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CLIQUE-TO-VERTEX DETOUR DISTANCE IN GRAPHS

I. KEERTHI ASIR!, S. ATHISAYANATHAN?

ABSTRACT. Let C be a clique and v a vertex in a connected graph G. A
clique-to-vertex C' — v path P is a u — v path, where u is a vertex in C
such that P contains no vertices of C' other than u. The clique-to-vertex
distance, d(C,v) is the length of a smallest C — v path in G. A C —v
path of length d(C,v) is called a C' — v geodesic. The clique-to-vertex
eccentricity e2(C) of a clique C' in G is the maximum clique-to-vertex
distance from C' to a vertex v € V in G. The clique-to-vertex radius r2
of G is the minimum clique-to-vertex eccentricity among the cliques of
G, while the clique-to-vertex diameter d2 of GG is the maximum clique-
to-vertex eccentricity among the cliques of G. Also The clique-to-vertex
detour distance, D(C,v) is the length of a longest C — v path in G. A
C — v path of length D(C,v) is called a C' — v detour. The clique-to-vertex
detour eccentricity ep2(C) of a clique C' in G is the maximum clique-to-
vertex detour distance from C to a vertex v € V in G. The clique-to-vertex
detour radius Rz of G is the minimum clique-to-vertex detour eccentricity
among the cliques of GG, while the clique-to-vertex detour diameter D2 of G
is the maximum clique-to-vertex detour eccentricity among the cliques of
G. It is shown that Re < Ds for every connected graph G and that every
two positive integers a and b with 2 < a < b are realizable as the clique-to-
vertex detour radius and the clique-to-vertex detour diameter respectively
of some connected graph. Also it is shown that for any two positive integers
a and b with 2 < a < b, there exists a connected graph G such that r2 = a,
Ry = b and it is shown that for any two positive integers a and b with
2 < a < b, there exists a connected graph G such that do = a, D2 = b.

Key words : clique-to-vertex detour distance, clique-to-vertex detour cen-
ter, clique-to-vertex detour periphery.
AMS SUBJECT : Primary 05C12.

'"Department of Mathematics, St. Xavier’s College (Autonomous), Palayamkottai -
627 002, Tamil Nadu, India. Email: asirsxc@gmail.com
?Head, Department of Mathematics, St. Xavier’s College (Autonomous), Palayamkottai -
627 002, Tamil Nadu, India. Email: athisxc@gmail.com.
42



Clique-to-Vertex Detour Distance In Graphs 43

1. INTRODUCTION

By a graph G = (V, E) we mean a finite undirected connected simple graph.
For basic graph theoretic terminologies, we refer to Buckley and Harary [2]
and Chartrand [6]. If X C V, then (X) is the subgraph induced by X. A
vertex v is called a simplicial vertex if the subgraph induced by its neighbors
is complete. A clique C of a graph G is a maximal complete subgraph and
we denoted it by its vertices. A u — v path P beginning with v and ending
with v in a graph G is a sequence of distinct vertices such that consecutive
vertices in the sequence are adjacent in GG. For a graph G, the length of a
path is the number of edges on the path. In [2] distance in graphs is defined
in a natural way. For any two vertices u and v in a connected graph G, the
distance d(u,v) is the length of a shortest u — v path in G. A u — v path of
length d(u,v) is called a u — v geodesic in G. For a vertex v in a connected
graph G, the eccentricity of v is defined by e(v) = max{d(u,v) : v € V}.
A vertex u of G such that d(u,v) = e(v) is called a eccentric vertex of v.
The radius of G is defined by r = rad(G) = min{e(v) : v € V} and the
diameter of G is defined by d = diam(G) = max{e(v) : v € V}. A vertex
v in a graph G is called a central vertex if e(v) = r and the center of G is
defined by C' = Cen(G) = {ve V:e(v) =r}). A vertex v in a graph G is
called a peripheral vertex if e(v) = d and the periphery of G is defined by
P = Per(G) = {veV:e(v) =d}).

Santhakumaran and Arumugam [1] investigated in detail the facility lo-
cation problems namely vertex-serves-structure and structure-serves-vertex,
where the structure is a clique. Correspondingly they defined as follows: For
a vertex u and a clique C in a connected graph G, the vertex-to-clique dis-
tance is defined by d(u,C) = min{d(u,v) : v € C}. For our convenience a
u — C path of length d(u,C) is called a vertex-to-clique u — C' geodesic or
simply u — C geodesic. The vertex-to-clique eccentricity of u is defined by
e1(u) = max{d(u,C) : C' € ¢}, where ( is the set of all cliques in G. A clique
C of G such that e;(u) = d(u, C) is called a vertex-to-clique eccentric vertex of
u. The vertex-to-clique radius 71 and vertex-to-clique diameter d; of G are de-
fined by 1 = min{e;(v) : v € V} and d; = max{e;(v) : v € V'} respectively. A
vertex v in a graph G is called a vertex-to-clique central vertex if e; (v) = 1 and
the vertex-to-clique center of G is defined by Z1(G) = ({v € V : e1(v) = r1}).
For our convenience we denote C1(G) = Z1(G). A vertex v in a graph G
is called a vertex-to-clique peripheral vertex if e;(v) = d; and the vertex-
to-clique periphery of G is defined by P, = ({veV:ei(v) =di}). Also
the clique-to-vertex distance in graph is defined as as follows: For a clique
C and a vertex v in a connected graph G, the clique-to-vertex distance is
defined by d(C,v) = min{d(u,v) : u € C}. For our convenience a C' — v
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path of length d(C,v) is called a clique-to-vertex C' — v geodesic or sim-
ply C — v geodesic. The clique-to-vertex eccentricity of C is defined by
e2(C) = max{d(C,v) : v € V}. A vertex v of G such that es(C) = d(C,v) is
called a clique-to-vertex eccentric vertex of C. The clique-to-vertex radius 79
and clique-to-vertex diameter ds of G are defined by ro = min{es(C) : C € (}
and do = max{ey(C) : C' € (} respectively. A clique C in a graph G is called
a clique-to-vertex central clique if e2(C') = 9 and the clique-to-vertex center
of G is defined by Z3(G) = ({C € ( : e2(C) = r2}). For our convenience we
denote Co(G) = Z3(G). A clique C in a graph G is called a clique-to-vertex pe-
ripheral clique if es(C') = dy and the clique-to-vertex periphery of G is defined
by Po = ({C € (: ea(C) = da}).

Chartrand et.al. [4, 5] introduced and studied the concepts of detour dis-
tance in graphs as follows: For any two vertices u and v in a connected graph
G, the detour distance D(u,v) is the length of a longest u — v path in G. A
u — v path of length D(u,v) is called a u — v detour in G. For a vertex v
in a connected graph G, the detour eccentricity of a vertex v is defined by
ep(v) = max{D(u,v) : u € V}. A vertex u of G such that D(u,v) = ep(v)
is called a detour eccentric vertex of v. The detour radius R and detour
diameter D of G are defined by R = radpG = min{ep(v) : v € V} and
D = diamp(G) = max{e(v) : v € V} respectively. A vertex v in a graph G
is called a detour central vertex if ep(v) = R and the detour center of G is
defined by Cp = Cenp(G) = ({v € V :ep(v) = R}). A vertex v in a graph G
is called a detour peripheral vertex if ep(v) = D and the detour periphery of
G is defined by Pp = Perp(G) = ({v € V :ep(v) = D}).

Keerthi Asir and Athisayanathan [7] introduced and studied the concepts
of vertex-to-clique detour distance in graph as follows: Let C be a clique and
v a vertex in a connected graph G. A vertex-to-clique u — C' path P is a
u — v path, where v is a vertex in C' such that P contains no vertices of C
other than v and the vertex-to-clique detour distance D(u,C) is the length
of a longest u — C path. A u — C path of length D(u,C) is called a u — C
vertex to clique detour. The vertex-to-clique detour eccentricity, ep;(u) of a
vertex u in G is defined as epj(u) = max {D(u,C) : C € (}, where ( is the set
of all cliques in G. A clique C for which ep;(u) = D(u,C) is called a vertex-
to-clique detour eccentric clique of u. The vertex-to-clique detour radius of G
is defined as, Ry = radp1(G) = min{ep1(v) : v € V'} and the vertex-to-clique
detour diameter of G is defined as, D1 = diamp1(G) = max {ep1(v) : v € V}.
A vertex v in a graph G is called a vertex-to-clique detour central vertex
if ep1(v) = Ry and the vertex-to-clique detour center of G is defined as,
Cp1(G) = Cenp1(G) = ({v €V :epi(v) = R1}). A vertex v in a graph G
is called a vertex-to-clique detour peripheral vertex if epj(v) = D; and the
vertex-to-clique detour periphery of G is defined as, Ppi(G) = Perpi1(G) =
({veV:epi(v) = Di}).
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In this paper, we introduce a new distance called clique-to-vertex detour
distance in a connected graph G and investigate certain results related to
clique-to-vertex detour distance and other distances in G. Throughout this
paper, G denotes a connected graph with atleast two vertices.

2. CLIQUE-TO-VERTEX DETOUR DISTANCE

Definition 1. Let C be a cligue and v a vertex in a connected graph G. A
clique-to-vertex C — v path P is a u — v path, where u is a vertex in C such
that P contains no vertices of C' other than wu.

Definition 2. The clique-to-vertex detour distance, D(C,u) between a clique
C and a vertex v in a graph G is the length of a longest C'— v path. A C —v
path of length D(C,v) is called a clique-to-vertex C'—v detour or simply C'—v
detour.

Example 1. Consider the graph G given in Fig 2.1. For the verter v and
the cligue C = {x,y,z} in G, the paths P : z,s,t,u,w,v; Py : z,7,v and
Ps : z,u,w,v are C — v paths, while the paths Q1 : z,y,z,u,w,v and Qs :
x, 8, t,u, z,r,v are not C —v paths. Now the clique-to-vertex distance d(C,v) =
2 and the clique-to-vertex detour distance D(C,v) = 5. Also P} is a C — v
detour and Py is a C' — v geodesic. Note that the C — x, C —y and C — z
paths are the trivial paths of length 0 and any non-trivial C — v path does not
contain a simplicial vertex of C.

Y
T z
s T
t v
U w
Fig 2.1: G

Since the length of a C'— v path between a clique C' and a vertex v in a
graph G of order n is atmost n — 2, we have the following observation.

Observation 1. For any clique C' and a vertex v in a non-trivial connected
graph G of order n, 0 < d(C,v) < D(C,v) < n — 2. The bounds are sharp. If
G is a path P : uj,ug,...,;up—1,u, = v of order n, then d(C,v) = D(C,v) =
n — 2, where C = {uj,us} and if G is a complete graph of order n, then
d(C,v) = D(C,v) = 0 for every vertex v in G. Also we note that if G is a
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tree, then d(C,v) = D(C,v) and if C is a clique and v ¢ C is a vertex in an
even cycle, then d(C,v) < D(C,v).

Since a vertex of degree n — 1 in a graph G of order n, belongs to every
clique C in GG, we have the following observation.

Observation 2. Let G be a connected graph of order n and C' a clique in G.
If v is a vertex of degree n — 1, then D(C,v) = 0.

But the converse is not true. Consider the graph G given in Fig. 2.1.,
D(C,v) =0, where C = {v,w}, but deg(v) #n — 1.

Observation 3. Let K, ,,(n < m) be a complete bipartite graph with the
partition Vi, Va of V(Kym) such that |Vi| = n and |Va| = m. Let C be a
clique and v a vertex such that v ¢ C in K, ,,, then

2n—2, ifveW;

D(C,v) =
(C0) {271—1 ifveVy

Observation 4. Let v be a vertex and C' a clique in a complete bipartite graph
K, such that v ¢ C, then D(C,v) = 2n — 2.

Since every tree has unique C' — v path between a clique C' and a vertex v,
we have the following observation.

Observation 5. If G is a tree, then d(C,v) = D(C,v) for every vertex v and
a cliqgue C in G.

But the converse is not true. For the graph G obtained from a complete
bipartite graph Ks,(n > 2) by joining the vertices of degree n by an edge. In
such a graph every clique C' is isomorphic to K3 and for every vertex v with
v¢ C,d(C,v) = D(C,v) =1, but G is not tree.

3. CLIQUE-TO-VERTEX CENTRAL CONCEPTS

Definition 3. Let G be a connected graph and ( be the set of all cliques in G.
The clique-to-vertex detour eccentricity, eps(C) of a clique C in G is defined
as epa(C) = mazx {D(C,v) : v € V}. A vertex v for which eps(C) = D(C,v)
is called a clique-to-vertex detour eccentric vertexr of C'. The clique-to-vertex
detour radius of G is defined as, Re = radps(G) = min{ep2(C) : C € ¢} and
the clique-to-vertex detour diameter of G is defined as, Do = diamps(G) =
maz {ep2(C) : C € (}. A cliqgue C in a graph G is called a clique-to-vertex
detour central clique if epa(C) = Ra and the clique-to-vertex detour center of G
is defined as, Cp2(G) = Cenpa(G) = (C € ¢ : ep2(C) = Rg). A clique C in a
graph G is called a clique-to-vertex detour peripheral clique if epa(C) = Do and
the clique-to-vertex detour periphery of G is defined as, Pp2(G) = Perpa(G) =
(C € (:epa(C) = Dy). If every clique of a graph G is a clique-to-vertex detour
central clique, then G is called a clique-to-vertex detour self centered graph.
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Example 2. For the connected graph G given in Fig. 8.1, the set of all
C = {017027037047057067077087097010} where
C1 = {v1,v,v3}, C2 = {vs,v4}, C5 = {va,v5}, C1 = {vs,v6}, C5 = {ve, v7},
vio}, Cs = {vg,v10}, Co = {v4,v9} and C1p =
clique-to-vertex eccentricity es(C), clique-to-vertex

cliques in G are given by,

Ce = {vr,vs}, C7 = {us,
{v10,v11,v12,013,v14}. The
detour eccentricity epa(C)

of all the cliques of G are given in Table 1.

Vs V6 (%
o——o—0
V2
V4 v
U3
V11
V1
o V12
(%) V10
V14 V13
Fig. 3.1: G
C Ci1|Cy|C3|Cy|Cs5|Cs|Cr|Cs| Cy | Cro
e20C) | 41313414514 |13]3] 4
epa(CY]10] 9|8 [ 88|97 ][8]9] 8

For the graph G given in

Table 1

Fig. 3.1., clique-to-vertex detour eccentric vertex

of all the cliques of G are given in Table 2.

Cliques C' Clique-to-Vertex Detour Eccentric Vertices
C1,C2,C5,C5,Ce 0 V11, V12, V13, V14
C4,C7,Cs, Cho U1, V2

For the graph G given in Fig. 3.1., the clique-to-vertex radius ro = 3, clique-
to-vertex diameter do = 5, clique-to-vertex detour radius Ry = 7 and clique-
to-vertex detour diameter Dy = 10. Also the clique-to-vertex center Co(G),
clique-to-vertex periphery P»(G), clique-to-vertex detour center Cps(G) and

Table 2

clique-to-vertex detour periphery Ppo(G) are given in Table 3.
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Co(G) | ({Cs,03,C8,Cy}) | Po(G) | ({Cs})
Cpa2(G) ({C7}) Ppa(G) | ({C1})
Table 3

Remark 1. In a connected graph G, Co(G), Cp2(G) and P2(G), Pp2(G) need
not be same. For the the graph G given in Fig 3.1, it is shown in Table 3, that
C3(G), Cp2(G) and Py(G), Ppa(G) are distinct.

Example 3. The complete graph K,,, the cycle Cy,, the wheel W,, and the com-
plete bipartitate graph K, ., are clique-to-vertex detour self centered graphs.

Remark 2. A clique-to-vertex self-centered graph need not be a clique-to-
vertex detour self centered graph. For the graph G given in Fig 3.2, Co(G) =
(V(@)) and Cp2(G) = {{vs,v4,v5,v6}).

U1
v A v
o]

U7
Ve U3
Us V4

Fig. 3.2: G

Since the clique-to-vertex eccentricity is the maximum clique-to-vertex dis-
tance and the clique-to-vertex detour eccentricity is the maximum clique-to-
vertex detour distance, the following theorem is a consequence of Observation
1.

Theorem 1. For every cliqgue C in G of ordern, 0 < e2(C) < ep2(C) < n—2.

The bounds are sharp. If G is a path P : uy,us,...,un_1,u, = v of order
n, then ex(C) = epa(C) = n — 2, where C = {u1,uz} and if G is a complete
graph of order n, then ea(C) = epa(C) = 0 for every clique C' in G. Also we
note that if G is a tree, then ea(C) = ep2(C) and if G is an even cycle with
v ¢ C, then e3(C) < epa(C) for every clique C in G.

Since the clique-to-vertex radius (diameter) is the minimum (maximum)
clique-to-vertex eccentricity and the clique-to-vertex detour radius (diameter)
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is the minimum (maximum) clique-to-vertex detour eccentricity, the following
Corollary is a consequence of Theorem 1.

Corollary 2. Let G be a connected graph. Then
(1) e2(C) < epa(C) for every clique C in (.
(’l"i) ) < RQ.

(iii) do < D.

Chartrand et. al. [6] showed that in a connected graph, the radius and
diameter are related by r < d < 2r and the detour radius and detour diameter
are related by R < D < 2R. Also Santhakumaran et. al. [1] showed that
the vertex-to-clique radius and vertex-to-clique diameter are related by r; <
d; < 2ry1 41 and the clique-to-vertex radius and clique-to-vertex diameter are
related by ro < dy < 2r9 4+ 1. Keerthi Asir et.al. [7] showed that the similar
inequality does not hold for the vertex-to-clique detour distance. Also this
similar inequality does not hold for the clique-to-vertex detour distance.

Remark 3. For the graph Gi given in Fig. 3.3(a), Do > 2Rs + 1 and the
graph Gy given in Fig. 3.3(b), Dy > 2Ry and Dy = 2Ry + 1. For the cycle
Cn(n >3),Dy < 2Ry and Dy < 2Ry + 1. Also for the path Pa,, Dy = 2Rs.

>
Fig. 8.3(a): G1 Fig. 3.3(b): G

Remark 4. The clique-to-vertex radius ro, the clique-to-vertex diameter ds,
clique-to-vertex detour radius Ry and the clique-to-verter detour diameter Do
of some standard graphs are given in Table 4.

Graph G 79 do Ry Do
Kpin>1 0 0 0 0
Pyin>2 [n/2]-1 n—2 [n/2]-1 | n—2
Cp;n >4 [(n—1)/2] | [(n—1)/2] | n—2 n—2
Wpin > 5 1 1 n—3 n—3
Kipin > 2 0 1 0 1
Kpp;n > 2 1 1 2(n—1) | 2(n—1)
Kymi2<n<m 1 1 2n—1 2n —1

Table 4



50 I. Keerthi Asir, S. Athisayanathan

Ostrand [8] showed that every two positive positive integers a and b with
a < b < 2a are realizable as the radius and diameter respectively of some con-
nected graph and Chartrand et. al. [4] showed that every two positive positive
integers a and b with a < b < 2a are realizable as the detour radius and de-
tour diameter respectively of some connected graph. Also Santhakumaran et.
al. [1] showed that every two positive integers a and b with a < b < 2a + 1
are realizable as the vertex-to-clique radius and vertex-to-clique diameter re-
spectively of some connected graph and every two positive integers a and b
with a < b < 2a + 1 are realizable as the clique-to-vertex radius and clique-
to-vertex diameter respectively of some connected graph. Keerthi Asir et.al.
[7] showed that every two positive integers a and b with 2 < a < b are realiz-
able as the vertex-to-clique detour radius and vertex-to-clique detour diameter
respectively of some connected graph. Now, we have a similar realization the-
orem for the clique-to-vertex detour radius and the clique-to-vertex detour
diameter.

Theorem 3. For each pair a,b of positive integers with 2 < a < b, there exists
a connected graph G with Ry = a and Dy = b.

Proof. Case 1. a =b. Let Cyyo : u1,us, ..., uqt2,u1 be a cycle of order a + 2.
If C = {u;,uj11} then epe(C) =a for 1 <i < a+ 2. It is easy to verify that
every clique S in G with eps(S) = a. Thus Ry = a and Dy = b as a = b..
Case 2. 2 <a <b<2a Let Cuyg : up,ug,...,uqs+2,u1 be a cycle of order
a+2and P :vy,ve,...,0p_g11 be a path of order b — a + 1. We construct the
graph G as shown in the Fig. 3.4 by identifying the vertex u; of Cyi90 and v;
of P.

Ug+1

Uq

U3 Vp—a Ub—a+1

us

Fig. 3.4: G

If C = {u1,us} = {ur,uqy2}, then eps(C) = a. Also if C = {u;,uit1},
then epo(C) = b—i+2 for 2 < i < {“TH] and ep2(C) =b—a+i—1
for PTHW < i< a+1l Alsoif C = {vj,vit1} then eps(C) = a + i for
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1 <i<ba Inparticular, if C = {usu5} = {tgsrtasa) = {0 vpser}
then epo(C) = b. It is easy to verify that there is no clique S in G with
ep2(S) < a and there is no clique S in G with eps(S’) > b. Thus Ry = a and
Dy =basa<hb.

Case 3. b > 2a(a > 2). Let P,y : v1,v2,...,04+1 be a path of order a + 1
and Kp_g19 @ Uj, U2, ..., Up—q+2 be a complete graph of order b —a + 2. We
construct the graph G as shown in the Fig. 3.5 by identifying the vertex u; of
Kb—a+2 and (%1} of Pa+1. IfC = Kb—a+2 then €D2(0) =gq and if C' = {’UZ', Ui+1}
then epe(C) =b—a+i for 1 < i < a. In particular, if C' = {v,,v441} then
ep2(C) = b. Tt is easy to verify that there is no clique S in G with eps(S) < a
and there is no clique S’ in G with eps(S’) > b. Thus Ry = a and Dy = b as
b > 2a.

U
o------ o o
/;1 Vo V3 Vg Va+1
Up—a+2
Ky—q+2
Up—a+1
Ub—a
Fig. 3.5: G

O

Keerthi Asir et.al. [7] showed that for every two positive integers a and b
with 2 < a < b, there exists a connected graph G with vertex-to-clique radius
r1 = a and vertex-to-clique detour radius R; = b. Now, we have a similar
realization theorem for the clique-to-vertex radius and the clique-to-vertex
detour radius.

Theorem 4. For any two positive integers a,b with 2 < a < b, there exists a
connected graph G such that ro = a and Re = b.

Proof. Case 1. a =0b. Let P : ug,uo,...,, Ug, Uqr1 and Po : v1, V9, ..., Vg, Vgt1
be two copies of the path P,y of order a + 1. We construct the graph G
by joining u; in P; and vy in P, by an edge. If C' = {uj,v1} then e3(C) =
ep2(C) = aand if C = {u;, ujy1} = {v;,viy1} then eo(C) = a+ifor 1 <i < a.
It is easy to verify that there is no clique S in G with e3(S) = epa(S) < a.
Thus ro =a and Ry =bas a =b.
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Case 2. 2 <a<b. Let P, :up,ug,...,,Ug, Ugtr1 and Q1 : v1,V9, ..., Vg, Vgt1
be two copies of the path P, of order a + 1. Let P : wy, wa, ..., wWp—q+2 and
Q2 : 21,722, ..., Zh—aq+2 be two copies of the path P,_, o of order b —a + 2. We
construct the graph G as follows: (i) identify the vertices uy in P; with wy in P,
and also identify the vertices v1 in Q1 with 21 in Q2 (ii) identify the vertices ug
in P; with wy_q49 in P5 and also identify the vertices zp_,42 in Q2 with v in
@1 (iii) join each vertex w;(2 < i < b—a+1) in P, with ug in P; and join each
vertex z;(2 <i < b—a+1) in Q2 with vy in Q1 (iv) join uy in P; with v in Q.
The resulting graph G is shown in Fig. 3.6. If C' = {uy,v1} then e3(C) = a
and eps(C) = b. Also if C = {u;,uir1} = {v;,vi41} then ea(C) = a + i and
EDQ(C) =2b—a+ifor3<i<aq. Alsoif C = {UQ,ZUZ',’LUZ'_H} = {’UQ,ZZ',ZZ'_H}
then ea(C) =a+1for i =1 and ex(C) =a+2 for 2 <i < b—a+ 1. However
ep2(C) =b+ifor 1 <i<b—a-+1. It is easy to verify that there is no clique
S in G with e3(S) < a and epa(S) <b. Thusrg =aand Rp =basa<b. O

(' ull-‘rl
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Fig. 3.6: G

Keerthi Asir et.al. [7] showed that for every two positive integers a and
b with 2 < a < b, there exists a connected graph G with vertex-to-clique
diameter d; = a and vertex-to-clique detour diameter D; = b. Now, we have
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a similar realization theorem for the clique-to-vertex diameter and the clique-
to-vertex detour diameter.

Theorem 5. For any two positive integers a,b with 2 < a < b, there exists a
connected graph G such that do = a and Dy = b.

Proof. Case 1. a =b. Let P9 : up,ug,...,, Ug, Ug+1, Ug+2 be a path of order
a+2. If C = {u;,ui41} then eo(C) = epe(C) = a—i+1for 1 <i < [%H] and
e2(C) = epa(C) =i—1for [“H] < i < a+1. In particular if C = {us,us} =
{Ugt1,Uqt2} then es(C) = epa(C) = a. It is easy to verify that there is no
clique S in G with e2(S) = ep2(S) > a. Thus do = a and Dy =b as a = b.
Case 2. 2 <a <b. Let P, : uj,uo,...,uq,Uqg+1 be a path of order a + 1. Let
Py wy,wa, ..., wp_qt2 be a path of order b —a + 2. Let P53 : 21, x2 be a path
of order 2. We construct the graph G as follows: (i) identify the vertices uy
in P, wy in Py with 27 in P3 and identify the vertices us in P} with wp_g49
in P, (i) join each vertex w;(2 < i < b—a+ 1) in P, with ug in P;. The
resulting graph G is shown in Fig. 3.7.

Fig. 3.7: G

If C = {x1,22} then e2(C) = a and ep2(C) = b. Also if C' = {u;, uit1}
then ep(C) =i and epa(C) =b—a+ifor 3 <i <a. If C = {ug,w;, wiy1}
then ep2(C) =b—i—1for1 <i< {HTJFW and epa(C) = i for V’_“T“] <
i <b—a-+1. Also we have to find es(C) by the following subcases:
Subcase 1 of Case 2. When a = 2
ea(C)=1fori=1
ea(C)=2for2<i<b—a+1
Subcase 2 of Case 2. When a =3
ea(C)=2for1<i<b—a+1
Subcase 3 of Case 2. When a > 3
ea(C)=a—1for1<i<b-—oa
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ea(C)=a—-2fori=b—a+1
It is easy to verify that there is no clique S in G with e3(S) > a and
ep2(S) >0b. Thus do =a and Dy =b as a < b. O

Remark 5. Harary and Norman [3] showed that the center of every connected
graph G lies in a single block of G and Chartrand et. al. [4] showed that the
detour center of every connected graph G lies in a single block of G. Also
Santhakumaran et. al. [1] showed that the vertex-to-clique center of every
connected graph G lies in a single block of G and Keerthi Asir et.al. [7] showed
that the vertex-to-clique detour center of every connected graph G lies in a
single block of G. However it is not true for the clique-to-vertex detour center
of a graph. For the Path Pay,y1, the clique-to-vertex detour center is always
P53, which does not lie in a single block.
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