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THE t-PEBBLING NUMBER OF SQUARES OF CYCLES

LOURDUSAMY AROCKIAM1, MATHIVANAN THANARAJ2

Abstract. Let C be a configuration of pebbles on a graph G. A pebbling
move (step) consists of removing two pebbles from one vertex, throwing
one pebble away, and moving the other pebble to an adjacent vertex. The
t-pebbling number, ft(G), of a connected graph G, is the smallest positive
integer such that from every configuration of ft(G) pebbles, t pebbles can
be moved to any specified target vertex by a sequence of pebbling moves.
In this paper, we determine the t-pebbling number for squares of cycles.
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1. Introduction

We begin by introducing relevant terminology and background on the sub-
ject. Here, the term graph refers to a simple graph. A configuration C of
pebbles on a graph G = (V,E) can be thought of as a function C : V (G) →
N ∪ {0}. The value C(v) equals the number of pebbles placed at vertex v,
and the quantity

∑
v∈V (G)C(v) is called the size of C; the size of C is just

the total number of pebbles assigned to vertices. A pebbling move [8] consists
of removing two pebbles from one vertex and then placing one pebble at an
adjacent vertex. Suppose C is a configuration of pebbles on a graph G. We
say a pebble can be moved to a vertex v, the target vertex, if we can apply
pebbling moves repeatedly (if necessary) so that in the resulting configuration
the vertex v has at least one pebble.

Definition 1. [1] The t-pebbling number of a vertex v in a graph G, ft(v,G),
is the smallest positive integer n such that however n pebbles are placed on
the vertices of the graph, t pebbles can be moved to v in finite number of
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Figure 1. An illustration of moving one pebble to the end
vertex of the path P4 from a configuration of size 7

pebbling moves, each move taking two pebbles off one vertex and placing one
on an adjacent vertex. The t-pebbling number of G, ft(G), is defined to be the
maximum of the pebbling numbers of its vertices.

Thus the t-pebbling number of a graph G, ft(G), is the least n such that,
for any configuration of n pebbles to the vertices of G, we can move t pebbles
to any vertex by a sequence of moves, each move taking two pebbles off one
vertex and placing one on an adjacent vertex. Clearly, f1(G) = f(G), the
pebbling number of G.

Fact 1. [9] The pebbling number of a graph G satisfies

f(G) ≥ max{2diam(G), |V (G)|}.

If one pebble is placed on each vertex other than the vertex v, then no
pebble can be moved to v. Also, if u is at a distance d from v, and 2d − 1
pebbles are placed on u, then no pebble can be moved to v. So it is clear that
f(G) ≥ max{|V (G)|, 2D}, where D is the diameter of graph G. Furthermore,
we know that f(Kn) = n and f(Pn) = 2n−1, where Kn is the complete graph
with n vertices and Pn is the path with n vertices, so this bound is sharp.

With regard to t-pebbling number of graphs, we find the following theorems:

Theorem 1. [6] Let Kn be the complete graph on n vertices where n ≥ 2.
Then ft(Kn) = 2t + n− 2.

Theorem 2. [1] Let K1 = {v}. Let Cn−1 = (u1, u2, · · · , un−1) be a cycle of
length n− 1. Then the t-pebbling number of the wheel graph Wn is ft(Wn) =
4t + n− 4 for n ≥ 5.

Theorem 3. [4] For G = K∗s1,s2,··· ,sr , ft(G) =

{
2t + n− 2, if 2t ≤ n− s1

4t + s1 − 2, if 2t ≥ n− s1
.

Jahangir graph Jn,m for m ≥ 3 is a graph on nm + 1 vertices, that is, a
graph consisting of a cycle Cnm with one additional vertex which is adjacent
to m vertices of Cnm at distance n to each other on Cnm. The Jahangir graph
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J2,8 appears on Jahangir’s tomb in his mausoleum. It lies in 5 kilometer north-
west of Lahore, Pakistan, across the River Ravi [7].

Lourdusamy et al. proved the t-pebbling number of the Jahangir graphs
J2,m and J3,m for m ≥ 3 and t ≥ 1 in [3, 5]. In the next section, we are going
to prove the t-pebbling number of squares of even cycles and then we prove
the t-pebbling number of squares of odd cycles in the third section. Before
that, we give the defintion of pth power of a graph G and the known results of
the pebbling number of squares of cycles.

Definition 2. [11] Let G be a connected graph. For u, v ∈ V (G), we denote
by dG(u, v) the distance between u and v in G. The pth power of G, denoted
by Gp, is the graph obtained from G by adding edge uv to G whenever 2 ≤
dG(u, v) ≤ p. That is, E(Gp) = {uv : 1 ≤ dG(u, v) ≤ p}. Note that G1 = G.

In [9], Pachter et al. gave the pebbling numbers of squares of paths.

Theorem 4. [9] The pebbling number of squares of paths is f(P 2
2k) = 2k and

f(P 2
2k+1) = 2k + 1.

We have obtained the t-pebbling numbers of squares of paths in [2] for t ≥ 2.

Theorem 5. [2] The t-pebbling number of P 2
2k+r (0 ≤ r ≤ 1) is ft(P

2
2k) = t(2k)

and f(P 2
2k+1) = t(2k) + 1.

Lourdusamy et al. gave the t-pebbling numbers of cycles:

Theorem 6. [6] Let Cn denote a simple cycle with n vertices, where n ≥ 3.

Then ft(C2k) = t2k and ft(C2k+1) = 2k+2−(−1)k+2

3 + (t− 1)2k.

Naturally, we want to know the t-pebbling numbers of squares of cycles. In
[10, 11], the pebbling numbers of squares of cycles were obtained:

Theorem 7. [11] The pebbling number of squares of even cycles is

(i) For 2 ≤ n ≤ 6, f(C2
2n) = 2n.

(ii) For k ≥ 3, f(C2
4k+2) = 2k+1.

(iii) For k ≥ 4, f(C2
4k) = 2b2k+1

3 c+ 1.

Theorem 8. [10] The pebbling number of squares of odd cycles is

(i) For 2 ≤ n ≤ 6, f(C2
2n+1) = 2n + 1.

(ii) For k ≥ 3, f(C2
4k+3) = 2k+1 + 1.

(iii) For k ≥ 4, f(C2
4k+1) = d2k+2

3 e+ 1.

Motivated by this, we compute the t-pebbling numbers of squares of cycles
for t ≥ 2 in this paper.

Notation 1. Let p(v) denote the number of pebbles on the vertex v and p(A)
denote the number of pebbles on the vertices of the subgraph A of G.
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2. The t-pebbling number of squares of even cycles

In this section, we prove the t-pebbling number of C2
2n, where n ≥ 2. Let

V (C2n) = {v, a1, a2, · · · , an−1, x, bn−1, bn−2, · · · , b2, b1}. By symmetry, Let v
be the target vertex. Let PA : va1a2 · · · an−1 and PB : vb1b2 · · · bn−1 be the
paths. Also, we let PC : PA ∪ {x} and PD : PB ∪ {x}. We always assume that
p(P 2

A) ≥ p(P 2
B).

Since C2
4
∼= K4, ft(C

2
4 ) = ft(K4) = 2t + 2 by Theorem 1.

Theorem 9. 1. ft(C
2
6 ) =

{
6 if t = 1

4t if t ≥ 2
,

2. ft(C
2
8 ) =

{
8 if t = 1

4t + 2 if t ≥ 2
.

Proof. Clearly, the results are true for t = 1 by Theorem 7.
Proof of (1): ft(C

2
6 ) = 4t for t ≥ 2.

Claim 9.1. f2(C
2
6 ) = 8.

Put 7 pebbles on the vertex x. Then we cannot move two pebbles to v. Thus,
f2(C

2
6 ) ≥ 8.

Consider the distribution of 8 pebbles on the vertices of C2
6 . If p(v) = 1 or

p(u) ≥ 2 (where uv ∈ E(C2
6 )) then we can move two pebbles to v easily, since

p(C2
6 ) − 2 ≥ 6 and f(C2

6 ) = 6 (by Theorem 7). So, we assume p(v) = 0 and
p(u) ≤ 1 for all u (where uv ∈ E(C2

6 )). Clearly, p(x) ≥ 4. If any two adjacent
vertices of v have one pebble each on them then we can move two pebbles to v
easily (by moving one pebble each to the adjacent (pebbled) vertices from x).
Without loss of generality, let p(a1) = 1 and p(a2) = p(b1) = p(b2) = 0. Then
p(x) = 7 and hence we can move two pebbles to v, since we can move three
pebbles to a1 from x. Assume p(ai) = 0 and p(bj) = 0 for all i, and j. Then
also we can move two pebbles to v, since p(x) = 8 and dC2

6
(v, x) = 2. Hence

we have proved the claim.

We have to show that ft(C
2
6 ) = 4t for t ≥ 2. Clearly, the result is true

for t = 2 from Claim 9.1. Assume the result is true for 2 ≤ t′ < t. Put
4t−1 pebbles on the vertex x and hence we cannot move t pebbles to v. Thus
ft(C

2
6 ) ≥ 4t. Now, consider the distribution of 4t pebbles on the vertices of

C2
6 . Either p(P 2

C) ≥ 2t or p(P 2
B) ≥ 2t. Let p(P 2

B) ≥ 2t ≥ 4 and hence we can
move one pebble to v from the vertices of P 2

B, since P 2
B
∼= P 2

3 and f(P 2
B) = 3

by Theorem 4. Then we have 4t − 3 ≥ 4(t − 1) pebbles remaining on the
vertices of C2

6 and hence we can move the additional t − 1 pebbles to v by
induction. Assume p(P 2

B) ≤ 2t− 1 and so p(P 2
C) ≥ 2t+ 1 ≥ 5. Clearly we can

move one pebble to v at a cost of at most four pebbles, since P 2
C
∼= P 2

4 and
f(P 2

4 ) = 4 by Theorem 4. Then we have 4t− 4 ≥ 4(t− 1) pebbles remaining
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on the vertices of C2
6 and hence we can move the additional t − 1 pebbles to

v by induction. Thus ft(C
2
6 ) ≤ 4t.

Proof of (2): ft(C
2
8 ) = 4t + 2 for t ≥ 2.

Claim 9.2. f2(C
2
8 ) = 10.

Put 7 pebbles on the vertex x and put one pebble each on the vertices a3 and
b3. Then we cannot move two pebbles to v. Thus, f2(C

2
8 ) ≥ 10.

Consider the distribution of 10 pebbles on the vertices of C2
8 . If p(v) = 1

or p(u) ≥ 2 (where uv ∈ E(C2
8 )) then we can move two pebbles to v easily,

since p(C2
8 )− 2 ≥ 8 and f(C2

8 ) = 8 (by Theorem 7). So, we assume p(v) = 0
and p(u) ≤ 1 for all u (where uv ∈ E(C2

8 )). Clearly, p(x) + p(a3) + p(b3) ≥ 6.
Either p(P 2

C) ≥ 5 or p(P 2
D) ≥ 5. Without loss of generality, let p(P 2

C) ≥ 5.
If p(P 2

B) ≥ 4 then we can move one pebble to v, since f(P 2
B) = 4. Also we

can move one more pebble to v from the vertices of P 2
C , since f(P 2

5 ) = 5. Let
p(P 2

B) = 3 and so p(P 2
C) = 7. We can move one pebble to b3, since either

p(a3) ≥ 2 or p(x) ≥ 2. Thus p(P 2
B) + 1 = 4 and p(P 2

C)− 2 = 5 and hence we
can move two pebbles to v. Let p(P 2

B) = 2 and so p(P 2
C) = 8. Let p(x) ≥ 2.

If any two vertices of P 2
B −{v} have one pebble each on them, then clearly we

can move one pebble to v. Then we have six pebbles remaining on the vertices
of P 2

C and hence we can move one more pebble to v, since f(P 2
5 ) = 5. Assume

p(x) ≤ 1 and so p(a3) ≥ 5. If p(a1) = 1 or p(a2) = 1 or both p(b3) = 1
and p(b1) = 1 or both p(b3) = 1 and p(b2) = 1 then clearly we can move one
pebble to v. Then we have at least five pebbles remaining on the vertices of P 2

C

and hence we can move one more pebble to v, since f(P 2
5 ) = 5. If p(a3) = 8

then we can move two pebbles to v, since dc28(v, a3) = 2. Otherwise, we have

p(a3) = 7, p(x) = 1, p(b2) = 1, and p(b1) = 1. Hence we can move one pebble
to v using two pebbles from a3 and the pebbles on the vertices x, b1, b2 and then
we move one more pebble to v from a3, since dc28(v, a3) = 2. Let p(P 2

B) ≤ 1

and so P 2
C contains at least nine pebbles. Thus we can move two pebbles to v,

since f2(P
2
5 ) = 9. Thus, f2(C

2
8 ) ≤ 10. Hence we have proved the claim.

We have to show that ft(C
2
8 ) = 4t + 2 for t ≥ 2. Clearly, the result is true

for t = 2 from Claim 9.2. Assume the result is true for 2 ≤ t′ < t. Put 4t− 1
pebbles on the vertex x and one pebble each on the vertices a3 and b3 and
hence we cannot move t pebbles to v. Thus ft(C

2
8 ) ≥ 4t + 2. Now, consider

the distribution of 4t+ 2 pebbles on the vertices of C2
8 . Either p(P 2

C) ≥ 2t+ 1
or p(P 2

D) ≥ 2t + 1. Without loss of generality, we let p(P 2
D) ≥ 2t + 1 ≥ 5

and hence we can move one pebble to v at a cost of at most four pebbles,
from the vertices of P 2

D, since P 2
D
∼= P 2

5 and f(P 2
5 ) = 5 by Theorem 4. Then

we have 4t + 2 − 4 ≥ 4(t − 1) + 2 pebbles remaining on the vertices of C2
8

and hence we can move the additional t− 1 pebbles to v by induction. Thus
ft(C

2
8 ) ≤ 4t + 2. �
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Theorem 10. 1. ft(C
2
10) =

{
10 if t = 1

8t if t ≥ 2
,

2. ft(C
2
12) =

{
12 if t = 1

8t + 3 if t ≥ 2
.

Proof. Clearly, the results are true for t = 1 by Theorem 7.
Proof of (1): ft(C

2
10) = 8t for t ≥ 2.

Claim 10.1. f2(C
2
10) = 16.

Let p(x) = 15 and so we cannot move two pebbles to v. Thus, f2(C
2
10) ≥ 16.

Now, consider the distribution of 16 pebbles on the vertices of C2
10. Note that

we can move one pebble to v at a cost of at most 8 pebbles, since p(C2
10) = 16

and f(C2
10) = 10. Suppose if we have used only six or less pebbles to put one

pebble to v, then we can move another one pebble to v, since p(C2
10)− 6 ≥ 10

and f(C2
10) = 10. Assume that we have used seven or eight pebbles to put a

pebble on the vertex v. Clearly, p(P 2
A) ≤ 1 and so p(P 2

B) ≤ 1. This implies
that p(x) ≥ 14, p(a1) = 0 = p(a2) and p(b1) = 0 = p(b2). Without loss of
generality, let p(a3) = 1. We can move 7 pebbles to a3 from x and hence
we move two pebbles to v, since dC2

10
(v, a3) = 2. Assume p(P 2

A) = 0 and so

p(P 2
B) = 0. Then p(x) ≥ 16 and hence we can move two pebbles to v, since

dC2
10

(v, x) = 3. Thus, f2(C
2
10) ≤ 16. Hence we have proved the claim.

We have to show that ft(C
2
10) = 8t for t ≥ 2. Clearly, the result is true

for t = 2 from Claim 10.1. Assume the result is true for 2 ≤ t′ < t. Put
8t−1 pebbles on the vertex x and hence we cannot move t pebbles to v. Thus
ft(C

2
10) ≥ 8t. Now, consider the distribution of 8t pebbles on the vertices

of C2
10. Either p(P 2

C) ≥ 4t or p(P 2
D) ≥ 4t. Without loss of generality, we

let p(P 2
C) ≥ 4t ≥ 8 and hence we can move one pebble to v at a cost of at

most eight pebbles, from the vertices of P 2
C , since P 2

C
∼= P 2

6 and f(P 2
6 ) = 8 by

Theorem 4. Then we have 8t− 8 ≥ 8(t− 1) pebbles remaining on the vertices
of C2

10 and hence we can move the additional t− 1 pebbles to v by induction.
Thus ft(C

2
10) ≤ 8t.

Proof of (2): ft(C
2
12) = 8t + 3 for t ≥ 2.

Claim 10.2. f2(C
2
12) = 19.

Let p(a5) = 13 and p(b5) = 5. Then we cannot move two pebbles to v. Thus,
f2(C

2
12) ≥ 19. Now, consider the distribution of 19 pebbles on the vertices of

C2
12. Note that we can move one pebble to v at a cost of at most 8 pebbles,

since p(C2
12) = 19 and f(C2

12) = 12. Suppose if we have used only seven or
less pebbles to put one pebble to v, then we can move another one pebble to
v, since p(C2

12)− 7 ≥ 12 and f(C2
12) = 12. Assume that we have used exactly

eight pebbles to put a pebble on the vertex v. Clearly, p(P 2
A − {a5}) ≤ 1. Let

p(P 2
A − {a5}) = 1 and so p(a5) + p(b5) + p(x) ≥ 17. Let p(a1) = 1 and so
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p(a5) ≤ 1. This implies that p(x) ≥ 15. If p(x) ≥ 16 then we can move two
pebbles to v, since dC2

12
(v, x) = 3. Let p(x) = 15 and so either p(a5) = 1 or

p(b5) = 1. Without loss of generality, let p(a5) = 1. We move 3 pebbles to a5
from x and hence we can move one pebble to v, since p(a1) = 1. Then we can
move another one pebble to v from x, since p(x) − 6 ≥ 8 and dC2

12
(v, x) = 3.

Next, we assume p(P 2
A−{a5}) = 0 and so p(a5)+p(b5)+p(x) = 19. If p(a5) ≤

2, then we can move two pebbles to v, since p(P 2
D) ≥ 17 and f2(P

2
7 ) = 17. So,

we assume p(a5) ≥ 3 and p(b5) ≥ 3. Let p(a5) ≥ 8. Then we can move one
pebble to v from a5. If p(b5) ≥ 8 then we can move the another one pebble to
v. So, we assume p(b5) ≤ 7. Let p(b5) = 6 or 7. If p(x) ≥ 2 then we move
one pebble from x and three pebbles from b5 to b4 and hence we can move the
another one pebble to v. Let p(x) = 1 and so p(a5)− 8 ≥ 3 and hence we can
move another one pebble to v. Let p(x) = 0 and so p(a5) − 8 ≥ 4 and hence
we can move another one pebble to v. Let p(b5) = 4 or 5. If p(x) ≥ 4 then we
move two pebbles from x and two pebbles from b5 to b4 and hence we can move
the another one pebble to v. Let p(x) = 3 and so p(a5)− 8 ≥ 3 and hence we
can move another one pebble to v. Let p(x) = 2 and so p(a5) − 8 ≥ 4 and
hence we can move another one pebble to v. Let p(x) = 1 and so p(a5)−8 ≥ 5.
Clearly we can move the another one pebble to v, since p(b5) = 4 or 5. Let
p(x) = 0 and so p(a5) − 8 ≥ 6. we move two pebbles to a5 from b5 and
hence we can move one more pebble to v. Assume p(a5) ≤ 7 (similarly, we
assume p(b5) ≤ 7). Then p(x) ≥ 5. If p(a5) = 6 or 7 then we move three
pebbles from a5 and one pebble from x to a4. Thus we can move the first
pebble to v. Then we can move another one pebble to v, since p(P 2

D) ≥ 9 and
f(P 2

7 ) = 9. Let p(a5) = 4 or 5. Then we move two pebbles from a5 and two
pebbles from x to a4. Thus we can move the first pebble to v. Then we can
move another one pebble to v, since p(P 2

D) ≥ 9 and f(P 2
7 ) = 9. Let p(a5) = 3

and so p(b5) = 3 and p(x) = 13. First, we move three pebbles from x and one
pebble from a5 to a4 and then we move three pebbles from x and one pebble
from b5 to b4. Thus we can move one pebble each to v from a4 and b4, since
dC2

12
(v, a4) = dC2

12
(v, b4) = 2. Thus, f2(C

2
12) ≤ 19. Hence we have proved the

claim.

We have to show that ft(C
2
12) = 8t + 3 for t ≥ 2. Clearly, the result is

true for t = 2 from Claim 10.2. Assume the result is true for 2 ≤ t′ < t.
Put 8t− 3 pebbles on the vertex a5 and 5 pebbles on the vertex b5 and hence
we cannot move t pebbles to v. Thus ft(C

2
12) ≥ 8t + 3. Now, consider the

distribution of 8t + 3 pebbles on the vertices of C2
12. Either p(P 2

C) ≥ 4t + 2
or p(P 2

D) ≥ 4t + 2. Without loss of generality, we let p(P 2
C) ≥ 4t + 2 ≥ 10

and hence we can move one pebble to v at a cost of at most eight pebbles,
from the vertices of P 2

C , since P 2
C
∼= P 2

7 and f(P 2
7 ) = 9 by Theorem 4. Then

we have 8t + 3 − 8 ≥ 8(t − 1) + 3 pebbles remaining on the vertices of C2
12
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and hence we can move the additional t− 1 pebbles to v by induction. Thus
ft(C

2
12) ≤ 8t + 3. �

Theorem 11. 1. ft(C
2
4k+2) = t2k+1 (k ≥ 3),

2. ft(C
2
4k) = (t− 1)2k + 2b2k+1

3 c+ 1 (k ≥ 4).

Proof. Consider the graph C2
2n, where n ≥ 7.

Proof of (1): Consider the graph C2
4k+2 (k ≥ 3) and we place t2k+1−1 pebbles

on the vertex x. Then we cannot move t pebbles to v. Thus, ft(C
2
4k+2) ≥

t2k+1. Now, consider the distribution of t2k+1 pebbles on the vertices of
C2
4k+2. Clearly, the result is true for t = 1 by Theorem 7. We assume the

result is true for 1 ≤ t′ < t. Without loss of generality, we assume that
p(P 2

C) ≥ t2k ≥ 2k+1. Clearly, we can move one pebble to v, since P 2
C
∼= P 2

2(k+1)

and f(P 2
2(k+1)) = 2k+1. Then we have t2k+1 − 2k+1 ≥ (t − 1)2k+1 pebbles

remaining on the vertices of C2
4k+2 and hence we can move the additional t−1

pebbles to v by induction. Thus ft(C
2
4k+2) ≤ t2k+1.

Proof of (2): Consider the graph C2
4k (k ≥ 4) and we place (t−1)2k +b2k+1

3 c
pebbles on the vertex an−1 and place b2k+1

3 c pebbles on the vertex bn−1. Then

we cannot move t pebbles to v. Thus, ft(C
2
4k) ≥ (t− 1)2k + 2b2k+1

3 c+ 1. Now,

consider the distribution of (t − 1)2k + 2b2k+1

3 c + 1 pebbles on the vertices

of C2
4k. Clearly, the result is true for t = 1 by Theorem 7. We assume the

result is true for 1 ≤ t′ < t. Without loss of generality, we assume that
p(P 2

C) ≥ t2k−1 + 1 ≥ 2k + 1. Clearly, we can move one pebble to v at a cost

of at most 2k pebbles, since P 2
C
∼= P 2

2k+1 and f(P 2
2k+1) = 2k + 1. Then we

have (t − 2)2k + 2b2k+1

3 c + 1 pebbles remaining on the vertices of C2
4k and

hence we can move the additional t − 1 pebbles to v by induction. Thus

ft(C
2
4k) ≤ (t− 1)2k + 2b2k+1

3 c+ 1. �

3. The t-pebbling number of squares of odd cycles

In this section, we prove the t-pebbling number of C2
2n+1, where n ≥ 2.

Let V (C2n+1) = {v, a1, a2, · · · , an−1, x, y, bn−1, bn−2, · · · , b2, b1}. By symme-
try, Let v be the target vertex. Let PA : va1a2 · · · an−1 and PB : vb1b2 · · · bn−1
be the paths. Also, we let PC : PA∪{x} and PD : PB∪{y}. We always assume
that p(P 2

A) ≥ p(P 2
B).

Since C2
5
∼= K5, ft(C

2
5 ) = ft(K5) = 2t + 3 by Theorem 1.

Theorem 12. 1. ft(C
2
7 ) =

{
7 if t = 1

4t + 1 if t ≥ 2
,

2. ft(C
2
9 ) =

{
9 if t = 1

4t + 3 if t ≥ 2
.
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Proof. Clearly, the results are true for t = 1 by Theorem 8.
Proof of (1): ft(C

2
7 ) = 4t + 1 for t ≥ 2.

Claim 12.1. f2(C
2
7 ) = 9.

Put 5 pebbles at x and 3 pebbles at y. Then we cannot move two pebbles to
v and hence f2(C

2
7 ) ≥ 9. Now, consider the distribution of 9 pebbles on the

vertices of C2
7 . If p(v) = 1 or p(u) ≥ 2 (where uv ∈ E(C2

7 )) then we can move
two pebbles to v easily, since p(C2

7 ) − 2 ≥ 7 and f(C2
7 ) = 7 (by Theorem 7).

So, we assume p(v) = 0 and p(u) ≤ 1 for all u (where uv ∈ E(C2
7 )). Clearly,

p(x) ≥ 3 or p(y) ≥ 3. Let p(x) ≥ 3. If p(a1) = 1 and p(a2) = 1 then we can
move two pebbles to v easily. Let p(a1) = 1 and p(a2) = 0 and so p(x) ≥ 4. If
p(y) ≥ 2 then we move one pebble to a2 and hence we can move two pebbles
to v. Assume p(y) ≤ 1 and so p(x) ≥ 6. We move three pebbles to a1 and
hence we can move two pebbles to v. Similarly, we are done if p(a1) = 0 and
p(a2) = 1. Let p(a1) = p(a2) = 0. Clearly, p(x) + p(y) = 9 and hence we
can move two pebble to v easily. Thus f2(C

2
7 ) ≤ 9. Hence we have proved the

claim.

We have to show that ft(C
2
7 ) = 4t + 1 for t ≥ 2. Clearly, the result is true

for t = 2 from Claim 12.1. Assume the result is true for 2 ≤ t′ < t. Put 4t− 1
pebbles on the vertex x and one pebble at y. Then we cannot move t pebbles
to v. Thus ft(C

2
7 ) ≥ 4t + 1. Now, consider the distribution of 4t + 1 pebbles

on the vertices of C2
7 . Either p(P 2

C) ≥ 2t + 1 or p(P 2
D) ≥ 2t + 1. Without loss

of generality, we let p(P 2
C) ≥ 2t + 1 ≥ 5 and hence we can move one pebble

to v from the vertices of P 2
C , since P 2

C
∼= P 2

4 and f(P 2
4 ) = 4 by Theorem 4.

Then we have 4t − 3 ≥ 4(t − 1) + 1 pebbles remaining on the vertices of C2
7

and hence we can move the additional t− 1 pebbles to v by induction. Thus
ft(C

2
7 ) ≤ 4t + 1.

Proof of (2): ft(C
2
9 ) = 4t + 3 for t ≥ 2.

Claim 12.2. f2(C
2
9 ) = 11.

Put 7 pebbles on the vertex x and put one pebble each on the vertices y, a3
and b3. Then we cannot move two pebbles to v. Thus, f2(C

2
9 ) ≥ 11.

Consider the distribution of 11 pebbles on the vertices of C2
9 . If p(v) = 1 or

p(u) ≥ 2 (where uv ∈ E(C2
9 )) then we can move two pebbles to v easily, since

p(C2
9 ) − 2 ≥ 9 and f(C2

9 ) = 9 (by Theorem 7). So, we assume p(v) = 0 and
p(u) ≤ 1 for all u (where uv ∈ E(C2

8 )). Clearly, p(x)+p(y)+p(a3)+p(b3) ≥ 7.
Either p(P 2

C) ≥ 6 or p(P 2
D) ≥ 6. Without loss of generality, let p(P 2

C) ≥ 6.
If p(P 2

B) ≥ 4 then we can move one pebble to v, since f(P 2
B) = 4. Also we

can move one more pebble to v from the vertices of P 2
C , since f(P 2

5 ) = 5. Let
p(P 2

B) = 3. If p(y) ≥ 2 or p(x) ≥ 2, then we can move one pebble to b3.
Thus p(P 2

B) + 1 = 4 and p(P 2
C) − 2 = 5 and hence we can move two pebbles

to v. Assume p(y) ≤ 1 and p(x) ≤ 1 and so p(a3) ≥ 4. If both p(a1) = 1
and p(a2) = 1 then we can move two pebbles to v easily. Let p(a1) = 1 and
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p(a2) = 0. We move the first pebble to v through a1 from a3. If p(x) = 1
or p(y) = 1 then we move one pebble to b3 and hence we can move one more
pebble to v, since p(P 2

B) + 1 = 4. Assume p(x) = p(y) = 0 and so p(a3) ≥ 7.
Clearly, we can move two pebbles to v. Similarly, we are done if p(a2) = 1 and
p(a1) = 0. Let p(a1) = p(a2) = 0 and so p(a3) ≥ 6. If p(x) = 1 or p(y) = 1
then we move one pebble to b3 and hence we can move one pebble each from
p2B and a3, since p(a3) − 2 ≥ 4 and dC2

9
(v, a3) = 2. Assume p(x) = p(y) = 0

and so p(a3) = 8. Thus we can move two pebbles to v, since dC2
9
(v, a3) = 2.

Let p(P 2
B) = 2. Clearly, we can move two pebbles to v if p(y) ≥ 2 or p(x) ≥ 2.

Assume p(x) ≤ 1 and p(x) ≤ 1. If any two vertices of P 2
B − {v} have one

pebble each on them, then clearly we can move one pebble to v. Then we have
five pebbles remaining on the vertices of P 2

C and hence we can move one more
pebble to v, since f(P 2

5 ) = 5. Let p(b3) = 2. If p(y) ≥ 2 then we can move
two pebbles to v easily. Let p(y) = 1. If p(x) ≥ 2 then we move one pebble to
y from x and then we move one pebble each to b2 from b3 and y. Thus we can
move two pebbles to v. Assume p(x) ≤ 1 and so p(a3) ≥ 5. Now, we move one
pebble to y from a3 and hence we can move two pebbles to v. Let p(y) = 0.
Clearly, we can move one pebble to b2 from a3 or x and hence we can move
two pebbles to v. Let p(P 2

B) = 1 and so p(y) ≤ 4. If p(y) ≤ 3 then we can
move two pebbles to v easily. Let p(y) = 2. we move one pebble to a3 and
hence we can move two pebbles to v. If p(y) ≤ 1 then clearly we can move one
pebble to v from P 2

C . Let p(p2B) = 0 and so p(y) ≤ 5. Then we can move two
pebbles to v. Thus, f2(C

2
9 ) ≤ 11. Hence we have proved the claim.

We have to show that ft(C
2
9 ) = 4t + 3 for t ≥ 2. Clearly, the result is true

for t = 2 from Claim 12.2. Assume the result is true for 2 ≤ t′ < t. Put 4t− 1
pebbles on the vertex x and one pebble each on the vertices y, a3 and b3 and
hence we cannot move t pebbles to v. Thus ft(C

2
9 ) ≥ 4t + 3. Now, consider

the distribution of 4t+ 3 pebbles on the vertices of C2
9 . Either p(P 2

C) ≥ 2t+ 2
or p(P 2

D) ≥ 2t + 2. Without loss of generality, we let p(P 2
C) ≥ 2t + 2 ≥ 6

and hence we can move one pebble to v at a cost of at most four pebbles,
from the vertices of P 2

C , since P 2
C
∼= P 2

5 and f(P 2
5 ) = 5 by Theorem 4. Then

we have 4t + 3 − 4 ≥ 4(t − 1) + 3 pebbles remaining on the vertices of C2
9

and hence we can move the additional t− 1 pebbles to v by induction. Thus
ft(C

2
9 ) ≤ 4t + 3. �

Theorem 13. 1. ft(C
2
11) =

{
11 if t = 1

8t + 1 if t ≥ 2
,

2. ft(C
2
13) =

{
13 if t = 1

8t + 4 if t ≥ 2
.
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Proof. Clearly, the results are true for t = 1 by Theorem 8.
Proof of (1): ft(C

2
11) = 8t + 1 for t ≥ 2.

Claim 13.1. f2(C
2
11) = 17.

Put 15 pebbles at x and 1 pebble at y. Then we cannot move two pebbles to v
and hence f2(C

2
11) ≥ 17. Now, consider the distribution of 17 pebbles on the

vertices of C2
9 . Note that, we can move one pebble to v at a cost of at most

eight pebbles, since p(C2
11) = 17 and f(C2

11) = 11. If we have used only six or
less pebbles to put the first pebble at v then we can move the second pebble to
v easily, since p(C2

11) − 6 ≥ 11. Suppose we have used seven or eight pebbles
to put the first pebble at v. Clearly, p(P 2

A) ≤ 2. Let p(a1) = 1 and p(a4) = 1
and so p(x) ≤ 1, p(b1) = p(b2) = 0, either p(b4) = 1 or p(b3) = 1. If p(x) = 1
then we move one pebble each to a4 and x from y. Then we can move one
pebble to v through a3 and a1 from a4 and x. Thus p(y)− 4 ≥ 8 and hence we
can move another one pebble to v, since dC2

11
(v, y) = 3. Assume p(x) = 0 and

so p(y) ≥ 14. We move three pebbles to a4 and hence we can move one pebble
each to v from a4 and y, since p(y) − 6 ≥ 8. Let p(a3) = 1 and p(a4) = 1.
Clearly, p(x) ≤ 1, p(b1) = p(b2) = 0, either p(b4) = 1 or p(b3) = 1. If p(x) = 1
then we move one pebble each to a4 and x from y. Then we can move one
pebble to v through a3, and a2 from a4 and x. Thus p(y)−4 ≥ 8 and hence we
can move another one pebble to v, since dC2

11
(v, y) = 3. Assume p(x) = 0 and

so p(y) ≥ 14. We move three pebbles to a4 and hence we can move one pebble
each to v from a4 and y, since p(y)−6 ≥ 8. Let p(P 2

A) = 1. If p(P 2
B) = 0 then

we can move two pebbles to v, since p((PC ∪ {y})2) = 17 and f2(P
2
7 ) = 17.

Assume p(P 2
B) = 1. Since p(x) + p(y) = 15, we can move two pebbles to v

(by moving pebbles from x and y to a4 or b4) if p(a4) = 1 or p(b4) = 1. Let
p(a3) = 1. Clearly, we can move four pebbles to a2 if p(x) ≥ 1. Otherwise, we
can move two pebbles to v, since p(P 2

D) = 16 and f2(P
2
6 ) = 16. Let p(a1) = 1

and so 1 ≤ p(x) ≤ 2. Assume p(x) = 2 This implies that p(y) ≥ 13. We move
one pebble each to a3 from y and x and hence we can move one pebble to v
through a1. Then we can move the another one pebble to v, since p(y)− 4 ≥ 8
and dC2

11
(v, y) = 3. Let p(x) = 1 and so p(b3) = 1. We move three pebbles

to b3 from y and hence we can move one pebble each from b3 and y, since
p(y)− 6 ≥ 8. Thus f2(C

2
11) ≤ 17. Hence we have proved the claim.

We have to show that ft(C
2
11) = 8t + 1 for t ≥ 2. Clearly, the result is true

for t = 2 from Claim 13.1. Assume the result is true for 2 ≤ t′ < t. Put 8t− 1
pebbles on the vertex x and one pebble at y. Then we cannot move t pebbles
to v. Thus ft(C

2
11) ≥ 8t + 1. Now, consider the distribution of 8t + 1 pebbles

on the vertices of C2
11. Either p(P 2

C) ≥ 4t+ 1 or p(P 2
D) ≥ 4t+ 1. Without loss

of generality, we let p(P 2
C) ≥ 4t+ 1 ≥ 9 and hence we can move one pebble to

v at a cost of at most eight pebbles from the vertices of P 2
C , since P 2

C
∼= P 2

6 and
f(P 2

6 ) = 8 by Theorem 4. Then we have at least 8t− 7 = 8(t− 1) + 1 pebbles
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remaining on the vertices of C2
11 and hence we can move the additional t− 1

pebbles to v by induction. Thus ft(C
2
11) ≤ 8t + 1.

Proof of (2): ft(C
2
13) = 8t + 4 for t ≥ 2.

Claim 13.2. f2(C
2
13) = 20.

Let p(a5) = 13, p(b5) = 5 and p(x) = 1. Then we cannot move two pebbles
to v. Thus, f2(C

2
13) ≥ 20. Now, consider the distribution of 20 pebbles on the

vertices of C2
13. Note that we can move one pebble to v at a cost of at most

8 pebbles, since p(C2
13) = 20 and f(C2

13) = 13. Suppose if we have used only
seven or less pebbles to put one pebble to v, then we can move another one
pebble to v, since p(C2

13)−7 ≥ 13 and f(C2
13) = 13. Assume that we have used

exactly eight pebbles to put a pebble on the vertex v. Clearly, p(P 2
A−{a5}) ≤ 2.

Assume p(P 2
A)−{a5} = 2. Let p(a1) = 1 and p(a2) = 1 and so either p(a5) ≤ 1

or p(x) ≤ 1. Assume p(a5) = 1 and so p(x) = 0, and p(y) ≥ 13. We move
three pebbles to a5 and hence we can move one pebble to v through a1 or a2.
If p(P 2

B) ≥ 2 then we can move another one pebble to v, since p(P 2
D) ≥ 9 and

f(P 2
7 ) = 9. If p(P 2

B) ≤ 1 then p(y) ≥ 8 and hence we can move the another
one pebble to v, since dC2

13
(v, y) = 3. Let p(a1) = 1 and p(a4) = 1 and so

p(a5) ≤ 1 and p(x) ≤ 5. Assume p(x) = 4 or 5. First, we move one pebble
to a4 from x and also we move one pebble each to a5 from x and y and then
we move one pebble each to a3 from a4 and a5 and hence we can move one
pebble to v through a1. Clearly, we can move another one pebble to v, since
p(P 2

D) − 2 ≥ 10 and f(P 2
7 ) = 9. Assume p(x) = 2 or 3. First, we move

one pebble to a4 from x and also we move two pebbles to a5 from y and then
we move one pebble each to a3 from a4 and a5 and hence we can move one
pebble to v through a1. Clearly, we can move another one pebble to v, since
p(P 2

D) − 4 ≥ 10 and f(P 2
7 ) = 9. Assume p(x) ≤ 1. If p(x) = 0 or p(a5) = 0

then clearly we can move two pebbles to v, since p(P 2
D) ≥ 17 and f2(P

2
7 ) = 17.

Assume p(x) = 1 and p(a5) = 1. We move one pebble each to a5 and x from
y and then we move one pebble each to a3 from a4 and a5 and hence we can
move one pebble to v through a1 from a3. Then we can move one more pebble
to v, since p(y) − 4 ≥ 8. Let p(a3) = 1 and p(a4) = 1 and so p(a5) ≤ 1
and p(x) ≤ 5. In a similar way, we can move two pebbles to v for this case.
Clearly, we can move two pebbles to v if p(a3) = 2 or p(a4) = 2. Assume
p(P 2

A − {a5}) = 1.
Let p(P 2

A−{a5}) = 1 and so p(a5) +p(b5) +p(x) +p(y) ≥ 18. Let p(a1) = 1
and so p(a5) ≤ 1. This implies that p(x) + p(y) ≥ 16. Either p(x) ≥ 8
or p(y) ≥ 8. Assume p(x) ≥ 8. Let p(a5) = 1. First we move 3 pebbles
to a5 from x and hence we can move one pebble to v, since p(a1) = 1. Let

p(x) = 8, 9, or 10. After using six pebbles from x, we move bp(x)2 c pebbles to

y. Clearly, p(y) + bp(x)−62 c ≥ 8 and hence we can move one more pebble to v.

Let p(x) ≥ 12. After using six pebbles from x, we move bp(y)2 c pebbles to x.
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Clearly, p(x) + bp(y)2 c ≥ 8 and hence we can move one more pebble to v. Let

p(x) = 11. If p(P 2
B − {b5}) = 1 then we can move one more pebble to v, since

p(x) = 5 and p(y) ≥ 5. Assume p(P 2
B − {b5}) = 0. Then p(y) + bp(x)−62 c ≥ 8

and hence we can move one more pebble to v. Assume p(x) ≤ 7. Clearly,
we can move two pebbles to v if p(x) ≥ 2. Let p(x) ≤ 1. We move three
pebbles to a5 and then we move one pebble to v through a1. Then we can
move the another one pebble to v, since p(y) − 6 ≥ 8. Let p(a5) = 0 and so
p(x) + p(y) ≥ 18. Let p(x) ≥ 9. Clearly we can move one pebble to v easily
if p(x) ≤ 12 (by moving pebbles from x to y after using eight pebbles from x)
or p(x) ≥ 14 (by moving pebbles from y to x after using eight pebbles from x).
Assume p(x) = 13. Clearly, we are done if p(P 2

B) = 1. Assume p(P 2
B) = 0.

We move two pebbles to y and hence we can move one pebble each to v from
y and x, since p(y) + 2 = 8 and p(x)− 4 = 9. In a similar way, we can move
one pebble to v if p(ai) = 1 for some i = 2, 3, 4.

Let p(P 2
A−{a5}) = 0 and so p(a5)+p(b5)+p(x)+p(y) = 20. Without loss of

generality, let p(a5)+p(x) ≥ 10 and so p(b5)+p(y) ≤ 10. If p(a5)+p(x) ≤ 13,

then we move bp(a5)+p(x)−9
2 c pebbles to b5 and y, and hence we can move two

pebbles to v, since p(a5) + p(x) ≥ 9, p(b5) + p(y) + bp(a5)+p(x)−9
2 c ≥ 9 and

f(P 2
7 ) = 9. If p(a5) + p(x) ≥ 15, then we move bp(b5)+p(y)

2 c, pebbles to a5 and

x, and hence we can move two pebbles to v, since p(a5)+p(x)+bp(b5)+p(y)
2 c ≥ 17

and f2(P
2
7 ) = 17. Let p(a5) + p(x) = 14 and so p(b5) + p(y) = 6. If both p(b5)

and p(y) are even then we can move three pebble to x and hence we can move
two pebbles to v, since f2(P

2
7 ) = 17. Assume both p(b5) and p(y) are odd. Let

p(b5) = 3 and p(y) = 3. If p(x) ≥ 1 then we can move one pebble to v through
b2 using at most five pebbles from the vertices a5 and x. Hence we can move
one more pebble to v, since p(a5) + p(x) − 5 ≥ 9 and f(P 2

7 ) = 9. Assume
p(x) = 0. Then we can move one pebble to v through b2 using six pebbles
from the vertex a5 and then we can move one pebble to v, since p(a5) = 8
and dC2

13
(v, a5) = 3. Similarly, we can move two pebbles to v if p(b5) = 1 and

p(y) = 5 or p(b5) = 5 and p(y) = 1. Thus, f2(C
2
13) ≤ 20. Hence we have

proved the claim.

We have to show that ft(C
2
13) = 8t + 4 for t ≥ 2. Clearly, the result is true

for t = 2 from Claim 13.2. Assume the result is true for 2 ≤ t′ < t. Put
8t− 3 pebbles on the vertex a5, 5 pebbles on the vertex b5 and one pebble at
x. Then we cannot move t pebbles to v. Thus ft(C

2
13) ≥ 8t+4. Now, consider

the distribution of 8t+ 4 pebbles on the vertices of C2
13. Either p(P 2

C) ≥ 4t+ 2
or p(P 2

D) ≥ 4t + 2. Without loss of generality, we let p(P 2
C) ≥ 4t + 2 ≥ 10

and hence we can move one pebble to v at a cost of at most eight pebbles,
from the vertices of P 2

C , since P 2
C
∼= P 2

7 and f(P 2
7 ) = 9 by Theorem 4. Then

we have 8t + 4 − 8 ≥ 8(t − 1) + 4 pebbles remaining on the vertices of C2
13
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and hence we can move the additional t− 1 pebbles to v by induction. Thus
ft(C

2
13) ≤ 8t + 4. �

Theorem 14. (1) ft(C
2
4k+3) = t2k+1+1 (k ≥ 3), (2) ft(C

2
4k+1) = (t−1)2k +

d2k+2

3 e+ 1 = (t− 1)2k +

{
2d2k+1

3 e+ 1 if k is even

2b2k+1

3 c+ 2 if k is odd
(k ≥ 4).

Proof. Consider the graph C2
2n+1, where n ≥ 7.

Proof of (1): Consider the graph C2
4k+3 (k ≥ 3). Put t2k+1 − 1 pebbles

on the vertex x and one pebble on the vertex x. Then we cannot move t
pebbles to v and thus ft(C

2
4k+3) ≥ t2k+1 + 1. Next, we have to show that

ft(C
2
4k+3) ≤ t2k+1 + 1. Clearly, the result is true for t = 1 by Theorem 8.

Assume the result is true for 1 ≤ t′ ≤ t. Consider the distribution of t2k+1 + 1
pebbles on the vertices of C2

4k+3. Without loss of generality, we assume that

p(P 2
C) ≥ t2k + 1 ≥ 2k+1 + 1. Clearly, we can move one pebble to v, since

P 2
C
∼= P 2

2(k+1) and f(P 2
2(k+1)) = 2k+1. Then we have t2k+1 − 2k+1 + 1 ≥

(t− 1)2k+1 + 1 pebbles remaining on the vertices of C2
4k+3 and hence we can

move the additional t−1 pebbles to v by induction. Thus ft(C
2
4k+3) ≤ t2k+1+1.

Proof of (2): Consider the graph C2
4k+1 (k ≥ 4). If k is even, then we place

(t − 1)2k + d2k+1

3 e pebbles on the vertex an−1 and place d2k+1

3 e pebbles on

the vertex bn−1. If k is odd, then we place (t − 1)2k + b2k+1

3 c pebbles on the

vertex an−1, place b2k+1

3 c pebbles on the vertex bn−1 and place one pebble at x.

Then, we cannot move t pebbles to v. Thus, ft(C
2
4k+1) ≥ (t−1)2k+d2k+2

3 e+1.

Now, consider the distribution of (t−1)2k + d2k+2

3 e+ 1 pebbles on the vertices

of C2
4k+1. Clearly, the result is true for t = 1 by Theorem 8. We assume

the result is true for 1 ≤ t′ < t. Without loss of generality, we assume that
p(P 2

C) ≥ t2k−1 + 1 ≥ 2k + 1. Clearly, we can move one pebble to v at a cost

of at most 2k pebbles, since P 2
C
∼= P 2

2k+1 and f(P 2
2k+1) = 2k + 1. Then we

have at least (t− 2)2k + d2k+2

3 e+ 1 pebbles remaining on the vertices of C2
4k+1

and hence we can move the additional t− 1 pebbles to v by induction. Thus

ft(C
2
4k+1) ≤ (t− 1)2k + d2k+2

3 e+ 1. �
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G = C2
n f(G) ft(G) (t ≥ 2)

For n = 4 4 2t + 2
For n = 6 6 4t
For n = 8 8 4t + 2
For n = 10 10 8t
For n = 12 12 8t + 3

For n = 4k + 2 (k ≥ 3) 2k+1 t(2k+1)

For n = 4k (k ≥ 4) 2b2k+1

3 c+ 1 (t− 1)2k + 2b2k+1

3 c+ 1
Table 1. The t-pebbling numbers of squares of even cycles

G = C2
n f(G) ft(G) (t ≥ 2)

For n = 5 5 2t + 3
For n = 7 7 4t + 1
For n = 9 9 4t + 3
For n = 11 11 8t + 1
For n = 13 13 8t + 4

For n = 4k + 3 (k ≥ 3) 2k+1 + 1 t2k+1 + 1

For n = 4k + 1 (k ≥ 4) d2k+2

3 e+ 1 (t− 1)2k + d2k+2

3 e+ 1
Table 2. The t-pebbling numbers of squares of odd cycles
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