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TOPOLOGICAL STRUCTURE OF 2-NORMED SPACE AND
SOME RESULTS IN LINEAR 2-NORMED SPACES

ANALOGOUS TO BAIRE’S THEOREM AND BANACH
STEINHAUS THEOREM

P RIYAS1, K T RAVINDRAN2

Abstract. In this paper we construct the topological structure of linear
2-normed space. This enable us to define the concept of open sets in linear
2-normed space and derive an analogue of Baire’s theorem and Banach
Steinhaus theorem in linear 2-normed spaces..
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1. Introduction

The concept of a linear 2-normed space was introduced as a natural 2-metric
analogue of that of a normed space. In 1963, Siegfried Gähler, a German
Mathematician introduced the notion of a 2-metric space, a real valued func-
tion of point-triples on a set X, whose abstract properties were suggested by
the area function for a triangle determined by a triple in Euclidean space[5].
Many Mathematician have intensively studied this concept in the last three
decades and obtained new applications of these notions in some abstract set-
tings. Recently R Pilakkat and S Thirumangalath proved Baire’s theorem
for 2-Banach(K) Spaces in [8],[9]. However there is yet no complete proof for
Baire’s theorem for 2-Banach Spaces. In this paper, we prove an analogue of
Baire’s theorem and Banach Steinhaus theorem in linear 2-normed spaces X
by constructing a locally convex topology for X. We now state some defini-
tions before presenting our main results.
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Let X be a linear space of dimension greater than 1 over R. Suppose ‖ , ‖ is
a real valued function on X ×X satisfying the following conditions:

a). ‖x, y‖ = 0 if and only if x and y are linearly dependent.
b). ‖x, y‖ = ‖y, x‖ for all x , y ∈ X.
c). ‖αx, y‖ = |α|‖x, y‖ for all λ ∈ R and all x , y ∈ X.
d). ‖x + y, z‖ ≤ ‖x, z‖+ ‖y, z‖, for all x , y and z ∈ X.

Then ‖ , ‖ is called a 2-norm on X and the pair (X,‖ , ‖) is called a lin-
ear 2-normed space. Some basic properties of linear 2-normed space can be
immediately obtained as follows:

• ‖x, y‖ ≥ 0, for all x , y ∈ X
• ‖x, y + αx‖ = ‖x, y‖, for all x, y ∈ X and for all α ∈ R

A standard example of a linear 2-normed space is R2 equipped with the 2-
norm: ‖x, y‖ = area of the parallelogram determined by the vector x and y as
the adjacent sides. In any given 2-normed space, we can define a function pe

on X by
pe(x) = ‖x, e‖

for some e ∈ X. It is easy to see that this function satisfies the following
conditions:

(1) pe(x + y) ≤ pe(x) + pe(y)
(2) pe(αx) = |α|pe(x)

Any function defined on X and satisfying the conditions (1) and (2) is called
seminorm on X. Since X is of dimension ≥ 2, corresponding to each x 6= 0
there exist some e ∈ X such that x and e are linearly independent and therefore
pe(x) 6= 0.Thus if X is a 2-normed space, the collection P = {pe : e ∈ X} forms
a separating family of seminorms on X.

2. Main Results
Baire’s Theorem in Linear 2-normed space

In this section we investigate the structure of open sets in linear 2-normed
space and using this structure we formulate an analogue of Baire’s Theorem
in linear 2-normed space.

Theorem 1. Let X be a real linear 2-normed space. Then the subset Be(0, 1) =
{x ∈ X : ‖x, e‖ < 1} of X is convex, symmetric, balanced and absorbing.

Proof. For any x, y ∈ Be(0, 1) and t ∈ [0, 1],

‖tx + (1− t)y, e‖ ≤ ‖tx, e‖+ ‖(1− t)y, e‖
= |t|‖x, e‖+ |(1− t)|‖y, e‖
< t + (1− t) = 1
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implying that tx + (1− t)y ∈ Be(0, 1). Hence Be(0, 1) is convex. Also for any
x ∈ X, ‖−x, e‖ = | − 1|‖x, e‖ = |x, e‖ implies that Be(0, 1) = −Be(0, 1). This
shows that Be(0, 1) is symmetric.
For all α with |α| ≤ 1 and x ∈ Be(0, 1),

‖αx, e‖ = |α|‖x, e‖
≤ ‖x, e‖ < 1

That is, αx ∈ Be(0, 1), for all x ∈ Be(0, 1).

Hence Be(0, 1) is balanced.
We shall now show that Be(0, 1) is absorbing. Let x ∈ X. If x and e are linearly
dependent then ‖x, e‖ = 0 < 1 and so x ∈ Be(0, 1) = tBe(0, 1) where t = 1. On

the other hand, if we take t = 2‖x, e‖ > 0, then ‖1
t
x, e‖ =

1
t
‖x, e‖ =

1
2

< 1.

This shows that x ∈ tBe(0, 1) for some t > 0. Hence Be(0, 1) is absorbing. ¤
Theorem 2. Let X be a linear 2-normed space and P = {pe : e ∈ X} where
pe(x) = ‖x, e‖. Associate to each pe ∈ P and each positive integer n set

V (pe, n) = Be(0,
1
n

). Let B be the collection of all finite intersection of the

sets V (pe, n). Then B is a convex balanced local base for a topology T on X
which turns X into a locally convex space such that

1) Every pe ∈ P is continuous.
2) A set E ⊆ X is bounded if and only if every pe ∈ P is bounded on E.

Proof. Define a family T of subsets of X by A ∈ T if and only if A is a (possibly
empty) union of translates of members of B. For any x ∈ X, ‖x, e‖ < nx implies
that x ∈ nxBe(0, 1) = nxV (pe, 1) and so X =

⋃
nx

nxV (pe, 1) ∈ T. clearly ∅ ∈ T

and closed under arbitrary union and finite intersection. This shows that
T is a translation invariant topology on X. Since B is the family of finite
intersection of convex and balanced subset V (pe, n) of X, each member of B
is convex and balanced, and B forms a local base for T. Next we shall prove
that X is a locally convex topological vector space. Let 0 6= x ∈ X. The
family P being separating, there exist pe ∈ P such that pe(x) > 0. Note that
x is not in V (pe, n) if npe(x) = n‖x, e‖ > 1. This shows that 0 is not in

the neighbourhood x − V (pe, n) = x − Be(0,
1
n

) = Be(x,
1
n

) of x and so x is

not in the closure of {0}. Since T is translation invariant, every singleton set
{x} = x + {0} is a closed set.

We now show that addition and scalar multiplication are continuous. Let U
be a neighbourhood of 0. Then as B is a local base, there exist pe1 , pe2 , ... , pem

in P and some positive integers n1, n2, ..., nm such that

V (pe1 , n1) ∩ V (pe2 , n2) ∩ ... ∩ V (pem , nm) ⊆ U.
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Put V = V (pe1 , 2n1) ∩ V (pe2 , 2n2) ∩ ... ∩ V (pem , 2nm)
For any z = x + y ∈ V + V ,

‖z, ei‖ = ‖x + y, ei‖ ≤ ‖x, ei‖+ ‖y, ei‖ <
1

2ni
+

1
2ni

=
1
ni

, for all i,

implying that z = x + y ∈ V (pei , ni), for all i and so z ∈ U. Therefore
V + V ⊆ U . This shows that vector addition is continuous. Suppose that
x ∈ X, α is any scalar and U and V are as above. Then x ∈ sV for some

s > 0. If we take t =
s

1 + |α|s and |β − α| < 1
s
, then

|β|t = |(β − α) + α|t ≤ (|β − α|+ |α|) s

1 + |α|s
<

(
1
s

+ |α|
)

s

1 + |α|s = 1.

Therefore if y ∈ x + tV and |β − α| < 1
s
, then as V is balanced,

βy − αx = β(y − x) + (β − α)x ∈ |β|tV + |β − α|sV ⊆ V + V ⊆ U

Thus for any neighbourhood αx + U of αx, there exist a neighbourhood W =

x+tV of x such that βW ⊆ αx+U for all β with |β−α| < 1
s
. This proves that

scalar multiplication is continuous. Hence X is a locally convex topological
vector space. If U = (−ε, ε) is any neighbourhood of pe(0) = 0 in R then

we can find a neighbourhood V = V (pe,
1
ε
) of 0 in X such that pe(V ) ⊆ U .

This shows that pe is continuous at 0. Now let U be any neighbourhood of
pe(x). Then pe(x)−U is a neighbourhood of 0 and therefore there exist some
neighbourhood V of 0 in X such that pe(x)− pe(V ) ⊆ U . Since V is balanced
and pe is a seminorm, it follows that pe(x + V ) ⊆ U . Hence pe is continuous
on X.

Now suppose that E is bounded and let pe ∈ P. Then corresponding to the
neighbourhood V (pe, 1) of 0, there exist some k > 0 such that E ⊆ kV (pe, 1).
Thus for any x ∈ E , pe(x) < k. It follows that every pe ∈ P is bounded on E.

Conversely suppose that every pe ∈ P is bounded on E and let U be a
neighbourhood of 0 in X. Then as B is a local base, there exist pe1 , pe2 , ... , pem

in P and some positive integers n1, n2, ..., nm such that

V (pe1 , n1) ∩ V (pe2 , n2) ∩ ... ∩ V (pem , nm) ⊆ U.

By our assumption, corresponding to each pei there exist numbers Mi such that
Pei(x) < Mi, for all x ∈ E and 1 ≤ i ≤ m. For any x ∈ E, pei(x) < Mi <

n

ni
,
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if n > Mini. Then,

pei

(
1
n

x

)
<

1
ni

for all i.

x ∈ nV (pei , ni) for all i.

That is x ∈ nU and so E ⊆ nU.

Hence E is bounded. ¤
Definition 1. Let A be a convex and absorbing set in a topological vector
space X. The Minkowski’s functional µA of A is defined by

µA(x) = inf{t > 0 : t−1x ∈ A} for x ∈ X.

Theorem 3. Let X be a linear 2-normed space and let B be the collection

of all finite intersection of the sets of the form V (pe, n) = Be(0,
1
n

). Then

V = {x ∈ X : µV (x) < 1} for all V ∈ B, where µV is the Minkowski’s
functional on X.

Proof. For any V ∈ B, we can take it as

V =
m⋂

i=1

V (pei , ni) (1)

Then for any x ∈ V, ‖x, ei‖ <
1
ni

for 1 ≤ i ≤ m. Choose t such that

ni‖x, ei‖ < t < 1 for all i. But then ‖x

t
, ei‖ <

1
t

t

ni
=

1
ni

, for all i implies that
x

t
∈ V. Thus if x ∈ V then

x

t
∈ V , for some t < 1 and so µV (x) < 1.

Conversely if x /∈ V , then
x

t
∈ V would imply that ‖x, ei‖ <

t

ni
for all i.

Also from (1) , if x /∈ V then ‖x, ei‖ ≥ 1
ni

for some i and so t > ni‖x, ei‖ ≥ 1.

It follows that µV (x) ≥ 1. Equivalently if µV (x) < 1 then x ∈ V .
Hence V = {x ∈ X : µV (x) < 1} . ¤

Many authors have described an open set in a linear 2-normed space in
different ways. Here by using theorem (2), we define open and closed sets in
a linear 2-normed space as follows :

Definition 2. A subset A of a linear 2-normed space X is said to be open
if for any x ∈ A then there exist e1, e2, ..., en in X and r1, r2, ...rn > 0 such that

x+V (pe1 , r1)∩V (pe2 , r2)∩...∩V (pen , rn) = Be1(x, r1)∩Be2(x, r2)∩...∩Ben(x, rn)
⊆ A

where Bei(x, ri) = {z ∈ X : ‖x− z, ei‖ < ri} .
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A subset B of a linear 2-normed space X is said to be closed if its comple-
ment is open in X.

Theorem 4. Let X be a linear 2-normed space. Then the ball Be(0, r) =
{x : ‖x, e‖ < r} is open in X

Proof. Let x ∈ Be(0, 1). Choose em = me and rm = m(1 − ‖x, e‖) for m =
1, 2, 3, ..., n. If y ∈ ∩n

m=1Bem(x, rm) then ‖y − x, em‖ < rm, for all m and

‖y, e‖ ≤ ‖y − x, e‖+ ‖x, e‖
= ‖y − x,

em

m
‖+ ‖x, e‖

=
1
m
‖y − x, em‖+ ‖x, e‖

<
1
m

rm + ‖x, e‖

=
1
m

[m(1− ‖x, e‖)] + ‖x, e‖ = 1.

This shows that y ∈ Be(0, 1).

Hence Be(0, 1) is open in X. ¤
Corollary 5. The ball Be(a, r) = {x : ‖x− a, e‖ < r} is open in a linear
2-normed space X for all a, e ∈ X and r > 0.

Proof. Let x = a + ry ∈ a + rBe(0, 1) = Be(a, r). Since Be(0, 1) is open in X,
there exist e1, e2, ..., en in X and r1, r2, ..., rn > 0 such that

∩n
m=1Bem(y, rm) ⊆ Be(0, 1).

This implies that a + r ∩n
m=1 Bem(y, rm) ⊆ a + rBe(0, 1) = Be(a, r).

That is, ∩n
m=1 Bem(x,R) = ∩n

m=1Bem(a + ry, R) ⊆ Be(a, r).

Hence Be(a, r) is open in X ¤
Example 1. Let X = R2 be a linear 2-normed space with 2-norm defined by
‖x, y‖ = |x1y2−x2y1|, where x = (x1, x2) and y = (y1, y2) and let e = (e1, e2).
Then,

Be(0, 1) = {(x1, x2) : ‖x, e‖ < 1}
= {(x1, x2) : |x1 − x2| < 1}
= {(x1, x2) : x1 − 1 < x2 < x1 + 1} is open in X.

Definition 3. A sequence {xn} −→ x in a linear 2-normed space X if for any
open set V containing 0 there exist a positive integer N such that xn − x ∈ V
for all n ≥ N.

Theorem 6. A sequence {xn} −→ x in a 2-normed space X if and only
lim

n→∞ ‖xn − x, e‖ = 0, for all e ∈ X.
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Proof. Consider the open set V = Be

(
0,

1
n

)
containing 0 and for any e ∈ X.

If the sequence {xn} converges to x then we can find some positive integer N

such that xn − x ∈ Be

(
0,

1
n

)
for all n ≥ N. Then

‖xn − x, e‖ <
1
n

, for all n ≥ N and e ∈ X.

Letting N →∞, we get lim
n→∞ ‖xn − x, e‖ = 0, for all e ∈ X.

Conversely, suppose that lim
n→∞ ‖xn − x, e‖ = 0, for all e ∈ X and V is any

open set containing 0. Then there exist e1, e2 ... en in X and r1, r2, ... rn such
that

Be1(0, r1) ∩Be2(0, r2) ∩ ... ∩Ben(0, rn) ⊆ V.

But then by our assumption corresponding to each ri > 0, there exist a positive
integer Ni such that

‖xn − x, e‖ < ri, for all n ≥ Ni and for all e = ei.

In other words, xn − x ∈ Bei(0, ri), for all n ≥ N = max
i

(Ni) and for all i . It

follows that xn − x ∈ V, for all n ≥ N. Hence {xn} −→ x. ¤

Definition 4. A sequence {xn} in a linear 2-normed space X is said to be
Cauchy sequence if there exist two linearly independent elements y and z such
that lim

m,n→∞ ‖xn − xm, y‖ = 0 and lim
m,n→∞ ‖xn − xm, z‖ = 0.

Definition 5. Let X be a linear 2-normed space and A ⊆ X. Then a point
x ∈ X is called limit point of A in X if for any open set U containing x,
A ∩ (U − {x}) 6= ∅.
Theorem 7. Let X be a linear 2-normed space and A ⊆ X. If x is a limit
point of A then corresponding to each e ∈ X there exist a sequence {xn} in A
such that lim

n→∞ ‖xn − x, e‖ = 0.

Proof. If x is a limit point of A then corresponding to each open ball Be

(
x,

1
n

)

we can choose xn ∈ A∩
(

Be

(
x,

1
n

)
− {x}

)
. Then xn ∈ A and ‖xn−x, e‖ <

1
n

for all n. Thus for any e ∈ X, there exist {xn} in A such that lim
n→∞ ‖xn−x, e‖ =

0. ¤

Definition 6. Let X be a linear 2-normed space and A ⊆ X. A point x ∈ X
is called a closure point of A if every open set containing x intersects A. The
set of all closure points of A, denoted by A is called closure of A.
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Definition 7. Let X be a linear 2-normed space and A ⊆ X. Then A is said
to be dense in X if every open set U in X intersects A.

Definition 8. A linear 2-normed space in which every Cauchy sequence is
convergent, is called a 2-Banach space or a complete space.

We now prove the main objective of this section :

Theorem 8 (Analogue of Baire’s Theorem in Linear 2-normed space). Let X
be a 2-Banach space. Then intersection of a countable number of dense open
subsets of X is dense in X.

Proof. Let V1, V2, ... be dense open subsets of X. For x0 ∈ X, consider an
arbitrary non-empty open subset B0 of X containing x0. Then there exist
f1, f2, ..., fi in X and p1, p2, ..., pi > 0 such that

Bf1(x0, p1) ∩Bf2(x0, p2) ∩ ... ∩Bfi(x0, pi) ⊆ B0.

Since V1 is dense in X and ∩i
k=1Bfk

(x0, pk) is open, V1∩
(∩i

k=1Bfk
(x0, pk)

) 6= ∅.
Choose an element x1 ∈ V1∩

(∩i
k=1Bfk

(x0, pk)
)
. Then as V1∩

(∩i
k=1Bfk

(x0, pk)
)

is open in X, we can find an open set B1 containing x1 such that B1 ⊆
V1 ∩

(∩i
k=1Bfk

(x0, pk)
) ⊆ V1 ∩ B0. B1 being an open set containing x1, there

exist g1, g2, ..., gj in X and q1, q2, ..., qj > 0 such that

Bg1(x1, q1) ∩Bg2(x1, q2) ∩ ... ∩Bgj (x1, qj) ⊆ B1.

Note that V2 is dense in X and ∩j
k=1Bgk

(x1, qk) is open in X. Consequently,

V2 ∩
(
∩j

k=1Bgk
(x1, qk)

)
6= ∅. Let x2 ∈ V2 ∩

(
∩j

k=1Bgk
(x1, qk)

)
. Then as

above, we can choose an open set B2 containing x2 such that B2 ⊆ V2 ∩(
∩j

k=1Bgk
(x1, qk)

)
⊆ V2 ∩ B1. Thus proceeding inductively we can find a se-

quence {xn} such that xn ∈ Vm+1 ∩
(∩k

i=1Bei(xm, ri)
)

for all n > m and

a decreasing sequence {Rn} of positive real numbers such that Rn <
1
n

.

where R1 = max{p1, p2, ..., pi}, R2 = max{q1, q2, ..., qj}, . . . , Rm =
max{r1, r2, ..., rk}.

‖xn − xm, ei‖ < Rm <
1
m

, for all n > m and for all i.

‖xn − xr, ei‖ ≤ ‖xn − xm, ei‖+ ‖xm − xr, ei‖
<

1
m

+
1
m

=
2
m

, for all n, r > m and for all i.

If we let m →∞, we obtain lim
n,r→∞ ‖xn−xr, e‖ = 0, for all e ∈ span{e1, e2, ..ek}.

This shows that {xn} is a Cauchy sequence in a 2-Banach space X and hence
there exist some x ∈ X such that xn → x in X. Since xn ∈ Bm, for all n ≥ m,
it follows that x ∈ Bm and as Bm ⊆ Vm ∩ B0 for m = 1, 2, 3... we see that
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x ∈ (∩∞m=1Vm) ∩ B0. Hence B0 intersects ∩∞m=1Vm and therefore dense in
X. ¤

3. Banach Steinhaus Theorem in Linear 2-normed space

In this section, we will consider linear operators defined on a linear 2-normed
space into a linear 2-normed space. We will formulate Banach Steinhaus The-
orem for a family of continuous linear operators.

Definition 9. Let X and Y be linear 2-normed spaces over R. Then a linear
map T : X −→ Y is continuous at x if for any open ball Bd (T (x), R) in Y
there exist an open ball Be(x, r) in X such that T (Be(x, r)) ⊆ Bd (T (x), R) .
In other words for any d ∈ Y and R > 0, there exist some e ∈ X and r > 0
such that ‖T (y)− T (x), d‖ < R whenever ‖y − x, e‖ < r and for all y, x ∈ X

Theorem 9. Let X and Y be linear 2-normed spaces over R. If a linear
operator T : X −→ Y is continuous at 0 then it is continuous on X.

Proof. Assume that the linear operator T : X −→ Y is continuous at 0. For
any open ball Bd(0, R) in Y , we can find an open ball Be(0, r) such that

T (Be(0, r)) ⊆ Bd(0, R)

Then by linearity, T (y)− T (x) ∈ Bd(0, R) whenever y − x ∈ Be(0, r). Thus if
y ∈ x+Be(0, r) = Be(x, r) then T (y) ∈ T (x)+Bd(0, R) = Bd(T (x), R). Hence

T (Be(x, r)) ⊆ Bd(T (x), R)

implying that T is continuous on X. ¤
Definition 10. Let X and Y be linear 2-normed spaces over R and T : X −→
Y be a linear operator. The operator T is said to be sequentially continuous at
x ∈ X if for any sequence {xn} of X converging to x we have T (xn) −→ T (x).

Theorem 10. Every continuous linear map T from a linear 2-normed space
X into a linear 2- normed space Y is sequentially continuous on X.

Proof. Let T : X −→ Y be continuous at x ∈ X. If Bd (T (x), R) is any open
ball in Y , then by the continuity of T , there exist some open ball Be(x, r) in
X. Such that

T (Be(x, r)) ⊆ Bd(T (x), R) (2)
Let {xn} be any sequence in X such that xn → x in X. Then corresponding
to the open ball Be(x, r), there exist some K > 0 such that

xn ∈ Be(x, r), for all n ≥ K (3)

‖xn − x, e‖ < r, for all n ≥ K

(2) and (3) shows that T (xn) ∈ Bd(T (x), R), for all n ≥ K

‖T (xn)− T (x), d‖ < R, for all n ≥ K
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Since Bd(T (x), R) is arbitrary, it follows that T (xn) −→ T (x). Hence T is
sequentially continuous on X. ¤
Theorem 11. Let X and Y be linear 2-normed spaces over R. If X is finite
dimensional, then every linear map from X into Y is sequentially continuous.

Proof. Let X be finite dimensional and T : X −→ Y be linear. If X = {0}
then there is nothing to prove. Let now X 6= {0} and {e1, e2, ..., em} be a basis
for X. For a sequence {xn} in X, let xn = an,1e1 + an,2e2 + ... + an,mem where
anj ∈ R. If xn −→ x = a1e1 + a2e2 + ... + amem in X, then

‖xn − x, ej‖ = ‖(an,1 − a1)e1 + (an,2 − a2)e2 + ... + (an,m − am)em, ej‖
= ‖(an,j − aj)ej + yj , ej‖

where yj ∈ Yj = span{ei : i = 1, 2, ...m and i 6= j}
= |an,j − aj |‖ej + yj , ej‖, where yj =

1
|an,j − aj |y

j

≥ |an,j − aj |dist(ej , Yj),
where dist(ej , Yj) = inf{‖y, ej‖ : y ∈ Yj}

|an,j − aj | ≤ ‖xn − x, ej‖
dist(ej , Yj)

−→ 0 as n →∞ and for all j.

That is, an,j −→ aj for all j.

By the linearity of T , it then follows that

T (xn) = T (an,1e1 + an,2e2 + ... + an,mem)
= an,1T (e1) + an,2T (e2) + ... + an,mT (em)
−→ a1T (e1) + a2T (e2) + ... + amT (em)
= T (a1e1 + a2e2 + ... + amem)
= T (x)

Thus every linear map T from X to Y is sequentially continuous. ¤
Definition 11. Let X and Y be two real linear 2-normed spaces, {Tλ}λ∈Λ a
family of linear operator from X to Y. We say that {Tλ}λ∈Λ is equi-continuous
if for any neighbourhood Bd(0, R) in Y there exist some Be(0, r) in X such
that

Tλ (Be(0, r)) ⊆ Bd(0, R), for all λ ∈ Λ.

In other words if for any d ∈ Y and R > 0 , there exist e ∈ X and r > 0 such
that ‖T (x), d‖ < R, whenever ‖x, e‖ < r and for all λ ∈ Λ.

Definition 12. A subset E of a linear 2-normed space X is said to be locally
bounded if there exist some e ∈ X − {0} and r > 0 such that E ⊆ Be(0, r).

A subset E of a linear 2-normed space X is bounded if for any open ball
Be(0, r) there exist some t > 0 such that E ⊆ tBe(0, r) ⊂ Be(0, R).
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A linear map T : X → Y is bounded if and only if it maps bounded set into
bounded set.

Theorem 12. Suppose X and Y are linear 2-normed spaces over R. Let
{Tλ}λ∈Λ be an equi-continuous collection of linear mappings from X into Y
and B be a bounded subset of X. Then Tλ(B) is a bounded subset of Y for all
λ ∈ Λ, that is, {Tλ}λ∈Λ is equi-bounded.

Proof. Let {Tλ}λ∈Λ be an equi-continuous collection of linear mappings from
X into Y. For any open ball Bd(0, R) in Y , we can find an open ball Be(0, r)
in X such that Tλ (Be(0, r)) ⊆ Bd(0, R) for all λ ∈ Λ.

That is ‖Tλ(x), d‖ < R, whenever ‖x, e‖ < r and for all λ ∈ Λ (4)

Since B is bounded, corresponding to the open ball Be(0, r) there exist some
t > 0 such that

B ⊆ tBe(0, r) (5)

If x ∈ B then ‖x

t
, e‖ < r. But then from (4), we obtain

‖Tλ(x), d‖ < tR = R1, for all λ ∈ Λ, d ∈ Y and x ∈ B.

This shows that Tλ(B) is a bounded subset of Y for all λ ∈ Λ, that is, {Tλ}λ∈Λ

is equi-bounded. ¤

Theorem 13 (Banach Steinhauss Theorem in Linear 2-normed space). Let
X and Y be linear 2-normed spaces over R. If X is a 2-Banach space and
{Tλ}λ∈Λ is a family of continuous linear operator from X to Y such that for
any x ∈ X, there exist cx > 0 such that

‖Tλ(x), y‖ < cx‖x, e‖, for all λ ∈ Λ, y ∈ Y and e /∈ span{x} (6)

then the family {Tλ}λ∈Λ is equi-continuous.

Proof. Let Bd(0, R) be any open ball in Y . Note that Bd(0, R) is absorbing in
Y. choose a positive real number r such that Bd(0, r) + Bd(0, r) ⊆ Bd(0, R).

Define An =
{

x ∈ X : Tλ(x) ∈ nBd(0, r), for all λ ∈ Λ
}

=
{

x ∈ X :
x

n
∈ T−1

λ

(
Bd(0, r)

)
, for all λ ∈ Λ

}

=
{

x ∈ X : x ∈ nT−1
λ

(
Bd(0, r)

)
, for all λ ∈ Λ

}

= ∩λ∈ΛnT−1
λ

(
Bd(0, r)

)
.

Then An is closed for all n and by using the given condition (1), we obtain
X = ∪n∈NAn. Since X is a 2-Banach space, Baire’s theorem shows that atleast
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one of An has non-empty interior. Let x0 be an interior point of An0 . Then
there exist an open ball Be(0, t) such that

x + Be(0, t) ⊆ Be(x, t) ⊆ An0

Tλ (Be(0, t)) ⊆ Tλ(An0)− Tλ(x)

⊆ n0Bd(0, r)− n0Bd(0, r)

= n0

(
Bd(0, r) + Bd(0, r)

)

⊆ n0Bd(0, R), for all λ ∈ Λ.

Tλ

(
Be(0,

t

n
)
)

⊆ Bd(0, R), λ ∈ Λ.

This shows that {Tλ}λ∈Λ is equi-continuous and hence equi-bounded. ¤
Acknowledgement: The authors are thankful to the referees for giving the
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