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THE +-PEBBLING NUMBER OF SQUARES OF CYCLES

LOURDUSAMY AROCKIAM', MATHIVANAN THANARAJ?

ABSTRACT. Let C be a configuration of pebbles on a graph G. A pebbling
move (step) consists of removing two pebbles from one vertex, throwing
one pebble away, and moving the other pebble to an adjacent vertex. The
t-pebbling number, f(G), of a connected graph G, is the smallest positive
integer such that from every configuration of f;(G) pebbles, ¢ pebbles can
be moved to any specified target vertex by a sequence of pebbling moves.
In this paper, we determine the t-pebbling number for squares of cycles.
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1. INTRODUCTION

We begin by introducing relevant terminology and background on the sub-
ject. Here, the term graph refers to a simple graph. A configuration C of
pebbles on a graph G = (V, E) can be thought of as a function C : V(G) —
N U {0}. The value C(v) equals the number of pebbles placed at vertex v,
and the quantity >,y ) C(v) is called the size of C; the size of C'is just
the total number of pebbles assigned to vertices. A pebbling move [8] consists
of removing two pebbles from one vertex and then placing one pebble at an
adjacent vertex. Suppose C' is a configuration of pebbles on a graph G. We
say a pebble can be moved to a vertex v, the target vertex, if we can apply
pebbling moves repeatedly (if necessary) so that in the resulting configuration
the vertex v has at least one pebble.

Definition 1. [1] The t-pebbling number of a vertex v in a graph G, fi(v,G),
1s the smallest positive integer n such that however n pebbles are placed on
the wvertices of the graph, t pebbles can be moved to v in finite number of

'Department of Mathematics, St. Xavier’s College (Autonomous), Palayamkottai -
627 002, Tamilnadu, India. Email: lourdusamy15@Qgmail.com
2Department of Mathematics, St. Xavier’s College (Autonomous), Palayamkottai - 627 002,
Tamilnadu, India. Email: tahit_van_man@yahoo.com.
61



62 A. Lourdusamy, T. Mathivanan

6—0 1 0
o0—0—0—=0
4—1 1 0

2 2—1 0

FIGURE 1. An illustration of moving one pebble to the end
vertex of the path P, from a configuration of size 7

pebbling mowves, each move taking two pebbles off one vertexr and placing one
on an adjacent vertex. The t-pebbling number of G, fi(G), is defined to be the
mazximum of the pebbling numbers of its vertices.

Thus the t-pebbling number of a graph G, fi(G), is the least n such that,
for any configuration of n pebbles to the vertices of G, we can move ¢ pebbles
to any vertex by a sequence of moves, each move taking two pebbles off one
vertex and placing one on an adjacent vertex. Clearly, fi1(G) = f(G), the
pebbling number of G.

Fact 1. [9] The pebbling number of a graph G satisfies
F(G) = maz{2*™) [V (G)[}.

If one pebble is placed on each vertex other than the vertex v, then no
pebble can be moved to v. Also, if u is at a distance d from v, and 2¢ — 1
pebbles are placed on u, then no pebble can be moved to v. So it is clear that
f(G) > max{|V(G)|, 2"}, where D is the diameter of graph G. Furthermore,
we know that f(K,) =n and f(P,) = 2""!, where K, is the complete graph
with n vertices and P, is the path with n vertices, so this bound is sharp.

With regard to t-pebbling number of graphs, we find the following theorems:

Theorem 1. [6] Let K, be the complete graph on n vertices where n > 2.
Then fi(Ky) =2t +n — 2.

Theorem 2. [1] Let K; = {v}. Let Ch—1 = (uy,ua,- - ,un—1) be a cycle of
length n — 1. Then the t-pebbling number of the wheel graph W, is fy(W,,) =
4t +n —4 forn > 5.

Theorem 3. [4] For G = K7 , .

£(G) = 20+n—2, if 2t <n—s1
S T g sy — 2, if 2t > — s

Jahangir graph Jp , for m > 3 is a graph on nm + 1 vertices, that is, a
graph consisting of a cycle C,,,, with one additional vertex which is adjacent
to m vertices of C,;,,, at distance n to each other on Cj,,,,. The Jahangir graph
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Jo g appears on Jahangir’s tomb in his mausoleum. It lies in 5 kilometer north-
west of Lahore, Pakistan, across the River Ravi [7].

Lourdusamy et al. proved the t-pebbling number of the Jahangir graphs
Jom and Jg , for m >3 and t > 1 in [3, 5]. In the next section, we are going
to prove the t-pebbling number of squares of even cycles and then we prove
the t-pebbling number of squares of odd cycles in the third section. Before
that, we give the defintion of p** power of a graph G and the known results of
the pebbling number of squares of cycles.

Definition 2. [11] Let G be a connected graph. For u, v € V(G), we denote
by dg(u,v) the distance between u and v in G. The p power of G, denoted

by GP, is the graph obtained from G by adding edge uv to G whenever 2 <
da(u,v) < p. That is, E(GP) = {uv : 1 < dg(u,v) < p}. Note that G* = G.

In [9], Pachter et al. gave the pebbling numbers of squares of paths.

Theorem 4. [9] The pebbling number of squares of paths is f(P3,) = 2F and
f(P ) =2"+1.

We have obtained the t-pebbling numbers of squares of paths in [2] for ¢ > 2.

Theorem 5. [2] The t-pebbling number of P3, . (0 <r <1)is f;(P§,) = t(2")
and f(P3,_,) =t(2%) + 1.

Lourdusamy et al. gave the ¢-pebbling numbers of cycles:

Theorem 6. [6] Let C,, denote a simple cycle with n vertices, where n > 3.
k+2_(_1)k+2

Then fi(Cor) = 12 and fi(Copsr) = 25— + (t — 1)2.
Naturally, we want to know the ¢t-pebbling numbers of squares of cycles. In
[10, 11], the pebbling numbers of squares of cycles were obtained:

Theorem 7. [11] The pebbling number of squares of even cycles is
(i) For2 <n <6, f(C3,) = 2n.
(ii) For k >3, f(C},.,) = 2F+1.

2k+1

(iti) For k>4, f(C) =2[%5-] + 1.
Theorem 8. [10] The pebbling number of squares of odd cycles is
(i) For 2 <n <6, f(C3,.,) =2n+1.
(ii) For k >3, f(C3,,4) =2M1 4+ 1.
(iii) For k>4, f(C%,,) = [22] + 1.
Motivated by this, we compute the t-pebbling numbers of squares of cycles
for ¢t > 2 in this paper.

Notation 1. Let p(v) denote the number of pebbles on the vertex v and p(A)
denote the number of pebbles on the vertices of the subgraph A of G.
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2. THE t-PEBBLING NUMBER OF SQUARES OF EVEN CYCLES

In this section, we prove the t-pebbling number of C2,, where n > 2. Let
V(Copn) = {v,a1,a2, - ;apn—1,2,bp—1,bp—2, -+ ,b2,b1}. By symmetry, Let v
be the target vertex. Let P4 : vaias---a,—1 and Pg : vbiby---b,_1 be the
paths. Also, we let Po: P4 U{z} and Pp : PpU{z}. We always assume that

p(P3) > p(P3).
Since C% = Ky, f;(C?) = fi(K4) = 2t + 2 by Theorem 1.
6 ift=1
4t ift>2’
8 ift=1
442 ift>2

Theorem 9. 1. f(C3) = {

z.ﬁ«g):{

Proof. Clearly, the results are true for ¢t = 1 by Theorem 7.
Proof of (1): f;(C2) = 4t for t > 2.

Claim 9.1. f»(C2) = 8.
Put 7 pebbles on the vertex x. Then we cannot move two pebbles to v. Thus,
f2(C§) > 8.

Consider the distribution of 8 pebbles on the vertices of 062. If p(v) =1 or
p(u) > 2 (where uv € E(CZ)) then we can move two pebbles to v easily, since
p(C2) —2 > 6 and f(CZ) = 6 (by Theorem 7). So, we assume p(v) = 0 and
p(u) <1 for all u (where uwv € E(CZ)). Clearly, p(z) > 4. If any two adjacent
vertices of v have one pebble each on them then we can move two pebbles to v
easily (by moving one pebble each to the adjacent (pebbled) vertices from x).
Without loss of generality, let p(a1) =1 and p(az) = p(b1) = p(b2) = 0. Then
p(z) = 7 and hence we can move two pebbles to v, since we can move three
pebbles to ay from x. Assume p(a;) = 0 and p(bj) = 0 for all i, and j. Then
also we can move two pebbles to v, since p(x) = 8 and dez (v,x) = 2. Hence
we have proved the claim.

We have to show that fi(C3) = 4t for t > 2. Clearly, the result is true
for t = 2 from Claim 9.1. Assume the result is true for 2 < t' < t. Put
4t — 1 pebbles on the vertex x and hence we cannot move ¢ pebbles to v. Thus
f:(C3) > 4t. Now, consider the distribution of 4t pebbles on the vertices of
CZ. Either p(P2) > 2t or p(P3) > 2t. Let p(P%) > 2t > 4 and hence we can
move one pebble to v from the vertices of P3, since P3 = P? and f(P3) =3
by Theorem 4. Then we have 4t — 3 > 4(¢t — 1) pebbles remaining on the
vertices of C’62 and hence we can move the additional ¢ — 1 pebbles to v by
induction. Assume p(P%) <2t —1 and so p(P2) > 2t +1 > 5. Clearly we can
move one pebble to v at a cost of at most four pebbles, since PC% ~ P42 and
f(P?) = 4 by Theorem 4. Then we have 4t — 4 > 4(t — 1) pebbles remaining
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on the vertices of 062 and hence we can move the additional ¢ — 1 pebbles to
v by induction. Thus f,(CZ2) < 4t.
Proof of (2): fi(C2) =4t +2 for t > 2.

Claim 9.2. f»(C%) = 10.
Put 7 pebbles on the vertex x and put one pebble each on the vertices as and
bs. Then we cannot move two pebbles to v. Thus, fo(CZ2) > 10.

Consider the distribution of 10 pebbles on the vertices of 082- If p(v) =1
or p(u) > 2 (where uwv € E(CZ)) then we can move two pebbles to v easily,
since p(C2) —2 > 8 and f(C3) =8 (by Theorem 7). So, we assume p(v) =0
and p(u) < 1 for all u (where wv € E(C3)). Clearly, p(x) + p(as) + p(b3) > 6.
Either p(P2) > 5 or p(P}) > 5. Without loss of generality, let p(P2) > 5.
If p(P%) > 4 then we can move one pebble to v, since f(P%) = 4. Also we
can move one more pebble to v from the vertices of Pg’, since f(P52) =5. Let
p(P3%) = 3 and so p(P2) = 7. We can move one pebble to bs, since either
p(as) > 2 or p(x) > 2. Thus p(P3)+ 1 =4 and p(P2) —2 =5 and hence we
can move two pebbles to v. Let p(P3) = 2 and so p(PZ) = 8. Let p(z) > 2.
If any two vertices of P% —{v} have one pebble each on them, then clearly we
can move one pebble to v. Then we have siz pebbles remaining on the vertices
of Pg and hence we can move one more pebble to v, since f(P52) = 5. Assume
p(z) < 1 and so p(az) > 5. If p(ar) = 1 or p(az) = 1 or both p(bs) = 1
and p(by) = 1 or both p(bs) = 1 and p(b2) = 1 then clearly we can move one
pebble to v. Then we have at least five pebbles remaining on the vertices of Pg
and hence we can move one more pebble to v, since f(P?) =5. If p(az) = 8
then we can move two pebbles to v, since dcg (v,a3) = 2. Otherwise, we have
plaz) =7, p(z) =1, p(b2) =1, and p(b1) = 1. Hence we can move one pebble
to v using two pebbles from asz and the pebbles on the vertices x, by, by and then
we move one more pebble to v from as, since dcg(v,ag) =2. Let p(P3) <1

and so PC% contains at least nine pebbles. Thus we can move two pebbles to v,
since fo(P2) =9. Thus, fo(C2) < 10. Hence we have proved the claim.

We have to show that f;(C2) = 4t + 2 for t > 2. Clearly, the result is true
for t = 2 from Claim 9.2. Assume the result is true for 2 < ¢ < t. Put 4t — 1
pebbles on the vertex x and one pebble each on the vertices as and b3 and
hence we cannot move ¢ pebbles to v. Thus f,(C2) > 4t + 2. Now, consider
the distribution of 4¢ + 2 pebbles on the vertices of C3. Either p(P%) > 2t +1
or p(P3) > 2t + 1. Without loss of generality, we let p(P3) > 2t +1 > 5
and hence we can move one pebble to v at a cost of at most four pebbles,
from the vertices of P3, since P4 = P? and f(P2) = 5 by Theorem 4. Then
we have 4t +2 — 4 > 4(t — 1) + 2 pebbles remaining on the vertices of C?
and hence we can move the additional ¢ — 1 pebbles to v by induction. Thus
ft(C2) < 4t +2. O
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1 ft =1
Theorem 10. 1. fi(C%) = 0 Z,f ;
8 ift>2

12 ift=1

2. fi(C}) = .
fi(Cr) {8t+3 ift>2

Proof. Clearly, the results are true for ¢t = 1 by Theorem 7.
Proof of (1): f;(C%,) = 8t for t > 2.

Claim 10.1. f5(C%,) = 16.

Let p(x) = 15 and so we cannot move two pebbles to v. Thus, f2(C3y) > 16.
Now, consider the distribution of 16 pebbles on the vertices of 0120. Note that
we can move one pebble to v at a cost of at most 8 pebbles, since p(C'IQO) =16
and f(C’IQO) = 10. Suppose if we have used only six or less pebbles to put one
pebble to v, then we can move another one pebble to v, since p(C%O) —6>10
and f(C%,) = 10. Assume that we have used seven or eight pebbles to put a
pebble on the vertex v. Clearly, p(P3) < 1 and so p(P3) < 1. This implies
that p(z) > 14, p(a1) = 0 = p(az) and p(b1) = 0 = p(bs). Without loss of
generality, let p(ag) = 1. We can move 7 pebbles to a3 from x and hence
we move two pebbles to v, since dea (v,a3) = 2. Assume p(P3) = 0 and so

p(P%) = 0. Then p(z) > 16 and hence we can move two pebbles to v, since
doz, (v,2) = 3. Thus, f2(C%)) < 16. Hence we have proved the claim.

We have to show that f;(C%)) = 8t for t > 2. Clearly, the result is true
for t = 2 from Claim 10.1. Assume the result is true for 2 < ¢/ < t. Put
8t — 1 pebbles on the vertex x and hence we cannot move ¢ pebbles to v. Thus
ft(CIQO) > 8t. Now, consider the distribution of 8t pebbles on the vertices
of C%). Either p(P%) > 4t or p(P%) > 4t. Without loss of generality, we
let p(P2) > 4t > 8 and hence we can move one pebble to v at a cost of at
most eight pebbles, from the vertices of P2, since P2 = PZ and f(P?) =8 by
Theorem 4. Then we have 8¢ — 8 > 8(t — 1) pebbles remaining on the vertices
of C%, and hence we can move the additional ¢+ — 1 pebbles to v by induction.
Thus f;(C%,) < 8t.

Proof of (2): f;(C%) =8t +3 fort > 2.

Claim 10.2. fo(C%) = 19.

Let p(as) = 13 and p(bs) = 5. Then we cannot move two pebbles to v. Thus,
f2(C%) > 19. Now, consider the distribution of 19 pebbles on the vertices of
C%,. Note that we can move one pebble to v at a cost of at most 8 pebbles,
since p(C%) = 19 and f(C%,) = 12. Suppose if we have used only seven or
less pebbles to put one pebble to v, then we can move another one pebble to
v, since p(C%y) — 7 > 12 and f(C%) = 12. Assume that we have used exactly
etght pebbles to put a pebble on the vertex v. Clearly, p(Pj —{as}) < 1. Let
p(P3 — {as}) = 1 and so p(as) + p(bs) + p(z) > 17. Let p(a1) = 1 and so
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plas) < 1. This implies that p(z) > 15. If p(x) > 16 then we can move two
pebbles to v, since dgz (v,x) = 3. Let p(x) = 15 and so either p(as) =1 or
p(bs) = 1. Without loss of generality, let p(as) = 1. We move 3 pebbles to as
from x and hence we can move one pebble to v, since p(a1) = 1. Then we can
move another one pebble to v from x, since p(z) —6 > 8 and dez, (v,x) = 3.
Next, we assume p(P% —{as}) = 0 and so p(as)+p(bs) +p(z) = 19. Ifp(as) <
2, then we can move two pebbles to v, since p(P3) > 17 and fo(P?) = 17. So,
we assume p(as) > 3 and p(bs) > 3. Let p(as) > 8. Then we can move one
pebble to v from as. If p(bs) > 8 then we can move the another one pebble to
v. So, we assume p(bs) < 7. Let p(bs) = 6 or 7. If p(x) > 2 then we move
one pebble from x and three pebbles from bs to by and hence we can mowve the
another one pebble to v. Let p(x) =1 and so p(as) — 8 > 3 and hence we can
move another one pebble to v. Let p(x) = 0 and so p(as) —8 > 4 and hence
we can move another one pebble to v. Let p(bs) =4 or 5. If p(x) > 4 then we
move two pebbles from x and two pebbles from bs to by and hence we can move
the another one pebble to v. Let p(x) =3 and so p(as) — 8 > 3 and hence we
can move another one pebble to v. Let p(z) = 2 and so p(as) —8 > 4 and
hence we can move another one pebble to v. Let p(x) =1 and so p(as)—8 > 5.
Clearly we can move the another one pebble to v, since p(bs) = 4 or 5. Let
p(z) = 0 and so p(as) — 8 > 6. we move two pebbles to as from bs and
hence we can move one more pebble to v. Assume p(as) < 7 (similarly, we
assume p(bs) < 7). Then p(x) > 5. If p(as) = 6 or 7 then we move three
pebbles from as and one pebble from x to as. Thus we can move the first
pebble to v. Then we can move another one pebble to v, since p(Pl%) >9 and
f(P?) =9. Let p(as) = 4 or 5. Then we move two pebbles from az and two
pebbles from x to ag. Thus we can move the first pebble to v. Then we can
move another one pebble to v, since p(P3) > 9 and f(P?) =9. Let p(as) = 3
and so p(bs) = 3 and p(x) = 13. First, we move three pebbles from x and one
pebble from as to as and then we move three pebbles from x and one pebble
from bs to by. Thus we can move one pebble each to v from ag and by, since
doz (v,a4) = de2 (v,bs) = 2. Thus, f2(C%,) < 19. Hence we have proved the
claim.

We have to show that f;(C%,) = 8t + 3 for t > 2. Clearly, the result is
true for t = 2 from Claim 10.2. Assume the result is true for 2 < t' < t¢.
Put 8t — 3 pebbles on the vertex as and 5 pebbles on the vertex bs and hence
we cannot move ¢ pebbles to v. Thus f;(C%) > 8t + 3. Now, consider the
distribution of 8¢ + 3 pebbles on the vertices of C%,. Either p(P2) > 4t + 2
or p(P3) > 4t + 2. Without loss of generality, we let p(P3) > 4t +2 > 10
and hence we can move one pebble to v at a cost of at most eight pebbles,
from the vertices of P, since P2 = P? and f(P?) = 9 by Theorem 4. Then
we have 8t + 3 — 8 > 8(t — 1) + 3 pebbles remaining on the vertices of CZ,



68 A. Lourdusamy, T. Mathivanan

and hence we can move the additional ¢ — 1 pebbles to v by induction. Thus
ft(C%,) < 8t + 3. O

Theorem 11. L fi(C3yo) = t28T1 (k> 3),
2. fi(C2) = (t—1)2F + 2| 20| +1 (k> 4).
Proof. Consider the graph C3,, where n > 7.
Proof of (1): Consider the graph C},_, (k > 3) and we place 1251 —1 pebbles

on the vertex . Then we cannot move ¢ pebbles to v. Thus, f;(Cj, +2) >

t2k+t1 Now, consider the distribution of 251 pebbles on the vertices of
C’fk 4o~ Clearly, the result is true for £ = 1 by Theorem 7. We assume the
result is true for 1 < ¢ < ¢t. Without loss of generality, we assume that

p(P2) > t2k > 2kl Clearly, we can move one pebble to v, since P4 & P2

2(k+1
and f(P. k+1)) = 21 Then we have 1281 — 2k+1 > (3 — 1)2k+1 peblere;
remaining on the vertices of CZk 4o and hence we can move the additional ¢t —1
pebbles to v by induction. Thus fi(CF, ,,) < t2k+1,
Proof of (2): Consider the graph C?, (k > 4) and we place (t—1)2F + Lﬁ%J
pebbles on the vertex a,,_1 and place Lﬁ%j pebbles on the vertex b,_1. Then
we cannot move ¢ pebbles to v. Thus, f;(C3,) > (t—1)2% + 2L2k+1j +1. Now,
consider the distribution of (¢ — 1)2% + 2L2kT+lJ + 1 pebbles on the vertices
of C42k. Clearly, the result is true for ¢t = 1 by Theorem 7. We assume the
result is true for 1 < ¢ < ¢t. Without loss of generality, we assume that
p(P2) > t2k=1 + 1 > 2% 4 1. Clearly, we can move one pebble to v at a cost
of at most 2F pebbles since PZ = P3,_, and f(Pj..,) = 2% 1 1. Then we
have (t — 2)2F + QLTJ + 1 pebbles remaining on the vertices of C%, and
hence we can move the additional ¢ — 1 pebbles to v by induction. Thus

f(CZ) < (t—1)2F + 2| 20 1. 0
3. THE t-PEBBLING NUMBER OF SQUARES OF ODD CYCLES

In this section, we prove the t-pebbling number of C3,,, where n > 2.
Let V(Cony1) = {v,a1,a2, - ,an—1,2,Y,bp—1,bp—2,+-- ,ba,b1}. By symme-
try, Let v be the target vertex. Let P4 : vajas---ap—1 and Pg : vbiby---b,_1
be the paths. Also, we let Po : PA4U{z} and Pp : PpU{y}. We always assume
that p(P}) > p(P3).

Since C2 = K35, f;(C2) = fi(K5) = 2t + 3 by Theorem 1.

7 ift=1
4t+1  ift>2’

2. fi(C§) = {9 ?ft:l'

Theorem 12. 1. f:(C3) = {

4+3 ift>2
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Proof. Clearly, the results are true for ¢t = 1 by Theorem 8.
Proof of (1): f;(C?) =4t +1 for t > 2.

Claim 12.1. f5(C?) =9.

Put 5 pebbles at x and 3 pebbles at y. Then we cannot move two pebbles to
v and hence fg(C%) > 9. Now, consider the distribution of 9 pebbles on the
vertices of C2. If p(v) =1 or p(u) > 2 (where uwv € E(C2)) then we can move
two pebbles to v easily, since p(C2) —2 > 7 and f(C2) =7 (by Theorem 7).
So, we assume p(v) =0 and p(u) < 1 for all u (where uv € E(C?)). Clearly,
p(z) >3 orp(y) > 3. Let p(x) > 3. If p(a1) =1 and p(az) = 1 then we can
move two pebbles to v easily. Let p(a1) =1 and p(az) =0 and so p(x) > 4. If
p(y) > 2 then we move one pebble to as and hence we can move two pebbles
to v. Assume p(y) < 1 and so p(x) > 6. We move three pebbles to a1 and
hence we can move two pebbles to v. Similarly, we are done if p(a1) = 0 and
plaz) = 1. Let p(a1) = p(az) = 0. Clearly, p(x) + p(y) = 9 and hence we
can move two pebble to v easily. Thus f2(C%) < 9. Hence we have proved the
claim.

We have to show that f;(C2?) = 4t + 1 for t > 2. Clearly, the result is true
for t = 2 from Claim 12.1. Assume the result is true for 2 < ¢ < t. Put 4t —1
pebbles on the vertex x and one pebble at y. Then we cannot move ¢ pebbles
to v. Thus f;(C?) > 4t + 1. Now, consider the distribution of 4¢ + 1 pebbles
on the vertices of CZ. Either p(P2) > 2t + 1 or p(P3) > 2t + 1. Without loss
of generality, we let p(P%) > 2t + 1 > 5 and hence we can move one pebble
to v from the vertices of P2, since P2 = P{ and f(P}?) = 4 by Theorem 4.
Then we have 4t — 3 > 4(t — 1) + 1 pebbles remaining on the vertices of C?
and hence we can move the additional ¢ — 1 pebbles to v by induction. Thus
f:(C2%) < 4t + 1.

Proof of (2): f;(C2) =4t + 3 for t > 2.

Claim 12.2. f5(C2) = 11.
Put 7 pebbles on the vertex x and put one pebble each on the vertices y, as
and by. Then we cannot move two pebbles to v. Thus, f2(C3) > 11.

Consider the distribution of 11 pebbles on the vertices of C3. If p(v) =1 or
p(u) > 2 (where uv € E(C3)) then we can move two pebbles to v easily, since
p(C2) —2>9 and f(C3) =9 (by Theorem 7). So, we assume p(v) = 0 and
p(u) < 1 for allu (where wv € E(CZ)). Clearly, p(z)+p(y)+p(as)+p(bs) > 7.
Either p(P2) > 6 or p(P%) > 6. Without loss of generality, let p(P2) > 6.
If p(P%) > 4 then we can move one pebble to v, since f(P%) = 4. Also we
can mowve one more pebble to v from the vertices of Pg, since f(P2) =5. Let
p(P%) = 3. Ifp(y) > 2 or p(z) > 2, then we can move one pebble to bs.
Thus p(P3) +1 = 4 and p(P%) — 2 = 5 and hence we can move two pebbles
to v. Assume p(y) < 1 and p(x) < 1 and so p(ag) > 4. If both p(a;) = 1
and p(az) = 1 then we can move two pebbles to v easily. Let p(a1) = 1 and
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plaz) = 0. We move the first pebble to v through ai from az. If p(z) = 1
or p(y) = 1 then we move one pebble to bs and hence we can move one more
pebble to v, since p(PE) +1 = 4. Assume p(x) = p(y) = 0 and so p(a3) > 7.
Clearly, we can move two pebbles to v. Similarly, we are done if p(ag) =1 and
plar) = 0. Let p(ar) = plaz) = 0 and s0 p(as) > 6. If p(z) = 1 or ply) = 1
then we move one pebble to by and hence we can move one pebble each from
p% and a3, since p(ag) —2 > 4 and dez(v,a3) = 2. Assume p(z) = p(y) =0
and so p(az) = 8. Thus we can move two pebbles to v, since dcgz(v,ag) = 2.

Let p(P3) = 2. Clearly, we can move two pebbles to v if p(y) > 2 or p(z) > 2.
Assume p(z) < 1 and p(z) < 1. If any two vertices of P4 — {v} have one
pebble each on them, then clearly we can move one pebble to v. Then we have
five pebbles remaining on the vertices of P(% and hence we can move one more
pebble to v, since f(P2) = 5. Let p(bs) = 2. If p(y) > 2 then we can move
two pebbles to v easily. Let p(y) = 1. If p(x) > 2 then we move one pebble to
y from x and then we move one pebble each to by from by and y. Thus we can
move two pebbles to v. Assume p(z) <1 and so p(az) > 5. Now, we move one
pebble to y from az and hence we can move two pebbles to v. Let p(y) = 0.
Clearly, we can move one pebble to by from as or x and hence we can move
two pebbles to v. Let p(P3) = 1 and so p(y) < 4. If p(y) < 3 then we can
move two pebbles to v easily. Let p(y) = 2. we move one pebble to as and
hence we can move two pebbles to v. If p(y) < 1 then clearly we can move one
pebble to v from PA. Let p(p%) = 0 and so p(y) < 5. Then we can move two
pebbles to v. Thus, fg(Cg) < 11. Hence we have proved the claim.

We have to show that f;(C2) = 4t + 3 for t > 2. Clearly, the result is true
for t = 2 from Claim 12.2. Assume the result is true for 2 < ¢’ < t. Put 4t —1
pebbles on the vertex x and one pebble each on the vertices y, ag and b3 and
hence we cannot move ¢ pebbles to v. Thus f,(C2) > 4t + 3. Now, consider
the distribution of 4¢ + 3 pebbles on the vertices of C2. Either p(P%) > 2t + 2
or p(P3) > 2t + 2. Without loss of generality, we let p(P3) > 2t +2 > 6
and hence we can move one pebble to v at a cost of at most four pebbles,
from the vertices of P2, since P2 = P? and f(P2) =5 by Theorem 4. Then
we have 4t +3 — 4 > 4(t — 1) + 3 pebbles remaining on the vertices of C?
and hence we can move the additional ¢ — 1 pebbles to v by induction. Thus
ft(C2) < 4t + 3. O

11 ift=1
8t+1 ift>2
13 ift=1
8t+4 ift>2

Theorem 13. 1. fi(C%) = {

2. ft(C123) = {
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Proof. Clearly, the results are true for ¢t = 1 by Theorem 8.
Proof of (1): f;(C%)=8t+1 fort > 2.

Claim 13.1. f5(C%) = 17.

Put 15 pebbles at x and 1 pebble at y. Then we cannot move two pebbles to v
and hence f2(C%) > 17. Now, consider the distribution of 17 pebbles on the
vertices of C’g. Note that, we can move one pebble to v at a cost of at most
eight pebbles, since p(C%) = 17 and f(C%) = 11. If we have used only siz or
less pebbles to put the first pebble at v then we can move the second pebble to
v easily, since p(C%) —6 > 11. Suppose we have used seven or eight pebbles
to put the first pebble at v. Clearly, p(P3) < 2. Let p(a1) = 1 and p(as) = 1
and so p(z) < 1, p(b1) = p(b2) =0, either p(bs) =1 or p(bs) = 1. If p(z) =1
then we move one pebble each to ay and x from y. Then we can move one
pebble to v through as and ay from ay and x. Thus p(y) —4 > 8 and hence we
can move another one pebble to v, since dc2 (v,y) = 3. Assume p(x) =0 and
so p(y) > 14. We move three pebbles to ay and hence we can move one pebble
each to v from as and y, since p(y) —6 > 8. Let p(az) = 1 and p(as) = 1.
Clearly, p(x) <1, p(b1) = p(b2) = 0, either p(bs) =1 orp(bs) = 1. Ifp(x) =1
then we move one pebble each to as and x from y. Then we can move one
pebble to v through ag, and as from ay and x. Thus p(y) —4 > 8 and hence we
can move another one pebble to v, since dCfl (v,y) = 3. Assume p(x) =0 and
so p(y) > 14. We move three pebbles to ay and hence we can move one pebble
each to v from ay and y, since p(y) —6 > 8. Let p(P3) = 1. If p(P3) = 0 then
we can move two pebbles to v, since p((Po U {y})?) = 17 and f2(P2) = 17.
Assume p(P3) = 1. Since p(z) + p(y) = 15, we can move two pebbles to v
(by moving pebbles from x and y to aq or by) if p(ag) =1 or p(by) = 1. Let
p(as) = 1. Clearly, we can move four pebbles to ag if p(x) > 1. Otherwise, we
can move two pebbles to v, since p(P3) =16 and fo(Pg) = 16. Let p(a;) = 1
and so 1 < p(z) <2. Assume p(x) =2 This implies that p(y) > 13. We move
one pebble each to as from y and x and hence we can move one pebble to v
through ay. Then we can move the another one pebble to v, since p(y) —4 > 8
and dgz, (v,y) = 3. Let p(x) = 1 and so p(bs) = 1. We move three pebbles
to bs from y and hence we can move one pebble each from bs and y, since
p(y) — 6 > 8. Thus fo(C%) < 17. Hence we have proved the claim.

We have to show that f;(C%) = 8t + 1 for t > 2. Clearly, the result is true
for t = 2 from Claim 13.1. Assume the result is true for 2 < ¢ < t. Put 8t —1
pebbles on the vertex x and one pebble at y. Then we cannot move ¢ pebbles
to v. Thus f;(C%) > 8t + 1. Now, consider the distribution of 8¢ + 1 pebbles
on the vertices of C7,. Either p(P%) > 4t + 1 or p(P}) > 4t + 1. Without loss
of generality, we let p(P2) > 4t +1 > 9 and hence we can move one pebble to
v at a cost of at most eight pebbles from the vertices of Pé, since P(% & P62 and
f(PZ) =8 by Theorem 4. Then we have at least 8 — 7 = 8(t — 1) + 1 pebbles
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remaining on the vertices of C% and hence we can move the additional ¢ — 1
pebbles to v by induction. Thus f;(C%) < 8t + 1.
Proof of (2): f;(C%;) =8t +4 for t > 2.

Claim 13.2. fo(C%;) = 20.

Let p(as) = 13, p(bs) = 5 and p(x) = 1. Then we cannot move two pebbles
to v. Thus, fg(C%:;) > 20. Now, consider the distribution of 20 pebbles on the
vertices of C'123. Note that we can move one pebble to v at a cost of at most
8 pebbles, since p(C%) = 20 and f(C%) = 13. Suppose if we have used only
seven or less pebbles to put one pebble to v, then we can move another one
pebble to v, since p(C%) —7 > 13 and f(C%) = 13. Assume that we have used
exactly eight pebbles to put a pebble on the vertex v. Clearly, p(P3—{as}) < 2.
Assume p(P3)—{as} = 2. Let p(a1) = 1 and p(az) = 1 and so either p(as) < 1
or p(xz) < 1. Assume p(as) =1 and so p(z) = 0, and p(y) > 13. We move
three pebbles to as and hence we can move one pebble to v through ay or as.
If p(P3) > 2 then we can move another one pebble to v, since p(P%) > 9 and
f(P2) = 9. If p(P%) <1 then p(y) > 8 and hence we can move the another
one pebble to v, since dez (v,y) = 3. Let p(a1) = 1 and p(as) = 1 and so
plas) <1 and p(x) < 5. Assume p(x) = 4 or 5. First, we move one pebble
to a4 from x and also we move one pebble each to as from x and y and then
we move one pebble each to as from ay and as and hence we can move one
pebble to v through ay. Clearly, we can move another one pebble to v, since
p(P3) —2 > 10 and f(P?) = 9. Assume p(z) = 2 or 3. First, we move
one pebble to ay from x and also we move two pebbles to as from y and then
we move one pebble each to as from aq and as and hence we can move one
pebble to v through ai. Clearly, we can move another one pebble to v, since
p(P3) —4 > 10 and f(P?) =9. Assume p(z) < 1. If p(z) = 0 or p(as) = 0
then clearly we can move two pebbles to v, since p(P3) > 17 and fo(P2?) = 17.
Assume p(z) =1 and p(as) = 1. We mowve one pebble each to as and x from
y and then we move one pebble each to as from a4 and as and hence we can
move one pebble to v through ay from as. Then we can move one more pebble
to v, since p(y) —4 > 8. Let p(as) = 1 and p(as) = 1 and so p(as) < 1
and p(x) < 5. In a similar way, we can move two pebbles to v for this case.
Clearly, we can move two pebbles to v if p(az) = 2 or p(as) = 2. Assume
p(P3 — fash) = 1.

Let p(P3 —{as}) = 1 and so p(as) +p(bs) +p(x) +p(y) > 18. Let p(a1) =1
and so p(as) < 1. This implies that p(x) + p(y) > 16. Either p(xz) > 8
or p(y) > 8. Assume p(x) > 8. Let p(as) = 1. First we move 3 pebbles
to as from x and hence we can move one pebble to v, since p(a;) = 1. Let

p(x) = 8,9, or 10. After using siz pebbles from x, we move LI@J pebbles to

y. Clearly, p(y) + LWJ > 8 and hence we can move one more pebble to v.
Let p(x) > 12. After using siz pebbles from x, we move L@J pebbles to x.
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Clearly, p(z) + L@J > 8 and hence we can move one more pebble to v. Let
p(z) = 11. If p(P% — {bs}) = 1 then we can move one more pebble to v, since
p(z) =5 and p(y) > 5. Assume p(P% — {bs}) = 0. Then p(y) + LWJ > 8
and hence we can move one more pebble to v. Assume p(x) < 7. Clearly,
we can move two pebbles to v if p(x) > 2. Let p(z) < 1. We move three
pebbles to as and then we move one pebble to v through ai. Then we can
move the another one pebble to v, since p(y) — 6 > 8. Let p(as) = 0 and so
p(x) + ply) > 18. Let p(x) > 9. Clearly we can move one pebble to v easily
if p(x) < 12 (by moving pebbles from = to y after using eight pebbles from x)
or p(z) > 14 (by moving pebbles from y to = after using eight pebbles from x).
Assume p(x) = 13. Clearly, we are done if p(P%) = 1. Assume p(P3) = 0.
We mowve two pebbles to y and hence we can move one pebble each to v from
y and x, since p(y) +2 =8 and p(x) —4 =9. In a similar way, we can move
one pebble to v if p(a;) =1 for some i =2,3,4.

Let p(P% —{as}) = 0 and so p(as)+p(bs)+p(x)+p(y) = 20. Without loss of
generality, let p(as)+p(xz) > 10 and so p(bs)+p(y) < 10. Ifp(as)+p(z) < 13,

then we move LWJ pebbles to bs and y, and hence we can move two

pebbles to v, since p(as) + p(x) > 9, p(bs) + p(y) + LWJ > 9 and
f(P?) =9. If p(as) + p(x) > 15, then we move p(bs)+p(y) , pebbles to as and
7 2

x, and hence we can move two pebbles to v, since p(as)+p(x)+ ij > 17
and fo(P?) = 17. Let p(as) + p(x) = 14 and so p(bs) + p(y) = 6. If both p(bs)
and p(y) are even then we can move three pebble to x and hence we can move
two pebbles to v, since fo( P2) = 17. Assume both p(bs) and p(y) are odd. Let
p(bs) =3 and p(y) = 3. If p(x) > 1 then we can move one pebble to v through
ba using at most five pebbles from the vertices as and x. Hence we can move
one more pebble to v, since p(as) + p(x) —5 > 9 and f(P?) = 9. Assume
p(z) = 0. Then we can move one pebble to v through be using siz pebbles
from the vertex as and then we can move one pebble to v, since p(as) = 8
and dez (v, as) = 3. Similarly, we can move two pebbles to v if p(bs) =1 and

p(y) = 5 or p(bs) = 5 and p(y) = 1. Thus, f2(C%) < 20. Hence we have
proved the claim.

We have to show that f;(C%) = 8t + 4 for t > 2. Clearly, the result is true
for t = 2 from Claim 13.2. Assume the result is true for 2 < t/ < t. Put
8t — 3 pebbles on the vertex as, 5 pebbles on the vertex bs and one pebble at
z. Then we cannot move ¢ pebbles to v. Thus f;(C%) > 8t+4. Now, consider
the distribution of 8¢+ 4 pebbles on the vertices of C%;. Either p(P2%) > 4t +2
or p(P3) > 4t + 2. Without loss of generality, we let p(P3) > 4t +2 > 10
and hence we can move one pebble to v at a cost of at most eight pebbles,
from the vertices of PZ, since P2 = P? and f(P?) = 9 by Theorem 4. Then
we have 8t +4 — 8 > 8(t — 1) + 4 pebbles remaining on the vertices of C
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and hence we can move the additional ¢ — 1 pebbles to v by induction. Thus
fi(Cfs) < 8t +4. 0

Theorem 14. (1) fi(C} ) = 2" +1 (k> 3), (2) fil(CE,,) = (t—1)2F+

2k+1 . .
k2 & 2[5—1+4+1 ifkis even
+1= 1)2% 4 k>4).
5 =1 {2{2’““J+2 if k is odd (kz4)

Proof. Consider the graph C3, |, where n > 7.
Proof of (1): Consider the graph C%,_ 4 (k > 3). Put 2" — 1 pebbles
on the vertex x and one pebble on the vertex x. Then we cannot move ¢
pebbles to v and thus fi( 4k+3) > ¢2F+1 4 1. Next, we have to show that
fi( 4k+3) < 21 4 1. Clearly, the result is true for ¢ = 1 by Theorem 8.
Assume the result is true for 1 < ¢/ < t. Consider the distribution of 251 + 1
pebbles on the vertices of C’fk 43~ Without loss of generality, we assume that
(P2) > ¢2F +1 > 2kl £ 1. Clearly, we can move one pebble to v, since

P} ~ Pz(/,ngl and f( 2(k+1)) = 2Kl Then we have 28! — 2k+1 1 1 >

(t — 1)2*+1 1+ 1 pebbles remaining on the vertices of Czk+3 and hence we can
move the additional ¢—1 pebbles to v by induction. Thus ft(ka+3) < 2k,
Proof of (2): Consider the graph C3, _, (k > 4). If k is even, then we place
(t —1)2F + [QkH} pebbles on the vertex a,—1 and place (2 "] pebbles on
the vertex b,_;. If k 1s odd, then we place (t — 1)2% + szHJ pebbles on the
vertex a,_1, place L J pebbles on the vertex b,,_1 and place one pebble at z.
Then, we cannot move ¢ pebbles to v. Thus, f(C3,_ ;) > (t— 12k + [2k+2] +1.
Now, consider the distribution of (£ —1)2% 4 [%} + 1 pebbles on the vertices
of C’Zk 41 Clearly, the result is true for £ = 1 by Theorem 8. We assume
the result is true for 1 < ¢/ < t. Without loss of generality, we assume that
p(Pg) > t2k=1 41 > 2% 4 1. Clearly, we can move one pebble to v at a cost
of at most 2¥ pebbles, since P2 = Pj | and f(P3_,) = 2" + 1. Then we
have at least (t —2)2F + [2k+ ]+ 1 pebbles remaining on the vertices of C%,
and hence we can move the additional ¢ — 1 pebbles to v by induction. Thus
JilChn) < (t =125+ [3] + 1 0
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G=Cy f(G) fi(G) (t=2)

Forn=14 4 2t + 2
Forn==6 6 4t
Forn =28 8 4t + 2
For n =10 10 8t
For n =12 12 8t+ 3

For n =4k +2 (k > 3) 2k+1 t(2FFT)

Forn=4k (k>4) |2[%]+1[@-12"+2(2 ] +1

TABLE 1. The t-pebbling numbers of squares of even cycles

G=Cp f(G) fi(G) (t=2)

For n =5 5 2t +3

Forn=7 7 4+ 1

Forn=9 9 4t + 3

For n =11 11 8t+1

For n =13 13 8t+4
Forn=4k+3 (k>3)| 2814+ 1 2R 41
Forn=4k+1 (k>4) | [Z2]+1] (¢ - 1)2F + 2] +1

TABLE 2. The t-pebbling numbers of squares of odd cycles
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