CLIQUE-TO-VERTEX DETOUR DISTANCE IN GRAPHS

I. KEERTHI ASIR 1 , S. ATHISAYANATHAN 2

ABSTRACT. Let C be a clique and v a vertex in a connected graph G. A clique-to-vertex C-v path P is a u-v path, where u is a vertex in Csuch that P contains no vertices of C other than u. The clique-to-vertex distance, d(C, v) is the length of a smallest C - v path in G. A C - vpath of length d(C, v) is called a C - v geodesic. The clique-to-vertex eccentricity $e_2(C)$ of a clique C in G is the maximum clique-to-vertex distance from C to a vertex $v \in V$ in G. The clique-to-vertex radius r_2 of G is the minimum clique-to-vertex eccentricity among the cliques of G, while the clique-to-vertex diameter d_2 of G is the maximum cliqueto-vertex eccentricity among the cliques of G. Also The clique-to-vertex detour distance, D(C, v) is the length of a longest C - v path in G. A C-v path of length D(C,v) is called a C-v detour. The clique-to-vertex detour eccentricity $e_{D2}(C)$ of a clique C in G is the maximum clique-tovertex detour distance from C to a vertex $v \in V$ in G. The clique-to-vertex detour radius R_2 of G is the minimum clique-to-vertex detour eccentricity among the cliques of G, while the clique-to-vertex detour diameter D_2 of Gis the maximum clique-to-vertex detour eccentricity among the cliques of G. It is shown that $R_2 \leq D_2$ for every connected graph G and that every two positive integers a and b with $2 \le a \le b$ are realizable as the clique-tovertex detour radius and the clique-to-vertex detour diameter respectively of some connected graph. Also it is shown that for any two positive integers a and b with $2 \le a \le b$, there exists a connected graph G such that $r_2 = a$, $R_2 = b$ and it is shown that for any two positive integers a and b with $2 \le a \le b$, there exists a connected graph G such that $d_2 = a$, $D_2 = b$.

 $Key\ words$: clique-to-vertex detour distance, clique-to-vertex detour center, clique-to-vertex detour periphery. $AMS\ SUBJECT$: Primary 05C12.

 $^{^1\}mathrm{Department}$ of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627 002, Tamil Nadu, India. Email: asirsxc@gmail.com

²Head, Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627 002, Tamil Nadu, India. Email: athisxc@gmail.com.

1. Introduction

By a graph G = (V, E) we mean a finite undirected connected simple graph. For basic graph theoretic terminologies, we refer to Buckley and Harary [2] and Chartrand [6]. If $X \subseteq V$, then $\langle X \rangle$ is the subgraph induced by X. A vertex v is called a simplicial vertex if the subgraph induced by its neighbors is complete. A clique C of a graph G is a maximal complete subgraph and we denoted it by its vertices. A u-v path P beginning with u and ending with v in a graph G is a sequence of distinct vertices such that consecutive vertices in the sequence are adjacent in G. For a graph G, the length of a path is the number of edges on the path. In [2] distance in graphs is defined in a natural way. For any two vertices u and v in a connected graph G, the distance d(u,v) is the length of a shortest u-v path in G. A u-v path of length d(u, v) is called a u - v geodesic in G. For a vertex v in a connected graph G, the eccentricity of v is defined by $e(v) = \max\{d(u,v) : u \in V\}$. A vertex u of G such that d(u,v) = e(v) is called a eccentric vertex of v. The radius of G is defined by $r = rad(G) = \min\{e(v) : v \in V\}$ and the diameter of G is defined by $d = diam(G) = \max\{e(v) : v \in V\}$. A vertex v in a graph G is called a central vertex if e(v) = r and the center of G is defined by $C = Cen(G) = \langle \{v \in V : e(v) = r\} \rangle$. A vertex v in a graph G is called a peripheral vertex if e(v) = d and the periphery of G is defined by $P = Per(G) = \langle \{v \in V : e(v) = d\} \rangle.$

Santhakumaran and Arumugam [1] investigated in detail the facility location problems namely vertex-serves-structure and structure-serves-vertex, where the structure is a clique. Correspondingly they defined as follows: For a vertex u and a clique C in a connected graph G, the vertex-to-clique distance is defined by $d(u,C) = \min\{d(u,v) : v \in C\}$. For our convenience a u-C path of length d(u,C) is called a vertex-to-clique u-C geodesic or simply u-C geodesic. The vertex-to-clique eccentricity of u is defined by $e_1(u) = \max\{d(u,C): C \in \zeta\}$, where ζ is the set of all cliques in G. A clique C of G such that $e_1(u) = d(u, C)$ is called a vertex-to-clique eccentric vertex of u. The vertex-to-clique radius r_1 and vertex-to-clique diameter d_1 of G are defined by $r_1 = \min\{e_1(v) : v \in V\}$ and $d_1 = \max\{e_1(v) : v \in V\}$ respectively. A vertex v in a graph G is called a vertex-to-clique central vertex if $e_1(v) = r_1$ and the vertex-to-clique center of G is defined by $Z_1(G) = \langle \{v \in V : e_1(v) = r_1\} \rangle$. For our convenience we denote $C_1(G) = Z_1(G)$. A vertex v in a graph Gis called a vertex-to-clique peripheral vertex if $e_1(v) = d_1$ and the vertexto-clique periphery of G is defined by $P_1 = \langle \{v \in V : e_1(v) = d_1\} \rangle$. Also the clique-to-vertex distance in graph is defined as as follows: For a clique C and a vertex v in a connected graph G, the clique-to-vertex distance is defined by $d(C, v) = \min\{d(u, v) : u \in C\}$. For our convenience a C - v

path of length d(C,v) is called a clique-to-vertex C-v geodesic or simply C-v geodesic. The clique-to-vertex eccentricity of C is defined by $e_2(C) = \max\{d(C,v): v \in V\}$. A vertex v of G such that $e_2(C) = d(C,v)$ is called a clique-to-vertex eccentric vertex of C. The clique-to-vertex radius r_2 and clique-to-vertex diameter d_2 of G are defined by $r_2 = \min\{e_2(C): C \in \zeta\}$ and $d_2 = \max\{e_2(C): C \in \zeta\}$ respectively. A clique C in a graph G is called a clique-to-vertex central clique if $e_2(C) = r_2$ and the clique-to-vertex center of G is defined by $Z_2(G) = \langle \{C \in \zeta: e_2(C) = r_2\} \rangle$. For our convenience we denote $C_2(G) = Z_2(G)$. A clique C in a graph G is called a clique-to-vertex peripheral clique if $e_2(C) = d_2$ and the clique-to-vertex periphery of G is defined by $P_2 = \langle \{C \in \zeta: e_2(C) = d_2\} \rangle$.

Chartrand et.al. [4, 5] introduced and studied the concepts of detour distance in graphs as follows: For any two vertices u and v in a connected graph G, the detour distance D(u,v) is the length of a longest u-v path in G. A u-v path of length D(u,v) is called a u-v detour in G. For a vertex v in a connected graph G, the detour eccentricity of a vertex v is defined by $e_D(v) = \max\{D(u,v) : u \in V\}$. A vertex u of G such that $D(u,v) = e_D(v)$ is called a detour eccentric vertex of v. The detour radius R and detour diameter D of G are defined by $R = rad_DG = \min\{e_D(v) : v \in V\}$ and $D = diam_D(G) = \max\{e(v) : v \in V\}$ respectively. A vertex v in a graph G is called a detour central vertex if $e_D(v) = R$ and the detour center of G is defined by $C_D = Cen_D(G) = \langle \{v \in V : e_D(v) = R\} \rangle$. A vertex v in a graph G is called a detour peripheral vertex if $e_D(v) = D$ and the detour periphery of G is defined by $P_D = Per_D(G) = \langle \{v \in V : e_D(v) = D\} \rangle$.

Keerthi Asir and Athisayanathan [7] introduced and studied the concepts of vertex-to-clique detour distance in graph as follows: Let C be a clique and v a vertex in a connected graph G. A vertex-to-clique u-C path P is a u-v path, where v is a vertex in C such that P contains no vertices of C other than v and the vertex-to-clique detour distance D(u,C) is the length of a longest u-C path. A u-C path of length D(u,C) is called a u-Cvertex to clique detour. The vertex-to-clique detour eccentricity, $e_{D1}(u)$ of a vertex u in G is defined as $e_{D_1}(u) = \max \{D(u,C) : C \in \zeta\}$, where ζ is the set of all cliques in G. A clique C for which $e_{D1}(u) = D(u, C)$ is called a vertexto-clique detour eccentric clique of u. The vertex-to-clique detour radius of Gis defined as, $R_1 = rad_{D1}(G) = \min \{e_{D1}(v) : v \in V\}$ and the vertex-to-clique detour diameter of G is defined as, $D_1 = diam_{D_1}(G) = \max\{e_{D_1}(v) : v \in V\}.$ A vertex v in a graph G is called a vertex-to-clique detour central vertex if $e_{D1}(v) = R_1$ and the vertex-to-clique detour center of G is defined as, $C_{D1}(G) = Cen_{D1}(G) = \langle \{v \in V : e_{D1}(v) = R_1\} \rangle$. A vertex v in a graph G is called a vertex-to-clique detour peripheral vertex if $e_{D1}(v) = D_1$ and the vertex-to-clique detour periphery of G is defined as, $P_{D1}(G) = Per_{D1}(G) =$ $\langle \{v \in V : e_{D1}(v) = D_1\} \rangle.$

In this paper, we introduce a new distance called clique-to-vertex detour distance in a connected graph G and investigate certain results related to clique-to-vertex detour distance and other distances in G. Throughout this paper, G denotes a connected graph with at least two vertices.

2. CLIQUE-TO-VERTEX DETOUR DISTANCE

Definition 1. Let C be a clique and v a vertex in a connected graph G. A clique-to-vertex C - v path P is a u - v path, where u is a vertex in C such that P contains no vertices of C other than u.

Definition 2. The clique-to-vertex detour distance, D(C, u) between a clique C and a vertex v in a graph G is the length of a longest C - v path. A C - v path of length D(C, v) is called a clique-to-vertex C - v detour or simply C - v detour.

Example 1. Consider the graph G given in Fig 2.1. For the vertex v and the clique $C = \{x, y, z\}$ in G, the paths $P_1 : x, s, t, u, w, v$; $P_2 : z, r, v$ and $P_3 : z, u, w, v$ are C - v paths, while the paths $Q_1 : x, y, z, u, w, v$ and $Q_2 : x, s, t, u, z, r, v$ are not C - v paths. Now the clique-to-vertex distance d(C, v) = 2 and the clique-to-vertex detour distance D(C, v) = 5. Also P_1 is a C - v detour and P_2 is a C - v geodesic. Note that the C - x, C - y and C - z paths are the trivial paths of length 0 and any non-trivial C - v path does not contain a simplicial vertex of C.

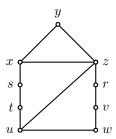


Fig 2.1: G

Since the length of a C-v path between a clique C and a vertex v in a graph G of order n is at most n-2, we have the following observation.

Observation 1. For any clique C and a vertex v in a non-trivial connected graph G of order n, $0 \le d(C, v) \le D(C, v) \le n - 2$. The bounds are sharp. If G is a path $P: u_1, u_2, ..., u_{n-1}, u_n = v$ of order n, then d(C, v) = D(C, v) = n - 2, where $C = \{u_1, u_2\}$ and if G is a complete graph of order n, then d(C, v) = D(C, v) = 0 for every vertex v in G. Also we note that if G is a

tree, then d(C, v) = D(C, v) and if C is a clique and $v \notin C$ is a vertex in an even cycle, then d(C, v) < D(C, v).

Since a vertex of degree n-1 in a graph G of order n, belongs to every clique C in G, we have the following observation.

Observation 2. Let G be a connected graph of order n and C a clique in G. If v is a vertex of degree n-1, then D(C,v)=0.

But the converse is not true. Consider the graph G given in Fig. 2.1., D(C, v) = 0, where $C = \{v, w\}$, but $deg(v) \neq n - 1$.

Observation 3. Let $K_{n,m}(n < m)$ be a complete bipartite graph with the partition V_1 , V_2 of $V(K_{n,m})$ such that $|V_1| = n$ and $|V_2| = m$. Let C be a clique and v a vertex such that $v \notin C$ in $K_{n,m}$, then

$$D(C, v) = \begin{cases} 2n - 2, & \text{if } v \in V_1\\ 2n - 1 & \text{if } v \in V_2 \end{cases}$$

Observation 4. Let v be a vertex and C a clique in a complete bipartite graph $K_{n,n}$ such that $v \notin C$, then D(C, v) = 2n - 2.

Since every tree has unique C - v path between a clique C and a vertex v, we have the following observation.

Observation 5. If G is a tree, then d(C, v) = D(C, v) for every vertex v and a clique C in G.

But the converse is not true. For the graph G obtained from a complete bipartite graph $K_{2,n} (n \geq 2)$ by joining the vertices of degree n by an edge. In such a graph every clique C is isomorphic to K_3 and for every vertex v with $v \notin C$, d(C, v) = D(C, v) = 1, but G is not tree.

3. CLIQUE-TO-VERTEX CENTRAL CONCEPTS

Definition 3. Let G be a connected graph and ζ be the set of all cliques in G. The clique-to-vertex detour eccentricity, $e_{D2}(C)$ of a clique C in G is defined as $e_{D2}(C) = \max\{D(C,v) : v \in V\}$. A vertex v for which $e_{D2}(C) = D(C,v)$ is called a clique-to-vertex detour eccentric vertex of C. The clique-to-vertex detour radius of G is defined as, $R_2 = \operatorname{rad}_{D2}(G) = \min\{e_{D2}(C) : C \in \zeta\}$ and the clique-to-vertex detour diameter of G is defined as, $D_2 = \operatorname{diam}_{D2}(G) = \max\{e_{D2}(C) : C \in \zeta\}$. A clique C in a graph G is called a clique-to-vertex detour central clique if $e_{D2}(C) = R_2$ and the clique-to-vertex detour center of G is defined as, $C_{D2}(G) = \operatorname{Cen}_{D2}(G) = \langle C \in \zeta : e_{D2}(C) = R_2 \rangle$. A clique C in a graph G is called a clique-to-vertex detour peripheral clique if $e_{D2}(C) = D_2$ and the clique-to-vertex detour peripheral clique if $e_{D2}(C) = \operatorname{Per}_{D2}(G) = \langle C \in \zeta : e_{D2}(C) = \langle C \in \zeta : e_{D2}(C)$

Example 2. For the connected graph G given in Fig. 3.1, the set of all cliques in G are given by, $\zeta = \{C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8, C_9, C_{10}\}$ where $C_1 = \{v_1, v_2, v_3\}, C_2 = \{v_3, v_4\}, C_3 = \{v_4, v_5\}, C_4 = \{v_5, v_6\}, C_5 = \{v_6, v_7\}, C_6 = \{v_7, v_8\}, C_7 = \{v_8, v_{10}\}, C_8 = \{v_9, v_{10}\}, C_9 = \{v_4, v_9\}$ and $C_{10} = \{v_{10}, v_{11}, v_{12}, v_{13}, v_{14}\}$. The clique-to-vertex eccentricity $e_2(C)$, clique-to-vertex detour eccentricity $e_{D2}(C)$ of all the cliques of G are given in Table 1.

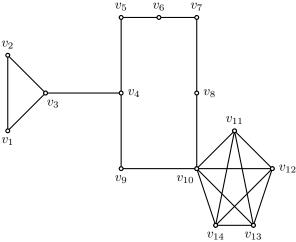


Fig. 3.1: G

C	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_{10}
$e_2(C)$	4	3	3	4	4	5	4	3	3	4
$e_{D2}(C)$	10	9	8	8	8	9	7	8	9	8

Table 1

For the graph G given in Fig. 3.1., clique-to-vertex detour eccentric vertex of all the cliques of G are given in Table 2.

Cliques C	Clique-to-Vertex Detour Eccentric Vertices		
$C_1, C_2, C_3, C_5, C_{6,C_9}$	$v_{11}, v_{12}, v_{13}, v_{14}$		
C_4, C_7, C_8, C_{10}	v_1, v_2		

Table 2

For the graph G given in Fig. 3.1., the clique-to-vertex radius $r_2 = 3$, clique-to-vertex diameter $d_2 = 5$, clique-to-vertex detour radius $R_2 = 7$ and clique-to-vertex detour diameter $D_2 = 10$. Also the clique-to-vertex center $C_2(G)$, clique-to-vertex periphery $P_2(G)$, clique-to-vertex detour center $C_{D_2}(G)$ and clique-to-vertex detour periphery $P_{D_2}(G)$ are given in Table 3.

$C_2(G)$	$\langle \{C_2, C_3, C_8, C_9\} \rangle$	$P_2(G)$	$\langle \{C_6\} \rangle$
$C_{D2}(G)$	$\langle \{C_7\} \rangle$	$P_{D2}(G)$	$\langle \{C_1\} \rangle$

Table 3

Remark 1. In a connected graph G, $C_2(G)$, $C_{D2}(G)$ and $P_2(G)$, $P_{D2}(G)$ need not be same. For the graph G given in Fig 3.1, it is shown in Table 3, that $C_2(G)$, $C_{D2}(G)$ and $P_2(G)$, $P_{D2}(G)$ are distinct.

Example 3. The complete graph K_n , the cycle C_n , the wheel W_n and the complete bipartitate graph $K_{n,m}$ are clique-to-vertex detour self centered graphs.

Remark 2. A clique-to-vertex self-centered graph need not be a clique-to-vertex detour self centered graph. For the graph G given in Fig 3.2, $C_2(G) = \langle V(G) \rangle$ and $C_{D2}(G) = \langle \{v_3, v_4, v_5, v_6\} \rangle$.

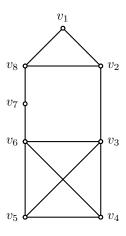


Fig. 3.2: G

Since the clique-to-vertex eccentricity is the maximum clique-to-vertex distance and the clique-to-vertex detour eccentricity is the maximum clique-to-vertex detour distance, the following theorem is a consequence of Observation 1.

Theorem 1. For every clique C in G of order n, $0 \le e_2(C) \le e_{D2}(C) \le n-2$.

The bounds are sharp. If G is a path $P: u_1, u_2, ..., u_{n-1}, u_n = v$ of order n, then $e_2(C) = e_{D2}(C) = n - 2$, where $C = \{u_1, u_2\}$ and if G is a complete graph of order n, then $e_2(C) = e_{D2}(C) = 0$ for every clique C in G. Also we note that if G is a tree, then $e_2(C) = e_{D2}(C)$ and if G is an even cycle with $v \notin C$, then $e_2(C) < e_{D2}(C)$ for every clique C in G.

Since the clique-to-vertex radius (diameter) is the minimum (maximum) clique-to-vertex eccentricity and the clique-to-vertex detour radius (diameter)

is the minimum (maximum) clique-to-vertex detour eccentricity, the following Corollary is a consequence of Theorem 1.

Corollary 2. Let G be a connected graph. Then

- (i) $e_2(C) \leq e_{D2}(C)$ for every clique C in ζ .
- (ii) $r_2 \leq R_2$.
- (iii) $d_2 \leq D_2$.

Chartrand et. al. [6] showed that in a connected graph, the radius and diameter are related by $r \leq d \leq 2r$ and the detour radius and detour diameter are related by $R \leq D \leq 2R$. Also Santhakumaran et. al. [1] showed that the vertex-to-clique radius and vertex-to-clique diameter are related by $r_1 \leq d_1 \leq 2r_1 + 1$ and the clique-to-vertex radius and clique-to-vertex diameter are related by $r_2 \leq d_2 \leq 2r_2 + 1$. Keerthi Asir et.al. [7] showed that the similar inequality does not hold for the vertex-to-clique detour distance. Also this similar inequality does not hold for the clique-to-vertex detour distance.

Remark 3. For the graph G_1 given in Fig. 3.3(a), $D_2 > 2R_2 + 1$ and the graph G_2 given in Fig. 3.3(b), $D_2 > 2R_2$ and $D_2 = 2R_2 + 1$. For the cycle $C_n(n \ge 3), D_2 < 2R_2$ and $D_2 < 2R_2 + 1$. Also for the path $P_{2n}, D_2 = 2R_2$.

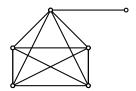


Fig. 3.3(a): G_1

Fig. 3.3(b): G_2

Remark 4. The clique-to-vertex radius r_2 , the clique-to-vertex diameter d_2 , clique-to-vertex detour radius R_2 and the clique-to-vertex detour diameter D_2 of some standard graphs are given in Table 4.

Graph G	r_2	d_2	R_2	D_2
$K_n; n \ge 1$	0	0	0	0
$P_n; n \ge 2$	$\lceil n/2 \rceil$ -1	n-2	$\lceil n/2 \rceil$ -1	n-2
$C_n; n \ge 4$	$\lfloor (n-1)/2 \rfloor$	$\lfloor (n-1)/2 \rfloor$	n-2	n-2
$W_n; n \ge 5$	1	1	n-3	n-3
$K_{1,n}; n \ge 2$	0	1	0	1
$K_{n,n}; n \ge 2$	1	1	2(n-1)	2(n-1)
$K_{n,m}$; $2 \le n < m$	1	1	2n - 1	2n - 1

Table 4

Ostrand [8] showed that every two positive positive integers a and b with $a \le b \le 2a$ are realizable as the radius and diameter respectively of some connected graph and Chartrand et. al. [4] showed that every two positive positive integers a and b with $a \le b \le 2a$ are realizable as the detour radius and detour diameter respectively of some connected graph. Also Santhakumaran et. al. [1] showed that every two positive integers a and b with $a \le b \le 2a + 1$ are realizable as the vertex-to-clique radius and vertex-to-clique diameter respectively of some connected graph and every two positive integers a and b with $a \le b \le 2a + 1$ are realizable as the clique-to-vertex radius and clique-to-vertex diameter respectively of some connected graph. Keerthi Asir et.al. [7] showed that every two positive integers a and b with $a \le a \le b$ are realizable as the vertex-to-clique detour radius and vertex-to-clique detour diameter respectively of some connected graph. Now, we have a similar realization theorem for the clique-to-vertex detour radius and the clique-to-vertex detour diameter.

Theorem 3. For each pair a, b of positive integers with $2 \le a \le b$, there exists a connected graph G with $R_2 = a$ and $D_2 = b$.

Proof. Case 1. a=b. Let $C_{a+2}:u_1,u_2,...,u_{a+2},u_1$ be a cycle of order a+2. If $C=\{u_i,u_{i+1}\}$ then $e_{D2}(C)=a$ for $1\leq i\leq a+2$. It is easy to verify that every clique S in G with $e_{D2}(S)=a$. Thus $R_2=a$ and $D_2=b$ as a=b.. Case 2. $2\leq a< b\leq 2a$. Let $C_{a+2}:u_1,u_2,...,u_{a+2},u_1$ be a cycle of order a+2 and $P:v_1,v_2,...,v_{b-a+1}$ be a path of order b-a+1. We construct the graph G as shown in the Fig. 3.4 by identifying the vertex u_1 of C_{a+2} and v_1 of P.

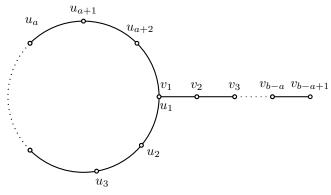


Fig. 3.4: *G*

If $C = \{u_1, u_2\} = \{u_1, u_{a+2}\}$, then $e_{D2}(C) = a$. Also if $C = \{u_i, u_{i+1}\}$, then $e_{D2}(C) = b - i + 2$ for $2 \le i \le \left\lceil \frac{a+2}{2} \right\rceil$ and $e_{D2}(C) = b - a + i - 1$ for $\left\lceil \frac{a+2}{2} \right\rceil < i \le a+1$. Also if $C = \{v_i, v_{i+1}\}$ then $e_{D2}(C) = a+i$ for

 $1 \le i \le b-a$. In particular, if $C = \{u_2, u_3\} = \{u_{a+1}, u_{a+2}\} = \{v_{b-a}, v_{b-a+1}\}$ then $e_{D2}(C) = b$. It is easy to verify that there is no clique S in G with $e_{D2}(S) < a$ and there is no clique S' in G with $e_{D2}(S') > b$. Thus $R_2 = a$ and $D_2 = b$ as a < b.

Case 3. $b > 2a(a \ge 2)$. Let $P_{a+1}: v_1, v_2, ..., v_{a+1}$ be a path of order a+1 and $K_{b-a+2}: u_1, u_2, ..., u_{b-a+2}$ be a complete graph of order b-a+2. We construct the graph G as shown in the Fig. 3.5 by identifying the vertex u_1 of K_{b-a+2} and v_1 of P_{a+1} . If $C = K_{b-a+2}$ then $e_{D2}(C) = a$ and if $C = \{v_i, v_{i+1}\}$ then $e_{D2}(C) = b - a + i$ for $1 \le i \le a$. In particular, if $C = \{v_a, v_{a+1}\}$ then $e_{D2}(C) = b$. It is easy to verify that there is no clique S in G with $e_{D2}(S) < a$ and there is no clique S' in G with $e_{D2}(S') > b$. Thus $R_2 = a$ and $D_2 = b$ as b > 2a.

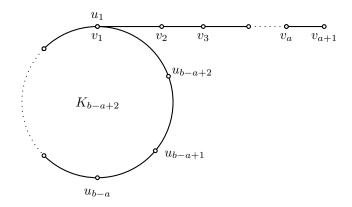


Fig. 3.5: *G*

Keerthi Asir et.al. [7] showed that for every two positive integers a and b with $2 \le a \le b$, there exists a connected graph G with vertex-to-clique radius $r_1 = a$ and vertex-to-clique detour radius $R_1 = b$. Now, we have a similar realization theorem for the clique-to-vertex radius and the clique-to-vertex detour radius.

Theorem 4. For any two positive integers a, b with $2 \le a \le b$, there exists a connected graph G such that $r_2 = a$ and $R_2 = b$.

Proof. Case 1. a=b. Let $P_1:u_1,u_2,...,u_a,u_{a+1}$ and $P_2:v_1,v_2,...,v_a,v_{a+1}$ be two copies of the path P_{a+1} of order a+1. We construct the graph G by joining u_1 in P_1 and v_1 in P_2 by an edge. If $C=\{u_1,v_1\}$ then $e_2(C)=e_{D2}(C)=a$ and if $C=\{u_i,u_{i+1}\}=\{v_i,v_{i+1}\}$ then $e_2(C)=a+i$ for $1\leq i\leq a$. It is easy to verify that there is no clique S in G with $e_2(S)=e_{D2}(S)< a$. Thus $r_2=a$ and $R_2=b$ as a=b.

Case 2. $2 \le a < b$. Let $P_1: u_1, u_2, ..., u_a, u_{a+1}$ and $Q_1: v_1, v_2, ..., v_a, v_{a+1}$ be two copies of the path P_{a+1} of order a+1. Let $P_2: w_1, w_2, ..., w_{b-a+2}$ and $Q_2: z_1, z_2, ..., z_{b-a+2}$ be two copies of the path P_{b-a+2} of order b-a+2. We construct the graph G as follows: (i) identify the vertices u_1 in P_1 with w_1 in P_2 and also identify the vertices v_1 in Q_1 with z_1 in Q_2 (ii) identify the vertices u_3 in P_1 with w_{b-a+2} in P_2 and also identify the vertices z_{b-a+2} in Q_2 with v_3 in Q_1 (iii) join each vertex $w_i(2 \le i \le b-a+1)$ in P_2 with u_2 in P_1 and join each vertex $z_i(2 \le i \le b-a+1)$ in Q_2 with v_2 in Q_1 (iv) join u_1 in P_1 with v_1 in Q_1 . The resulting graph G is shown in Fig. 3.6. If $C = \{u_1, v_1\}$ then $e_2(C) = a$ and $e_{D2}(C) = b$. Also if $C = \{u_i, u_{i+1}\} = \{v_i, v_{i+1}\}$ then $e_2(C) = a+i$ and $e_{D2}(C) = a+i$ for $1 \le i \le a$. Also if $C = \{u_2, w_i, w_{i+1}\} = \{v_2, z_i, z_{i+1}\}$ then $e_2(C) = a+1$ for i = 1 and $e_2(C) = a+2$ for $2 \le i \le b-a+1$. However $e_{D2}(C) = b+i$ for $1 \le i \le b-a+1$. It is easy to verify that there is no clique C in C with C and C in C and C in C with C in C in C and C in C in

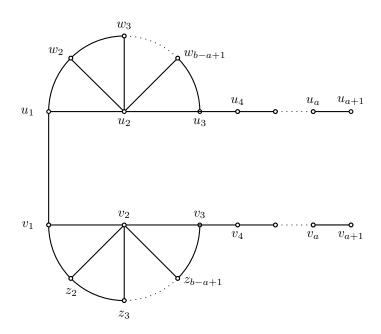


Fig. 3.6: G

Keerthi Asir et.al. [7] showed that for every two positive integers a and b with $2 \le a \le b$, there exists a connected graph G with vertex-to-clique diameter $d_1 = a$ and vertex-to-clique detour diameter $D_1 = b$. Now, we have

a similar realization theorem for the clique-to-vertex diameter and the clique-to-vertex detour diameter.

Theorem 5. For any two positive integers a, b with $2 \le a \le b$, there exists a connected graph G such that $d_2 = a$ and $D_2 = b$.

Proof. Case 1. a=b. Let $P_{a+2}:u_1,u_2,...,u_a,u_{a+1},u_{a+2}$ be a path of order a+2. If $C=\{u_i,u_{i+1}\}$ then $e_2(C)=e_{D2}(C)=a-i+1$ for $1\leq i\leq \left\lceil\frac{a+1}{2}\right\rceil$ and $e_2(C)=e_{D2}(C)=i-1$ for $\left\lceil\frac{a+1}{2}\right\rceil< i\leq a+1$. In particular if $C=\{u_1,u_2\}=\{u_{a+1},u_{a+2}\}$ then $e_2(C)=e_{D2}(C)=a$. It is easy to verify that there is no clique S in G with $e_2(S)=e_{D2}(S)>a$. Thus $d_2=a$ and $d_2=b$ as $d_2=b$. Case 2. $d_2=a$ and $d_2=a$

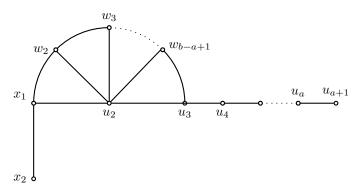


Fig. 3.7: G

If $C = \{x_1, x_2\}$ then $e_2(C) = a$ and $e_{D2}(C) = b$. Also if $C = \{u_i, u_{i+1}\}$ then $e_2(C) = i$ and $e_{D2}(C) = b - a + i$ for $3 \le i \le a$. If $C = \{u_2, w_i, w_{i+1}\}$ then $e_{D2}(C) = b - i - 1$ for $1 \le i \le \lceil \frac{b - a + 1}{2} \rceil$ and $e_{D2}(C) = i$ for $\lceil \frac{b - a + 1}{2} \rceil < i \le b - a + 1$. Also we have to find $e_2(C)$ by the following subcases:

Subcase 1 of Case 2. When a=2

$$e_2(C) = 1 \text{ for } i = 1$$

$$e_2(C) = 2 \text{ for } 2 \le i \le b - a + 1$$

Subcase 2 of Case 2. When a=3

$$e_2(C) = 2 \text{ for } 1 \le i \le b - a + 1$$

Subcase 3 of Case 2. When a > 3

$$e_2(C) = a - 1 \text{ for } 1 \le i \le b - a$$

 $e_2(C) = a - 2$ for i = b - a + 1

It is easy to verify that there is no clique S in G with $e_2(S) > a$ and $e_{D_2}(S) > b$. Thus $d_2 = a$ and $D_2 = b$ as a < b.

Remark 5. Harary and Norman [3] showed that the center of every connected graph G lies in a single block of G and Chartrand et. al. [4] showed that the detour center of every connected graph G lies in a single block of G. Also Santhakumaran et. al. [1] showed that the vertex-to-clique center of every connected graph G lies in a single block of G and Keerthi Asir et.al. [7] showed that the vertex-to-clique detour center of every connected graph G lies in a single block of G. However it is not true for the clique-to-vertex detour center of a graph. For the Path P_{2n+1} , the clique-to-vertex detour center is always P_3 , which does not lie in a single block.

References

- [1] A. P. Santhakumaran and S. Arumugam: Centrality with respect to Cliques, International Journal of Management and Systems, 18, No.3(2002), 275-280.
- [2] F. Buckley and F. Harary: Distance in Graphs, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1990.
- [3] F. Harary and R. Z. Norman: The dissimilarity characteristics of Husimi trees, IAnn. of Math, 58, (1953), 134-141
- [4] G. Chartrand and H. Escuadro, and P. Zhang: Detour Distance in Graphs, J.Combin.Math.Combin.Comput., 53, (2005), 75-94.
- [5] G. Chartrand and P. Zhang: Distance in Graphs Taking the Long View, AKCE J. Graphs. Combin., 1, No. 1 (2004) 1-13.
- [6] G. Chartrand and P. Zhang: Introduction to Graph Theory, Tata McGraw-Hill, New Delhi, 2006.
- [7] I. Keerthi Asir and S. Athisayanathan: Vertex-to-Clique Detour Distance in Graphs, Communicated.
- [8] Philip A. Ostrand: Graphs with specified radius and diameter, Discrete Mathematics, 4, (1973), 71-75.