 2-normed space and A C X. Then a point
x € X is called limit point of A in X if for any open set U containing x,

AN (U = {x}) #0.

Theorem 7. Let X be a linear 2-normed space and A C X. If x is a limit
point of A then corresponding to each e € X there exist a sequence {x,} in A
such that lim ||z, —z, el = 0.

n—oo

1
Proof. If z is a limit point of A then corresponding to each open ball B, (:U, >
n

1 1

we can choose z,, € AN (Be (a;, > — {x}) . Then z,, € Aand ||z, —z,e] < —

n n

for all n. Thus for any e € X, there exist {z,} in A such that lim ||z,—z, el =
n—oo

0. H

Definition 6. Let X be a linear 2-normed space and A C X. A point x € X
is called a closure point of A if every open set containing x intersects A. The
set of all closure points of A, denoted by A is called closure of A.
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Definition 7. Let X be a linear 2-normed space and A C X. Then A is said
to be dense in X if every open set U in X intersects A.

Definition 8. A linear 2-normed space in which every Cauchy sequence is
convergent, is called a 2-Banach space or a complete space.

We now prove the main objective of this section :

Theorem 8 (Analogue of Baire’s Theorem in Linear 2-normed space). Let X
be a 2-Banach space. Then intersection of a countable number of dense open
subsets of X is dense in X.

Proof. Let Vi,Va,... be dense open subsets of X. For x¢g € X, consider an
arbitrary non-empty open subset By of X containing xg. Then there exist
fi, fo, ..., fi in X and pq,po,...,p; > 0 such that

Bfl (x()apl) N Bf2(113(),p2) n...N sz(x()?pz) c BO-
Since V; is dense in X and N}_, By, (o, px) is open, ViN(Ni_, By, (zo, pi)) # 0.
Choose an element z1 € ViN(N;_, By, (2o, px)) . Then as ViN(N}_, By, (zo, pk))
is open in X, we can find an open set Bj containing x; such that B; C

Vin (ﬂ};lefk (a;o,pk)) C Vi N By. By being an open set containing 1, there
exist g1, g2, ...,9; in X and q1, g2, ...,q; > 0 such that

By, (z1,q1) N By, (w1,62) N ... N By, (21, q5) € By.

Note that V5 is dense in X and ﬂilegk (1, qg) is open in X. Consequently,
Vo N (ﬂilegk(xl,qu £ 0. Let 20 € Van (ﬂilegk(xl,qk)). Then as
above, we can choose an open set By containing x» such that By C Vo N
(ﬂilegk (21, qk)) C V5 N By. Thus proceeding inductively we can find a se-
quence {z,} such that x,, € V11 N (ﬁleBei (xm,m)) for all n > m and

1
a decreasing sequence {R,} of positive real numbers such that R, < —.

n

where Ry = max{pi,p2,...,pi}, R2 = max{qi,q,...,q}, . . . , Ry =
max{r1,72, ..., "k}

1
|z — xm,eill < Rpy < —, for allm > m and for all 1.
m

[2n = zrseill < lan = 2m, &l + l2m — 2, el

1 1
— 4+ — = —, for alln,r > m and for all i.
m m m

If we let m — oo, we obtain lim ||z,—x,,e|| =0, for all e € span{ey, e, ..e}.
n,r—00
This shows that {x,} is a Cauchy sequence in a 2-Banach space X and hence

there exist some elsuch thatin — x in X. Since x,, € B,,, for alln > m,
it follows that x € B,, and as B,, C V,, N By for m = 1,2, 3... we see that
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z € (N°_1Vin) N By. Hence By intersects N°_;V;, and therefore dense in
X. O

3. BANACH STEINHAUS THEOREM IN LINEAR 2-NORMED SPACE

In this section, we will consider linear operators defined on a linear 2-normed
space into a linear 2-normed space. We will formulate Banach Steinhaus The-
orem for a family of continuous linear operators.

Definition 9. Let X and Y be linear 2-normed spaces over R. Then a linear
map T : X — Y is continuous at x if for any open ball By (T(z),R) inY
there exist an open ball Be(x,r) in X such that T (Be(z,7)) C By (T(x),R) .
In other words for any d € Y and R > 0, there exist some e € X and r > 0
such that [|T(y) — T'(x),d|| < R whenever ||y — z,e|| < r and for ally, x € X

Theorem 9. Let X and Y be linear 2-normed spaces over R. If a linear
operator T : X — 'Y s continuous at 0 then it is continuous on X.

Proof. Assume that the linear operator T': X — Y is continuous at 0. For
any open ball B4(0,R) in Y , we can find an open ball B.(0,r) such that

T (B.(0,7)) C By(0, R)

Then by linearity, T'(y) — T'(x) € Bq(0, R) whenever y — x € B(0,r). Thus if
y € 2+ B(0,7) = Be(z,r) then T'(y) € T'(z)+ B4(0, R) = B4(T(z), R). Hence
T (Be(z,7)) € By(T(x), R)
implying that T is continuous on X. g
Definition 10. Let X and Y be linear 2-normed spaces over R and T : X —

Y be a linear operator. The operator T is said to be sequentially continuous at
x € X if for any sequence {x,} of X converging to x we have T (x,) — T(x).

Theorem 10. Every continuous linear map T from a linear 2-normed space
X into a linear 2- normed space Y is sequentially continuous on X.

Proof. Let T : X — Y be continuous at x € X. If B; (T'(z), R) is any open
ball in Y, then by the continuity of 7', there exist some open ball B(x,r) in
X. Such that

T (Be(xa T)) - Bd(T(‘T)v R) (2)
Let {x,} be any sequence in X such that z,, — = in X. Then corresponding
to the open ball B(z, ), there exist some K > 0 such that

Ty € Be(x,r), for alln > K (3)

|z —z,e|]| <7, foralln>K
(2) and (3) shows that T'(z,) € By(T(x), R), for alln > K

|T(xyn) —T(z),d| <R, foralln>K
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Since By(T'(z), R) is arbitrary, it follows that T'(x,) — T'(x). Hence T is
sequentially continuous on X. O

Theorem 11. Let X and Y be linear 2-normed spaces over R. If X is finite
dimensional, then every linear map from X into Y is sequentially continuous.

Proof. Let X be finite dimensional and 7' : X — Y be linear. If X = {0}
then there is nothing to prove. Let now X # {0} and {ey, e, ..., €5, } be a basis
for X. For a sequence {z,} in X, let z,, = ap 11+ an 262+ ... + ap mem Where
an; € R. If 2, — @ = are1 + agez + ... + amey, in X, then
[zn — 2, €5 = [[(an1 —ar)er + (an2 — az)ez + ... + (anm — am)em, €|
= |[(an; = aj)e; + v’ ¢4
where y/ € Y; = span{e; : i =1,2,..mandi+# j}
1

i
|an,; — ajl

= |an; — ajllle; +yj, ejll, where y; =

> an,; — aj|dist(e;,Y;),
where dist(e;,Y;) = inf{||y,e;]| : y €Y}

Ty — T, €4 .
|anj —aj| < WHOasnﬂooandfor all j.
That is, an; — a; for all j.
By the linearity of T, it then follows that
T(xy,) = T(api€1+ angea+ ...+ apmem)

= ap1T(e1) +an2T(e2) + ... + anmT(em)
— a1T(e1) +axT(e2) + ... + amT(em)
= T(are1 + agex + ... + amen)
= T(x)
Thus every linear map 7" from X to Y is sequentially continuous. O

Definition 11. Let X and Y be two real linear 2-normed spaces, {Th}xen a
family of linear operator from X toY. We say that {T)\} e s equi-continuous
if for any neighbourhood B4(0, R) in Y there exist some Be(0,7) in X such
that

Ty (Be(0,7)) € B4(0,R), for all X € A.
In other words if for any d €'Y and R > 0 , there exist e € X and r > 0 such
that ||T(x),d|| < R, whenever ||z,e|| <1 and for all X € A.

Definition 12. A subset E of a linear 2-normed space X is said to be locally
bounded if there exist some e € X — {0} and r > 0 such that E C B.(0,r).

A subset E of a linear 2-normed space X is bounded if for any open ball
B(0,7) there exist some t > 0 such that E C tB.(0,7) C Be(0, R).
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A linear map T : X — Y is bounded if and only if it maps bounded set into
bounded set.

Theorem 12. Suppose X and Y are linear 2-normed spaces over R. Let
{T\}rea be an equi-continuous collection of linear mappings from X into Y
and B be a bounded subset of X. Then Tx(B) is a bounded subset of Y for all
A € A, that is, {Th\}ren is equi-bounded.

Proof. Let {T)} ea be an equi-continuous collection of linear mappings from
X into Y. For any open ball By4(0,R) in Y, we can find an open ball B.(0,)
in X such that T (Bc(0,7)) € B4(0,R) for all A € A.

That is [|[Tx(z),d|| < R, whenever ||z,e|l| <rand forallA e A  (4)

Since B is bounded, corresponding to the open ball B, (0,r) there exist some
t > 0 such that

B C tB.(0,r) (5)

If x € B then H%, el| < r. But then from (4), we obtain

|Ta(z),d|| <tR =R foral\€ A, d€Y and = € B.

This shows that T (B) is a bounded subset of Y for all A € A, that is, {Tx}xea
is equi-bounded. O

Theorem 13 (Banach Steinhauss Theorem in Linear 2-normed space). Let
X and Y be linear 2-normed spaces over R. If X is a 2-Banach space and
{T\}ren is a family of continuous linear operator from X to'Y such that for
any x € X, there exist ¢, > 0 such that

IT5(). ] < collz.ell for aliA €A, y €Y ande ¢ spanfz}  (6)
then the family {Th\} ca 1S equi-continuous.

Proof. Let By(0, R) be any open ball in Y. Note that B;(0, R) is absorbing in
Y. choose a positive real number r such that B;(0,r) + By(0,7) C By(0, R).

Define A, = {$ € X : Th(x) € nBy(0,7), for all A € A}
_ {wex : %eT;l(W>, forall)\eA}
= {xeX : wenT/\_l(W>, forall)\eA}
= MyeanT; ! (Bd(O,r)) .

Then A, is closed for all n and by using the given condition (1), we obtain
X = UpenAn. Since X is a 2-Banach space, Baire’s theorem shows that atleast
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one of A, has non-empty interior. Let xg be an interior point of A,,. Then
there exist an open ball B.(0,t¢) such that

x+ Bc(0,t) C Be(z,t) C Ay,

Tx(Be(0,t)) S Ta(Any) — Ta(x)
c nOBd(Ov T) - nOBd(O7 7")
= 1o (Bal0,7) + Ba(0,1))
C ngB4(0,R), forall A € A.
t
Ty <Be(07 n)> C B4(0,R), A€ A.
This shows that {T)}ea is equi-continuous and hence equi-bounded. O
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