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CLIQUE-TO-VERTEX DETOUR DISTANCE IN GRAPHS

I. KEERTHI ASIR1, S. ATHISAYANATHAN2

Abstract. Let C be a clique and v a vertex in a connected graph G. A
clique-to-vertex C − v path P is a u − v path, where u is a vertex in C

such that P contains no vertices of C other than u. The clique-to-vertex
distance, d(C, v) is the length of a smallest C − v path in G. A C − v

path of length d(C, v) is called a C − v geodesic. The clique-to-vertex
eccentricity e2(C) of a clique C in G is the maximum clique-to-vertex
distance from C to a vertex v ∈ V in G. The clique-to-vertex radius r2

of G is the minimum clique-to-vertex eccentricity among the cliques of
G, while the clique-to-vertex diameter d2 of G is the maximum clique-
to-vertex eccentricity among the cliques of G. Also The clique-to-vertex
detour distance, D(C, v) is the length of a longest C − v path in G. A
C− v path of length D(C, v) is called a C− v detour. The clique-to-vertex
detour eccentricity eD2(C) of a clique C in G is the maximum clique-to-
vertex detour distance from C to a vertex v ∈ V in G. The clique-to-vertex
detour radius R2 of G is the minimum clique-to-vertex detour eccentricity
among the cliques of G, while the clique-to-vertex detour diameter D2 of G
is the maximum clique-to-vertex detour eccentricity among the cliques of
G. It is shown that R2 ≤ D2 for every connected graph G and that every
two positive integers a and b with 2 ≤ a ≤ b are realizable as the clique-to-
vertex detour radius and the clique-to-vertex detour diameter respectively
of some connected graph. Also it is shown that for any two positive integers
a and b with 2 ≤ a ≤ b, there exists a connected graph G such that r2 = a,
R2 = b and it is shown that for any two positive integers a and b with
2 ≤ a ≤ b, there exists a connected graph G such that d2 = a, D2 = b.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected simple graph.
For basic graph theoretic terminologies, we refer to Buckley and Harary [2]
and Chartrand [6]. If X ⊆ V , then 〈X〉 is the subgraph induced by X. A
vertex v is called a simplicial vertex if the subgraph induced by its neighbors
is complete. A clique C of a graph G is a maximal complete subgraph and
we denoted it by its vertices. A u − v path P beginning with u and ending
with v in a graph G is a sequence of distinct vertices such that consecutive
vertices in the sequence are adjacent in G. For a graph G, the length of a
path is the number of edges on the path. In [2] distance in graphs is defined
in a natural way. For any two vertices u and v in a connected graph G, the
distance d(u, v) is the length of a shortest u − v path in G. A u − v path of
length d(u, v) is called a u − v geodesic in G. For a vertex v in a connected
graph G, the eccentricity of v is defined by e(v) = max{d(u, v) : u ∈ V }.
A vertex u of G such that d(u, v) = e(v) is called a eccentric vertex of v.
The radius of G is defined by r = rad(G) = min{e(v) : v ∈ V } and the
diameter of G is defined by d = diam(G) = max{e(v) : v ∈ V }. A vertex
v in a graph G is called a central vertex if e(v) = r and the center of G is
defined by C = Cen(G) = 〈{v ∈ V : e(v) = r}〉. A vertex v in a graph G is
called a peripheral vertex if e(v) = d and the periphery of G is defined by
P = Per(G) = 〈{v ∈ V : e(v) = d}〉.

Santhakumaran and Arumugam [1] investigated in detail the facility lo-
cation problems namely vertex-serves-structure and structure-serves-vertex,
where the structure is a clique. Correspondingly they defined as follows: For
a vertex u and a clique C in a connected graph G, the vertex-to-clique dis-
tance is defined by d(u,C) = min{d(u, v) : v ∈ C}. For our convenience a
u − C path of length d(u,C) is called a vertex-to-clique u − C geodesic or
simply u − C geodesic. The vertex-to-clique eccentricity of u is defined by
e1(u) = max{d(u,C) : C ∈ ζ}, where ζ is the set of all cliques in G. A clique
C of G such that e1(u) = d(u,C) is called a vertex-to-clique eccentric vertex of
u. The vertex-to-clique radius r1 and vertex-to-clique diameter d1 of G are de-
fined by r1 = min{e1(v) : v ∈ V } and d1 = max{e1(v) : v ∈ V } respectively. A
vertex v in a graphG is called a vertex-to-clique central vertex if e1(v) = r1 and
the vertex-to-clique center of G is defined by Z1(G) = 〈{v ∈ V : e1(v) = r1}〉.
For our convenience we denote C1(G) = Z1(G). A vertex v in a graph G
is called a vertex-to-clique peripheral vertex if e1(v) = d1 and the vertex-
to-clique periphery of G is defined by P1 = 〈{v ∈ V : e1(v) = d1}〉. Also
the clique-to-vertex distance in graph is defined as as follows: For a clique
C and a vertex v in a connected graph G, the clique-to-vertex distance is
defined by d(C, v) = min{d(u, v) : u ∈ C}. For our convenience a C − v
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path of length d(C, v) is called a clique-to-vertex C − v geodesic or sim-
ply C − v geodesic. The clique-to-vertex eccentricity of C is defined by
e2(C) = max{d(C, v) : v ∈ V }. A vertex v of G such that e2(C) = d(C, v) is
called a clique-to-vertex eccentric vertex of C. The clique-to-vertex radius r2
and clique-to-vertex diameter d2 of G are defined by r2 = min{e2(C) : C ∈ ζ}
and d2 = max{e2(C) : C ∈ ζ} respectively. A clique C in a graph G is called
a clique-to-vertex central clique if e2(C) = r2 and the clique-to-vertex center
of G is defined by Z2(G) = 〈{C ∈ ζ : e2(C) = r2}〉. For our convenience we
denote C2(G) = Z2(G). A clique C in a graph G is called a clique-to-vertex pe-
ripheral clique if e2(C) = d2 and the clique-to-vertex periphery of G is defined
by P2 = 〈{C ∈ ζ : e2(C) = d2}〉.

Chartrand et.al. [4, 5] introduced and studied the concepts of detour dis-
tance in graphs as follows: For any two vertices u and v in a connected graph
G, the detour distance D(u, v) is the length of a longest u − v path in G. A
u − v path of length D(u, v) is called a u − v detour in G. For a vertex v
in a connected graph G, the detour eccentricity of a vertex v is defined by
eD(v) = max{D(u, v) : u ∈ V }. A vertex u of G such that D(u, v) = eD(v)
is called a detour eccentric vertex of v. The detour radius R and detour
diameter D of G are defined by R = radDG = min{eD(v) : v ∈ V } and
D = diamD(G) = max{e(v) : v ∈ V } respectively. A vertex v in a graph G
is called a detour central vertex if eD(v) = R and the detour center of G is
defined by CD = CenD(G) = 〈{v ∈ V : eD(v) = R}〉. A vertex v in a graph G
is called a detour peripheral vertex if eD(v) = D and the detour periphery of
G is defined by PD = PerD(G) = 〈{v ∈ V : eD(v) = D}〉.

Keerthi Asir and Athisayanathan [7] introduced and studied the concepts
of vertex-to-clique detour distance in graph as follows: Let C be a clique and
v a vertex in a connected graph G. A vertex-to-clique u − C path P is a
u − v path, where v is a vertex in C such that P contains no vertices of C
other than v and the vertex-to-clique detour distance D(u,C) is the length
of a longest u − C path. A u − C path of length D(u,C) is called a u − C
vertex to clique detour. The vertex-to-clique detour eccentricity, eD1(u) of a
vertex u in G is defined as eD1(u) = max {D(u,C) : C ∈ ζ}, where ζ is the set
of all cliques in G. A clique C for which eD1(u) = D(u,C) is called a vertex-
to-clique detour eccentric clique of u. The vertex-to-clique detour radius of G
is defined as, R1 = radD1(G) = min {eD1(v) : v ∈ V } and the vertex-to-clique
detour diameter of G is defined as, D1 = diamD1(G) = max {eD1(v) : v ∈ V }.
A vertex v in a graph G is called a vertex-to-clique detour central vertex
if eD1(v) = R1 and the vertex-to-clique detour center of G is defined as,
CD1(G) = CenD1(G) = 〈{v ∈ V : eD1(v) = R1}〉. A vertex v in a graph G
is called a vertex-to-clique detour peripheral vertex if eD1(v) = D1 and the
vertex-to-clique detour periphery of G is defined as, PD1(G) = PerD1(G) =
〈{v ∈ V : eD1(v) = D1}〉.
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In this paper, we introduce a new distance called clique-to-vertex detour
distance in a connected graph G and investigate certain results related to
clique-to-vertex detour distance and other distances in G. Throughout this
paper, G denotes a connected graph with atleast two vertices.

2. Clique-to-Vertex Detour Distance

Definition 1. Let C be a clique and v a vertex in a connected graph G. A
clique-to-vertex C − v path P is a u − v path, where u is a vertex in C such
that P contains no vertices of C other than u.

Definition 2. The clique-to-vertex detour distance, D(C, u) between a clique
C and a vertex v in a graph G is the length of a longest C − v path. A C − v
path of length D(C, v) is called a clique-to-vertex C−v detour or simply C−v
detour.

Example 1. Consider the graph G given in Fig 2.1. For the vertex v and
the clique C = {x, y, z} in G, the paths P1 : x, s, t, u, w, v; P2 : z, r, v and
P3 : z, u,w, v are C − v paths, while the paths Q1 : x, y, z, u, w, v and Q2 :
x, s, t, u, z, r, v are not C−v paths. Now the clique-to-vertex distance d(C, v) =
2 and the clique-to-vertex detour distance D(C, v) = 5. Also P1 is a C − v
detour and P2 is a C − v geodesic. Note that the C − x, C − y and C − z
paths are the trivial paths of length 0 and any non-trivial C − v path does not
contain a simplicial vertex of C.

x

s

t

u

z

r

v

w

y

Fig 2.1: G

Since the length of a C − v path between a clique C and a vertex v in a
graph G of order n is atmost n− 2, we have the following observation.

Observation 1. For any clique C and a vertex v in a non-trivial connected
graph G of order n, 0 ≤ d(C, v) ≤ D(C, v) ≤ n− 2. The bounds are sharp. If
G is a path P : u1, u2, ..., un−1, un = v of order n, then d(C, v) = D(C, v) =
n − 2, where C = {u1, u2} and if G is a complete graph of order n, then
d(C, v) = D(C, v) = 0 for every vertex v in G. Also we note that if G is a
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tree, then d(C, v) = D(C, v) and if C is a clique and v /∈ C is a vertex in an
even cycle, then d(C, v) < D(C, v).

Since a vertex of degree n − 1 in a graph G of order n, belongs to every
clique C in G, we have the following observation.

Observation 2. Let G be a connected graph of order n and C a clique in G.
If v is a vertex of degree n− 1, then D(C, v) = 0.

But the converse is not true. Consider the graph G given in Fig. 2.1.,
D(C, v) = 0, where C = {v,w}, but deg(v) 6= n− 1.

Observation 3. Let Kn,m(n < m) be a complete bipartite graph with the
partition V1, V2 of V (Kn,m) such that |V1| = n and |V2| = m. Let C be a
clique and v a vertex such that v /∈ C in Kn,m, then

D(C, v) =

{

2n − 2, if v ∈ V1

2n − 1 if v ∈ V2

Observation 4. Let v be a vertex and C a clique in a complete bipartite graph
Kn,n such that v /∈ C, then D(C, v) = 2n− 2.

Since every tree has unique C − v path between a clique C and a vertex v,
we have the following observation.

Observation 5. If G is a tree, then d(C, v) = D(C, v) for every vertex v and
a clique C in G.

But the converse is not true. For the graph G obtained from a complete
bipartite graph K2,n(n ≥ 2) by joining the vertices of degree n by an edge. In
such a graph every clique C is isomorphic to K3 and for every vertex v with
v /∈ C, d(C, v) = D(C, v) = 1, but G is not tree.

3. Clique-to-Vertex Central Concepts

Definition 3. Let G be a connected graph and ζ be the set of all cliques in G.
The clique-to-vertex detour eccentricity, eD2(C) of a clique C in G is defined
as eD2(C) = max {D(C, v) : v ∈ V }. A vertex v for which eD2(C) = D(C, v)
is called a clique-to-vertex detour eccentric vertex of C. The clique-to-vertex
detour radius of G is defined as, R2 = radD2(G) = min {eD2(C) : C ∈ ζ} and
the clique-to-vertex detour diameter of G is defined as, D2 = diamD2(G) =
max {eD2(C) : C ∈ ζ}. A clique C in a graph G is called a clique-to-vertex
detour central clique if eD2(C) = R2 and the clique-to-vertex detour center of G
is defined as, CD2(G) = CenD2(G) = 〈C ∈ ζ : eD2(C) = R2〉. A clique C in a
graph G is called a clique-to-vertex detour peripheral clique if eD2(C) = D2 and
the clique-to-vertex detour periphery of G is defined as, PD2(G) = PerD2(G) =
〈C ∈ ζ : eD2(C) = D2〉. If every clique of a graph G is a clique-to-vertex detour
central clique, then G is called a clique-to-vertex detour self centered graph.
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Example 2. For the connected graph G given in Fig. 3.1, the set of all
cliques in G are given by, ζ = {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} where
C1 = {v1, v2, v3}, C2 = {v3, v4}, C3 = {v4, v5}, C4 = {v5, v6}, C5 = {v6, v7},
C6 = {v7, v8}, C7 = {v8, v10}, C8 = {v9, v10}, C9 = {v4, v9} and C10 =
{v10, v11, v12,v13, v14}. The clique-to-vertex eccentricity e2(C), clique-to-vertex
detour eccentricity eD2(C) of all the cliques of G are given in Table 1.

v3

v1

v2

v4

v5 v6 v7

v8

v10v9

v13v14

v12

v11

Fig. 3.1: G

C C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

e2(C) 4 3 3 4 4 5 4 3 3 4
eD2(C) 10 9 8 8 8 9 7 8 9 8

Table 1

For the graph G given in Fig. 3.1., clique-to-vertex detour eccentric vertex
of all the cliques of G are given in Table 2.

Cliques C Clique-to-Vertex Detour Eccentric Vertices
C1, C2, C3, C5, C6,C9

v11, v12, v13, v14
C4, C7, C8, C10 v1, v2

Table 2

For the graph G given in Fig. 3.1., the clique-to-vertex radius r2 = 3, clique-
to-vertex diameter d2 = 5, clique-to-vertex detour radius R2 = 7 and clique-
to-vertex detour diameter D2 = 10. Also the clique-to-vertex center C2(G),
clique-to-vertex periphery P2(G), clique-to-vertex detour center CD2(G) and
clique-to-vertex detour periphery PD2(G) are given in Table 3.
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C2(G) 〈{C2, C3, C8, C9}〉 P2(G) 〈{C6}〉
CD2(G) 〈{C7}〉 PD2(G) 〈{C1}〉

Table 3

Remark 1. In a connected graph G, C2(G), CD2(G) and P2(G), PD2(G) need
not be same. For the the graph G given in Fig 3.1, it is shown in Table 3, that
C2(G), CD2(G) and P2(G), PD2(G) are distinct.

Example 3. The complete graph Kn, the cycle Cn, the wheel Wn and the com-
plete bipartitate graph Kn,m are clique-to-vertex detour self centered graphs.

Remark 2. A clique-to-vertex self-centered graph need not be a clique-to-
vertex detour self centered graph. For the graph G given in Fig 3.2, C2(G) =
〈V (G)〉 and CD2(G) = 〈{v3, v4, v5, v6}〉.

v1

v2

v3

v4v5

v6

v7

v8

Fig. 3.2: G

Since the clique-to-vertex eccentricity is the maximum clique-to-vertex dis-
tance and the clique-to-vertex detour eccentricity is the maximum clique-to-
vertex detour distance, the following theorem is a consequence of Observation
1.

Theorem 1. For every clique C in G of order n, 0 ≤ e2(C) ≤ eD2(C) ≤ n−2.

The bounds are sharp. If G is a path P : u1, u2, ..., un−1, un = v of order
n, then e2(C) = eD2(C) = n − 2, where C = {u1, u2} and if G is a complete
graph of order n, then e2(C) = eD2(C) = 0 for every clique C in G. Also we
note that if G is a tree, then e2(C) = eD2(C) and if G is an even cycle with
v /∈ C, then e2(C) < eD2(C) for every clique C in G.

Since the clique-to-vertex radius (diameter) is the minimum (maximum)
clique-to-vertex eccentricity and the clique-to-vertex detour radius (diameter)
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is the minimum (maximum) clique-to-vertex detour eccentricity, the following
Corollary is a consequence of Theorem 1.

Corollary 2. Let G be a connected graph. Then
(i) e2(C) ≤ eD2(C) for every clique C in ζ.
(ii) r2 ≤ R2.
(iii) d2 ≤ D2.

Chartrand et. al. [6] showed that in a connected graph, the radius and
diameter are related by r ≤ d ≤ 2r and the detour radius and detour diameter
are related by R ≤ D ≤ 2R. Also Santhakumaran et. al. [1] showed that
the vertex-to-clique radius and vertex-to-clique diameter are related by r1 ≤
d1 ≤ 2r1 +1 and the clique-to-vertex radius and clique-to-vertex diameter are
related by r2 ≤ d2 ≤ 2r2 + 1. Keerthi Asir et.al. [7] showed that the similar
inequality does not hold for the vertex-to-clique detour distance. Also this
similar inequality does not hold for the clique-to-vertex detour distance.

Remark 3. For the graph G1 given in Fig. 3.3(a), D2 > 2R2 + 1 and the
graph G2 given in Fig. 3.3(b), D2 > 2R2 and D2 = 2R2 + 1. For the cycle
Cn(n ≥ 3),D2 < 2R2 and D2 < 2R2 + 1. Also for the path P2n,D2 = 2R2.

Fig. 3.3(a): G1 Fig. 3.3(b): G2

Remark 4. The clique-to-vertex radius r2, the clique-to-vertex diameter d2,
clique-to-vertex detour radius R2 and the clique-to-vertex detour diameter D2

of some standard graphs are given in Table 4.

Graph G r2 d2 R2 D2

Kn;n ≥ 1 0 0 0 0
Pn;n ≥ 2 ⌈n/2⌉-1 n− 2 ⌈n/2⌉-1 n− 2
Cn;n ≥ 4 ⌊(n− 1)/2⌋ ⌊(n − 1)/2⌋ n− 2 n− 2
Wn;n ≥ 5 1 1 n− 3 n− 3
K1,n;n ≥ 2 0 1 0 1
Kn,n;n ≥ 2 1 1 2(n− 1) 2(n − 1)

Kn,m; 2 ≤ n < m 1 1 2n− 1 2n − 1

Table 4
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Ostrand [8] showed that every two positive positive integers a and b with
a ≤ b ≤ 2a are realizable as the radius and diameter respectively of some con-
nected graph and Chartrand et. al. [4] showed that every two positive positive
integers a and b with a ≤ b ≤ 2a are realizable as the detour radius and de-
tour diameter respectively of some connected graph. Also Santhakumaran et.
al. [1] showed that every two positive integers a and b with a ≤ b ≤ 2a + 1
are realizable as the vertex-to-clique radius and vertex-to-clique diameter re-
spectively of some connected graph and every two positive integers a and b
with a ≤ b ≤ 2a + 1 are realizable as the clique-to-vertex radius and clique-
to-vertex diameter respectively of some connected graph. Keerthi Asir et.al.
[7] showed that every two positive integers a and b with 2 ≤ a ≤ b are realiz-
able as the vertex-to-clique detour radius and vertex-to-clique detour diameter
respectively of some connected graph. Now, we have a similar realization the-
orem for the clique-to-vertex detour radius and the clique-to-vertex detour
diameter.

Theorem 3. For each pair a, b of positive integers with 2 ≤ a ≤ b, there exists
a connected graph G with R2 = a and D2 = b.

Proof. Case 1. a = b. Let Ca+2 : u1, u2, ..., ua+2, u1 be a cycle of order a+ 2.
If C = {ui, ui+1} then eD2(C) = a for 1 ≤ i ≤ a+ 2. It is easy to verify that
every clique S in G with eD2(S) = a. Thus R2 = a and D2 = b as a = b..
Case 2. 2 ≤ a < b ≤ 2a. Let Ca+2 : u1, u2, ..., ua+2, u1 be a cycle of order
a+ 2 and P : v1, v2, ..., vb−a+1 be a path of order b− a+ 1. We construct the
graph G as shown in the Fig. 3.4 by identifying the vertex u1 of Ca+2 and v1
of P .

ua+1

ua

u2

ua+2

v1

u1

u3

v2 v3 vb−a vb−a+1

Fig. 3.4: G

If C = {u1, u2} = {u1, ua+2}, then eD2(C) = a. Also if C = {ui, ui+1},
then eD2(C) = b − i + 2 for 2 ≤ i ≤

⌈

a+2
2

⌉

and eD2(C) = b − a + i − 1

for
⌈

a+2
2

⌉

< i ≤ a + 1. Also if C = {vi, vi+1} then eD2(C) = a + i for
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1 ≤ i ≤ b− a. In particular, if C = {u2, u3} = {ua+1, ua+2} = {vb−a, vb−a+1}
then eD2(C) = b. It is easy to verify that there is no clique S in G with
eD2(S) < a and there is no clique S′ in G with eD2(S

′) > b. Thus R2 = a and
D2 = b as a < b.
Case 3. b > 2a(a ≥ 2). Let Pa+1 : v1, v2, ..., va+1 be a path of order a + 1
and Kb−a+2 : u1, u2, ..., ub−a+2 be a complete graph of order b − a + 2. We
construct the graph G as shown in the Fig. 3.5 by identifying the vertex u1 of
Kb−a+2 and v1 of Pa+1. If C = Kb−a+2 then eD2(C) = a and if C = {vi, vi+1}
then eD2(C) = b − a + i for 1 ≤ i ≤ a. In particular, if C = {va, va+1} then
eD2(C) = b. It is easy to verify that there is no clique S in G with eD2(S) < a
and there is no clique S′ in G with eD2(S

′) > b. Thus R2 = a and D2 = b as
b > 2a.

u1

ub−a

ub−a+1

ub−a+2

v1

Kb−a+2

v3v2 va va+1

Fig. 3.5: G
�

Keerthi Asir et.al. [7] showed that for every two positive integers a and b
with 2 ≤ a ≤ b, there exists a connected graph G with vertex-to-clique radius
r1 = a and vertex-to-clique detour radius R1 = b. Now, we have a similar
realization theorem for the clique-to-vertex radius and the clique-to-vertex
detour radius.

Theorem 4. For any two positive integers a, b with 2 ≤ a ≤ b, there exists a
connected graph G such that r2 = a and R2 = b.

Proof. Case 1. a = b. Let P1 : u1, u2, ..., , ua, ua+1 and P2 : v1, v2, ..., va, va+1

be two copies of the path Pa+1 of order a + 1. We construct the graph G
by joining u1 in P1 and v1 in P2 by an edge. If C = {u1, v1} then e2(C) =
eD2(C) = a and if C = {ui, ui+1} = {vi, vi+1} then e2(C) = a+i for 1 ≤ i ≤ a.
It is easy to verify that there is no clique S in G with e2(S) = eD2(S) < a.
Thus r2 = a and R2 = b as a = b.



52 I. Keerthi Asir, S. Athisayanathan

Case 2. 2 ≤ a < b. Let P1 : u1, u2, ..., , ua, ua+1 and Q1 : v1, v2, ..., va, va+1

be two copies of the path Pa+1 of order a+ 1. Let P2 : w1, w2, ..., wb−a+2 and
Q2 : z1, z2, ..., zb−a+2 be two copies of the path Pb−a+2 of order b− a+ 2. We
construct the graph G as follows: (i) identify the vertices u1 in P1 with w1 in P2

and also identify the vertices v1 in Q1 with z1 in Q2 (ii) identify the vertices u3
in P1 with wb−a+2 in P2 and also identify the vertices zb−a+2 in Q2 with v3 in
Q1 (iii) join each vertex wi(2 ≤ i ≤ b−a+1) in P2 with u2 in P1 and join each
vertex zi(2 ≤ i ≤ b−a+1) in Q2 with v2 in Q1 (iv) join u1 in P1 with v1 in Q1.
The resulting graph G is shown in Fig. 3.6. If C = {u1, v1} then e2(C) = a
and eD2(C) = b. Also if C = {ui, ui+1} = {vi, vi+1} then e2(C) = a + i and
eD2(C) = 2b − a+ i for 3 ≤ i ≤ a. Also if C = {u2, wi, wi+1} = {v2, zi, zi+1}
then e2(C) = a+1 for i = 1 and e2(C) = a+2 for 2 ≤ i ≤ b− a+1. However
eD2(C) = b+ i for 1 ≤ i ≤ b− a+1. It is easy to verify that there is no clique
S in G with e2(S) < a and eD2(S) < b. Thus r2 = a and R2 = b as a < b. �

v1
v2 v3

v4 va va+1

z2

z3

zb−a+1

wb−a+1

w3

w2

u3

u4

u2

u1

ua ua+1

Fig. 3.6: G

Keerthi Asir et.al. [7] showed that for every two positive integers a and
b with 2 ≤ a ≤ b, there exists a connected graph G with vertex-to-clique
diameter d1 = a and vertex-to-clique detour diameter D1 = b. Now, we have
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a similar realization theorem for the clique-to-vertex diameter and the clique-
to-vertex detour diameter.

Theorem 5. For any two positive integers a, b with 2 ≤ a ≤ b, there exists a
connected graph G such that d2 = a and D2 = b.

Proof. Case 1. a = b. Let Pa+2 : u1, u2, ..., , ua, ua+1, ua+2 be a path of order
a+2. If C = {ui, ui+1} then e2(C) = eD2(C) = a−i+1 for 1 ≤ i ≤

⌈

a+1
2

⌉

and

e2(C) = eD2(C) = i− 1 for
⌈

a+1
2

⌉

< i ≤ a+1. In particular if C = {u1, u2} =
{ua+1, ua+2} then e2(C) = eD2(C) = a. It is easy to verify that there is no
clique S in G with e2(S) = eD2(S) > a. Thus d2 = a and D2 = b as a = b.
Case 2. 2 ≤ a < b. Let P1 : u1, u2, ..., ua, ua+1 be a path of order a+ 1. Let
P2 : w1, w2, ..., wb−a+2 be a path of order b− a+ 2. Let P3 : x1, x2 be a path
of order 2. We construct the graph G as follows: (i) identify the vertices u1
in P1, w1 in P2 with x1 in P3 and identify the vertices u3 in P1 with wb−a+2

in P2 (ii) join each vertex wi(2 ≤ i ≤ b − a + 1) in P2 with u2 in P1. The
resulting graph G is shown in Fig. 3.7.

wb−a+1

w3

w2

u3 u4u2

x1

x2

ua ua+1

Fig. 3.7: G

If C = {x1, x2} then e2(C) = a and eD2(C) = b. Also if C = {ui, ui+1}
then e2(C) = i and eD2(C) = b − a + i for 3 ≤ i ≤ a. If C = {u2, wi, wi+1}
then eD2(C) = b − i − 1 for 1 ≤ i ≤

⌈

b−a+1
2

⌉

and eD2(C) = i for
⌈

b−a+1
2

⌉

<
i ≤ b− a+ 1. Also we have to find e2(C) by the following subcases:
Subcase 1 of Case 2. When a = 2
e2(C) = 1 for i = 1
e2(C) = 2 for 2 ≤ i ≤ b− a+ 1
Subcase 2 of Case 2. When a = 3
e2(C) = 2 for 1 ≤ i ≤ b− a+ 1
Subcase 3 of Case 2. When a > 3
e2(C) = a− 1 for 1 ≤ i ≤ b− a
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e2(C) = a− 2 for i = b− a+ 1
It is easy to verify that there is no clique S in G with e2(S) > a and

eD2(S) > b. Thus d2 = a and D2 = b as a < b. �

Remark 5. Harary and Norman [3] showed that the center of every connected
graph G lies in a single block of G and Chartrand et. al. [4] showed that the
detour center of every connected graph G lies in a single block of G. Also
Santhakumaran et. al. [1] showed that the vertex-to-clique center of every
connected graph G lies in a single block of G and Keerthi Asir et.al. [7] showed
that the vertex-to-clique detour center of every connected graph G lies in a
single block of G. However it is not true for the clique-to-vertex detour center
of a graph. For the Path P2n+1, the clique-to-vertex detour center is always
P3, which does not lie in a single block.
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