THE t-PEBBLING NUMBER OF SQUARES OF CYCLES

LOURDUSAMY AROCKIAM¹, MATHIVANAN THANARAJ²

ABSTRACT. Let C be a configuration of pebbles on a graph G. A pebbling move (step) consists of removing two pebbles from one vertex, throwing one pebble away, and moving the other pebble to an adjacent vertex. The t-pebbling number, $f_t(G)$, of a connected graph G, is the smallest positive integer such that from every configuration of $f_t(G)$ pebbles, t pebbles can be moved to any specified target vertex by a sequence of pebbling moves. In this paper, we determine the t-pebbling number for squares of cycles.

Key words: pebbling number, p^{th} power of a graph, cycle graph. AMS SUBJECT CLASSIFICATION 2010: 05C38, 05C99.

1. Introduction

We begin by introducing relevant terminology and background on the subject. Here, the term graph refers to a simple graph. A configuration C of pebbles on a graph G = (V, E) can be thought of as a function $C: V(G) \to N \cup \{0\}$. The value C(v) equals the number of pebbles placed at vertex v, and the quantity $\sum_{v \in V(G)} C(v)$ is called the size of C; the size of C is just the total number of pebbles assigned to vertices. A pebbling move [8] consists of removing two pebbles from one vertex and then placing one pebble at an adjacent vertex. Suppose C is a configuration of pebbles on a graph G. We say a pebble can be moved to a vertex v, the target vertex, if we can apply pebbling moves repeatedly (if necessary) so that in the resulting configuration the vertex v has at least one pebble.

Definition 1. [1] The t-pebbling number of a vertex v in a graph G, $f_t(v, G)$, is the smallest positive integer n such that however n pebbles are placed on the vertices of the graph, t pebbles can be moved to v in finite number of

¹Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627 002, Tamilnadu, India. Email: lourdusamy15@gmail.com

²Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627 002, Tamilnadu, India. Email: tahit_van_man@yahoo.com.

6 -> 0	0 -0	1 1	$ \begin{array}{c} 0\\ 0\\ 0\\ -0 \end{array} $
2	2	<u>→ 1</u>	$\stackrel{0}{\multimap}$
2	0	2 —	> 0 —○
2		_0	

FIGURE 1. An illustration of moving one pebble to the end vertex of the path P_4 from a configuration of size 7

pebbling moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. The t-pebbling number of G, $f_t(G)$, is defined to be the maximum of the pebbling numbers of its vertices.

Thus the t-pebbling number of a graph G, $f_t(G)$, is the least n such that, for any configuration of n pebbles to the vertices of G, we can move t pebbles to any vertex by a sequence of moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Clearly, $f_1(G) = f(G)$, the pebbling number of G.

Fact 1. [9] The pebbling number of a graph G satisfies

$$f(G) \geq \max\{2^{\operatorname{diam}(G)}, |V(G)|\}.$$

If one pebble is placed on each vertex other than the vertex v, then no pebble can be moved to v. Also, if u is at a distance d from v, and $2^d - 1$ pebbles are placed on u, then no pebble can be moved to v. So it is clear that $f(G) \geq max\{|V(G)|, 2^D\}$, where D is the diameter of graph G. Furthermore, we know that $f(K_n) = n$ and $f(P_n) = 2^{n-1}$, where K_n is the complete graph with n vertices and P_n is the path with n vertices, so this bound is sharp.

With regard to t-pebbling number of graphs, we find the following theorems:

Theorem 1. [6] Let K_n be the complete graph on n vertices where $n \geq 2$. Then $f_t(K_n) = 2t + n - 2$.

Theorem 2. [1] Let $K_1 = \{v\}$. Let $C_{n-1} = (u_1, u_2, \dots, u_{n-1})$ be a cycle of length n-1. Then the t-pebbling number of the wheel graph W_n is $f_t(W_n) = 4t + n - 4$ for $n \ge 5$.

Theorem 3. [4] For
$$G = K^*_{s_1, s_2, \dots, s_r}$$
, $f_t(G) = \begin{cases} 2t + n - 2, & \text{if } 2t \le n - s_1 \\ 4t + s_1 - 2, & \text{if } 2t \ge n - s_1 \end{cases}$

Jahangir graph $J_{n,m}$ for $m \geq 3$ is a graph on nm + 1 vertices, that is, a graph consisting of a cycle C_{nm} with one additional vertex which is adjacent to m vertices of C_{nm} at distance n to each other on C_{nm} . The Jahangir graph

 $J_{2,8}$ appears on Jahangir's tomb in his mausoleum. It lies in 5 kilometer northwest of Lahore, Pakistan, across the River Ravi [7].

Lourdusamy et al. proved the t-pebbling number of the Jahangir graphs $J_{2,m}$ and $J_{3,m}$ for $m \geq 3$ and $t \geq 1$ in [3, 5]. In the next section, we are going to prove the t-pebbling number of squares of even cycles and then we prove the t-pebbling number of squares of odd cycles in the third section. Before that, we give the defintion of p^{th} power of a graph G and the known results of the pebbling number of squares of cycles.

Definition 2. [11] Let G be a connected graph. For $u, v \in V(G)$, we denote by $d_G(u, v)$ the distance between u and v in G. The p^{th} power of G, denoted by G^p , is the graph obtained from G by adding edge uv to G whenever $2 \le d_G(u, v) \le p$. That is, $E(G^p) = \{uv : 1 \le d_G(u, v) \le p\}$. Note that $G^1 = G$.

In [9], Pachter et al. gave the pebbling numbers of squares of paths.

Theorem 4. [9] The pebbling number of squares of paths is $f(P_{2k}^2) = 2^k$ and $f(P_{2k+1}^2) = 2^k + 1$.

We have obtained the t-pebbling numbers of squares of paths in [2] for $t \geq 2$.

Theorem 5. [2] The t-pebbling number of P_{2k+r}^2 ($0 \le r \le 1$) is $f_t(P_{2k}^2) = t(2^k)$ and $f(P_{2k+1}^2) = t(2^k) + 1$.

Lourdusamy et al. gave the t-pebbling numbers of cycles:

Theorem 6. [6] Let C_n denote a simple cycle with n vertices, where $n \geq 3$. Then $f_t(C_{2k}) = t2^k$ and $f_t(C_{2k+1}) = \frac{2^{k+2} - (-1)^{k+2}}{3} + (t-1)2^k$.

Naturally, we want to know the t-pebbling numbers of squares of cycles. In [10, 11], the pebbling numbers of squares of cycles were obtained:

Theorem 7. [11] The pebbling number of squares of even cycles is

(i) For
$$2 \le n \le 6$$
, $f(C_{2n}^2) = 2n$.
(ii) For $k \ge 3$, $f(C_{4k+2}^2) = 2^{k+1}$.
(iii) For $k \ge 4$, $f(C_{4k}^2) = 2 \left| \frac{2^{k+1}}{3} \right| + 1$.

Theorem 8. [10] The pebbling number of squares of odd cycles is

$$\begin{array}{l} \mbox{(i) For } 2 \leq n \leq 6, \ f(C_{2n+1}^2) = 2n+1. \\ \mbox{(ii) For } k \geq 3, \ f(C_{4k+3}^2) = 2^{k+1}+1. \\ \mbox{(iii) For } k \geq 4, \ f(C_{4k+1}^2) = \lceil \frac{2^{k+2}}{3} \rceil + 1. \end{array}$$

Motivated by this, we compute the t-pebbling numbers of squares of cycles for $t \geq 2$ in this paper.

Notation 1. Let p(v) denote the number of pebbles on the vertex v and p(A) denote the number of pebbles on the vertices of the subgraph A of G.

2. The t-pebbling number of squares of even cycles

In this section, we prove the t-pebbling number of C_{2n}^2 , where $n \geq 2$. Let $V(C_{2n}) = \{v, a_1, a_2, \cdots, a_{n-1}, x, b_{n-1}, b_{n-2}, \cdots, b_2, b_1\}$. By symmetry, Let v be the target vertex. Let $P_A : va_1a_2 \cdots a_{n-1}$ and $P_B : vb_1b_2 \cdots b_{n-1}$ be the paths. Also, we let $P_C : P_A \cup \{x\}$ and $P_D : P_B \cup \{x\}$. We always assume that $p(P_A^2) \geq p(P_B^2)$.

Since $C_4^2 \cong K_4$, $f_t(C_4^2) = f_t(K_4) = 2t + 2$ by Theorem 1.

Theorem 9. 1.
$$f_t(C_6^2) = \begin{cases} 6 & \text{if } t = 1 \\ 4t & \text{if } t \ge 2 \end{cases}$$

2. $f_t(C_8^2) = \begin{cases} 8 & \text{if } t = 1 \\ 4t + 2 & \text{if } t \ge 2 \end{cases}$

Proof. Clearly, the results are true for t = 1 by Theorem 7. **Proof of (1):** $f_t(C_6^2) = 4t$ for $t \ge 2$.

Claim 9.1. $f_2(C_6^2) = 8$.

Put 7 pebbles on the vertex x. Then we cannot move two pebbles to v. Thus, $f_2(C_6^2) \geq 8$.

Consider the distribution of 8 pebbles on the vertices of C_6^2 . If p(v) = 1 or $p(u) \ge 2$ (where $uv \in E(C_6^2)$) then we can move two pebbles to v easily, since $p(C_6^2) - 2 \ge 6$ and $f(C_6^2) = 6$ (by Theorem 7). So, we assume p(v) = 0 and $p(u) \le 1$ for all u (where $uv \in E(C_6^2)$). Clearly, $p(x) \ge 4$. If any two adjacent vertices of v have one pebble each on them then we can move two pebbles to v easily (by moving one pebble each to the adjacent (pebbled) vertices from x). Without loss of generality, let $p(a_1) = 1$ and $p(a_2) = p(b_1) = p(b_2) = 0$. Then p(x) = 7 and hence we can move two pebbles to v, since we can move three pebbles to a_1 from x. Assume $p(a_i) = 0$ and $p(b_j) = 0$ for all i, and j. Then also we can move two pebbles to v, since p(x) = 8 and $d_{C_6^2}(v, x) = 2$. Hence we have proved the claim.

We have to show that $f_t(C_6^2) = 4t$ for $t \geq 2$. Clearly, the result is true for t = 2 from Claim 9.1. Assume the result is true for $2 \leq t' < t$. Put 4t-1 pebbles on the vertex x and hence we cannot move t pebbles to v. Thus $f_t(C_6^2) \geq 4t$. Now, consider the distribution of 4t pebbles on the vertices of C_6^2 . Either $p(P_C^2) \geq 2t$ or $p(P_B^2) \geq 2t$. Let $p(P_B^2) \geq 2t \geq 4$ and hence we can move one pebble to v from the vertices of P_B^2 , since $P_B^2 \cong P_3^2$ and $f(P_B^2) = 3$ by Theorem 4. Then we have $4t-3 \geq 4(t-1)$ pebbles remaining on the vertices of C_6^2 and hence we can move the additional t-1 pebbles to v by induction. Assume $p(P_B^2) \leq 2t-1$ and so $p(P_C^2) \geq 2t+1 \geq 5$. Clearly we can move one pebble to v at a cost of at most four pebbles, since $P_C^2 \cong P_4^2$ and $f(P_4^2) = 4$ by Theorem 4. Then we have $4t-4 \geq 4(t-1)$ pebbles remaining

on the vertices of C_6^2 and hence we can move the additional t-1 pebbles to v by induction. Thus $f_t(C_6^2) \leq 4t$.

Proof of (2): $f_t(C_8^2) = 4t + 2$ for $t \ge 2$.

Claim 9.2. $f_2(C_8^2) = 10$.

Put 7 pebbles on the vertex x and put one pebble each on the vertices a_3 and b_3 . Then we cannot move two pebbles to v. Thus, $f_2(C_8^2) \ge 10$.

Consider the distribution of 10 pebbles on the vertices of C_8^2 . If p(v) = 1or $p(u) \geq 2$ (where $uv \in E(C_8^2)$) then we can move two pebbles to v easily, since $p(C_8^2) - 2 \ge 8$ and $f(C_8^2) = 8$ (by Theorem 7). So, we assume p(v) = 0and $p(u) \leq 1$ for all u (where $uv \in E(C_8^2)$). Clearly, $p(x) + p(a_3) + p(b_3) \geq 6$. Either $p(P_C^2) \geq 5$ or $p(P_D^2) \geq 5$. Without loss of generality, let $p(P_C^2) \geq 5$. If $p(P_B^2) \geq 4$ then we can move one pebble to v, since $f(P_B^2) = 4$. Also we can move one more pebble to v from the vertices of P_C^2 , since $f(P_5^2) = 5$. Let $p(P_B^2) = 3$ and so $p(P_C^2) = 7$. We can move one pebble to b_3 , since either $p(a_3) \ge 2 \text{ or } p(x) \ge 2.$ Thus $p(P_B^2) + 1 = 4$ and $p(P_C^2) - 2 = 5$ and hence we can move two pebbles to v. Let $p(P_B^2) = 2$ and so $p(P_C^2) = 8$. Let $p(x) \ge 2$. If any two vertices of $P_B^2 - \{v\}$ have one pebble each on them, then clearly we can move one pebble to v. Then we have six pebbles remaining on the vertices of P_C^2 and hence we can move one more pebble to v, since $f(P_5^2) = 5$. Assume $p(x) \leq 1$ and so $p(a_3) \geq 5$. If $p(a_1) = 1$ or $p(a_2) = 1$ or both $p(b_3) = 1$ and $p(b_1) = 1$ or both $p(b_3) = 1$ and $p(b_2) = 1$ then clearly we can move one pebble to v. Then we have at least five pebbles remaining on the vertices of P_C^2 and hence we can move one more pebble to v, since $f(P_5^2) = 5$. If $p(a_3) = 8$ then we can move two pebbles to v, since $d_{c_s^2}(v, a_3) = 2$. Otherwise, we have $p(a_3) = 7$, p(x) = 1, $p(b_2) = 1$, and $p(b_1) = 1$. Hence we can move one pebble to v using two pebbles from a_3 and the pebbles on the vertices x, b_1, b_2 and then we move one more pebble to v from a_3 , since $d_{c_8^2}(v,a_3)=2$. Let $p(P_B^2)\leq 1$ and so P_C^2 contains at least nine pebbles. Thus we can move two pebbles to v, since $f_2(P_5^2) = 9$. Thus, $f_2(C_8^2) \le 10$. Hence we have proved the claim.

We have to show that $f_t(C_8^2) = 4t + 2$ for $t \ge 2$. Clearly, the result is true for t = 2 from Claim 9.2. Assume the result is true for $2 \le t' < t$. Put 4t - 1 pebbles on the vertex x and one pebble each on the vertices a_3 and b_3 and hence we cannot move t pebbles to v. Thus $f_t(C_8^2) \ge 4t + 2$. Now, consider the distribution of 4t + 2 pebbles on the vertices of C_8^2 . Either $p(P_C^2) \ge 2t + 1$ or $p(P_D^2) \ge 2t + 1$. Without loss of generality, we let $p(P_D^2) \ge 2t + 1 \ge 5$ and hence we can move one pebble to v at a cost of at most four pebbles, from the vertices of P_D^2 , since $P_D^2 \cong P_5^2$ and $f(P_5^2) = 5$ by Theorem 4. Then we have $4t + 2 - 4 \ge 4(t - 1) + 2$ pebbles remaining on the vertices of C_8^2 and hence we can move the additional t - 1 pebbles to v by induction. Thus $f_t(C_8^2) \le 4t + 2$.

Theorem 10. 1.
$$f_t(C_{10}^2) = \begin{cases} 10 & \text{if } t = 1 \\ 8t & \text{if } t \ge 2 \end{cases}$$

2. $f_t(C_{12}^2) = \begin{cases} 12 & \text{if } t = 1 \\ 8t + 3 & \text{if } t \ge 2 \end{cases}$

Proof. Clearly, the results are true for t = 1 by Theorem 7.

Proof of (1): $f_t(C_{10}^2) = 8t$ for $t \ge 2$.

Claim 10.1. $f_2(C_{10}^2) = 16$.

Let p(x) = 15 and so we cannot move two pebbles to v. Thus, $f_2(C_{10}^2) \geq 16$. Now, consider the distribution of 16 pebbles on the vertices of C_{10}^2 . Note that we can move one pebble to v at a cost of at most 8 pebbles, since $p(C_{10}^2) = 16$ and $f(C_{10}^2) = 10$. Suppose if we have used only six or less pebbles to put one pebble to v, then we can move another one pebble to v, since $p(C_{10}^2) = 6 \geq 10$ and $f(C_{10}^2) = 10$. Assume that we have used seven or eight pebbles to put a pebble on the vertex v. Clearly, $p(P_A^2) \leq 1$ and so $p(P_B^2) \leq 1$. This implies that $p(x) \geq 14$, $p(a_1) = 0 = p(a_2)$ and $p(b_1) = 0 = p(b_2)$. Without loss of generality, let $p(a_3) = 1$. We can move 7 pebbles to a_3 from x and hence we move two pebbles to v, since $d_{C_{10}^2}(v, a_3) = 2$. Assume $p(P_A^2) = 0$ and so $p(P_B^2) = 0$. Then $p(x) \geq 16$ and hence we can move two pebbles to v, since $d_{C_{10}^2}(v, x) = 3$. Thus, $f_2(C_{10}^2) \leq 16$. Hence we have proved the claim.

Proof of (2): $f_t(C_{12}^2) = 8t + 3$ for $t \ge 2$.

Claim 10.2. $f_2(C_{12}^2) = 19$.

Let $p(a_5) = 13$ and $p(b_5) = 5$. Then we cannot move two pebbles to v. Thus, $f_2(C_{12}^2) \ge 19$. Now, consider the distribution of 19 pebbles on the vertices of C_{12}^2 . Note that we can move one pebble to v at a cost of at most 8 pebbles, since $p(C_{12}^2) = 19$ and $f(C_{12}^2) = 12$. Suppose if we have used only seven or less pebbles to put one pebble to v, then we can move another one pebble to v, since $p(C_{12}^2) - 7 \ge 12$ and $f(C_{12}^2) = 12$. Assume that we have used exactly eight pebbles to put a pebble on the vertex v. Clearly, $p(P_A^2 - \{a_5\}) \le 1$. Let $p(P_A^2 - \{a_5\}) = 1$ and so $p(a_5) + p(b_5) + p(x) \ge 17$. Let $p(a_1) = 1$ and so

 $p(a_5) \leq 1$. This implies that $p(x) \geq 15$. If $p(x) \geq 16$ then we can move two pebbles to v, since $d_{C_{12}^2}(v,x)=3$. Let p(x)=15 and so either $p(a_5)=1$ or $p(b_5) = 1$. Without loss of generality, let $p(a_5) = 1$. We move 3 pebbles to a_5 from x and hence we can move one pebble to v, since $p(a_1) = 1$. Then we can move another one pebble to v from x, since $p(x) - 6 \ge 8$ and $d_{C_{12}^2}(v, x) = 3$. Next, we assume $p(P_A^2 - \{a_5\}) = 0$ and so $p(a_5) + p(b_5) + p(x) = 19$. If $p(a_5) \le 1$ 2, then we can move two pebbles to v, since $p(P_D^2) \ge 17$ and $f_2(P_7^2) = 17$. So, we assume $p(a_5) \geq 3$ and $p(b_5) \geq 3$. Let $p(a_5) \geq 8$. Then we can move one pebble to v from a_5 . If $p(b_5) \geq 8$ then we can move the another one pebble to v. So, we assume $p(b_5) \leq 7$. Let $p(b_5) = 6$ or 7. If $p(x) \geq 2$ then we move one pebble from x and three pebbles from b_5 to b_4 and hence we can move the another one pebble to v. Let p(x) = 1 and so $p(a_5) - 8 \ge 3$ and hence we can move another one pebble to v. Let p(x) = 0 and so $p(a_5) - 8 \ge 4$ and hence we can move another one pebble to v. Let $p(b_5) = 4$ or 5. If $p(x) \ge 4$ then we move two pebbles from x and two pebbles from b_5 to b_4 and hence we can move the another one pebble to v. Let p(x) = 3 and so $p(a_5) - 8 \ge 3$ and hence we can move another one pebble to v. Let p(x) = 2 and so $p(a_5) - 8 \ge 4$ and hence we can move another one pebble to v. Let p(x) = 1 and so $p(a_5) - 8 \ge 5$. Clearly we can move the another one pebble to v, since $p(b_5) = 4$ or 5. Let p(x) = 0 and so $p(a_5) - 8 \ge 6$. we move two pebbles to a_5 from b_5 and hence we can move one more pebble to v. Assume $p(a_5) \leq 7$ (similarly, we assume $p(b_5) \leq 7$). Then $p(x) \geq 5$. If $p(a_5) = 6$ or 7 then we move three pebbles from a_5 and one pebble from x to a_4 . Thus we can move the first pebble to v. Then we can move another one pebble to v, since $p(P_D^2) \geq 9$ and $f(P_7^2) = 9$. Let $p(a_5) = 4$ or 5. Then we move two pebbles from a_5 and two pebbles from x to a_4 . Thus we can move the first pebble to v. Then we can move another one pebble to v, since $p(P_D^2) \geq 9$ and $f(P_7^2) = 9$. Let $p(a_5) = 3$ and so $p(b_5) = 3$ and p(x) = 13. First, we move three pebbles from x and one pebble from a_5 to a_4 and then we move three pebbles from x and one pebble from b_5 to b_4 . Thus we can move one pebble each to v from a_4 and b_4 , since $d_{C_{12}^2}(v, a_4) = d_{C_{12}^2}(v, b_4) = 2$. Thus, $f_2(C_{12}^2) \leq 19$. Hence we have proved the claim.

We have to show that $f_t(C_{12}^2) = 8t + 3$ for $t \geq 2$. Clearly, the result is true for t = 2 from Claim 10.2. Assume the result is true for $2 \leq t' < t$. Put 8t - 3 pebbles on the vertex a_5 and 5 pebbles on the vertex b_5 and hence we cannot move t pebbles to v. Thus $f_t(C_{12}^2) \geq 8t + 3$. Now, consider the distribution of 8t + 3 pebbles on the vertices of C_{12}^2 . Either $p(P_C^2) \geq 4t + 2$ or $p(P_D^2) \geq 4t + 2$. Without loss of generality, we let $p(P_C^2) \geq 4t + 2 \geq 10$ and hence we can move one pebble to v at a cost of at most eight pebbles, from the vertices of P_C^2 , since $P_C^2 \cong P_7^2$ and $f(P_7^2) = 9$ by Theorem 4. Then we have $8t + 3 - 8 \geq 8(t - 1) + 3$ pebbles remaining on the vertices of C_{12}^2 .

and hence we can move the additional t-1 pebbles to v by induction. Thus $f_t(C_{12}^2) \leq 8t+3$.

Theorem 11. 1.
$$f_t(C_{4k+2}^2) = t2^{k+1} \ (k \ge 3)$$
,
2. $f_t(C_{4k}^2) = (t-1)2^k + 2\lfloor \frac{2^{k+1}}{3} \rfloor + 1 \ (k \ge 4)$.

Proof. Consider the graph C_{2n}^2 , where $n \geq 7$.

Proof of (1): Consider the graph C^2_{4k+2} $(k \ge 3)$ and we place $t2^{k+1}-1$ pebbles on the vertex x. Then we cannot move t pebbles to v. Thus, $f_t(C^2_{4k+2}) \ge t2^{k+1}$. Now, consider the distribution of $t2^{k+1}$ pebbles on the vertices of C^2_{4k+2} . Clearly, the result is true for t=1 by Theorem 7. We assume the result is true for $1 \le t' < t$. Without loss of generality, we assume that $p(P^2_C) \ge t2^k \ge 2^{k+1}$. Clearly, we can move one pebble to v, since $P^2_C \cong P^2_{2(k+1)}$ and $f(P^2_{2(k+1)}) = 2^{k+1}$. Then we have $t2^{k+1} - 2^{k+1} \ge (t-1)2^{k+1}$ pebbles remaining on the vertices of C^2_{4k+2} and hence we can move the additional t-1 pebbles to v by induction. Thus $f_t(C^2_{4k+2}) \le t2^{k+1}$.

Proof of (2): Consider the graph C_{4k}^2 $(k \ge 4)$ and we place $(t-1)2^k + \lfloor \frac{2^{k+1}}{3} \rfloor$ pebbles on the vertex a_{n-1} and place $\lfloor \frac{2^{k+1}}{3} \rfloor$ pebbles on the vertex b_{n-1} . Then we cannot move t pebbles to v. Thus, $f_t(C_{4k}^2) \ge (t-1)2^k + 2\lfloor \frac{2^{k+1}}{3} \rfloor + 1$. Now, consider the distribution of $(t-1)2^k + 2\lfloor \frac{2^{k+1}}{3} \rfloor + 1$ pebbles on the vertices of C_{4k}^2 . Clearly, the result is true for t=1 by Theorem 7. We assume the result is true for $1 \le t' < t$. Without loss of generality, we assume that $p(P_C^2) \ge t2^{k-1} + 1 \ge 2^k + 1$. Clearly, we can move one pebble to v at a cost of at most 2^k pebbles, since $P_C^2 \cong P_{2k+1}^2$ and $f(P_{2k+1}^2) = 2^k + 1$. Then we have $(t-2)2^k + 2\lfloor \frac{2^{k+1}}{3} \rfloor + 1$ pebbles remaining on the vertices of C_{4k}^2 and hence we can move the additional t-1 pebbles to v by induction. Thus $f_t(C_{4k}^2) \le (t-1)2^k + 2\lfloor \frac{2^{k+1}}{3} \rfloor + 1$.

3. The t-pebbling number of squares of odd cycles

In this section, we prove the t-pebbling number of C_{2n+1}^2 , where $n \geq 2$. Let $V(C_{2n+1}) = \{v, a_1, a_2, \dots, a_{n-1}, x, y, b_{n-1}, b_{n-2}, \dots, b_2, b_1\}$. By symmetry, Let v be the target vertex. Let $P_A : va_1a_2 \cdots a_{n-1}$ and $P_B : vb_1b_2 \cdots b_{n-1}$ be the paths. Also, we let $P_C : P_A \cup \{x\}$ and $P_D : P_B \cup \{y\}$. We always assume that $p(P_A^2) \geq p(P_B^2)$.

Since
$$C_5^2 \cong K_5$$
, $f_t(C_5^2) = f_t(K_5) = 2t + 3$ by Theorem 1.

Theorem 12. 1.
$$f_t(C_7^2) = \begin{cases} 7 & \text{if } t = 1 \\ 4t + 1 & \text{if } t \ge 2 \end{cases}$$

2. $f_t(C_9^2) = \begin{cases} 9 & \text{if } t = 1 \\ 4t + 3 & \text{if } t \ge 2 \end{cases}$

Proof. Clearly, the results are true for t = 1 by Theorem 8.

Proof of (1): $f_t(C_7^2) = 4t + 1$ for $t \ge 2$.

Claim 12.1. $f_2(C_7^2) = 9$.

Put 5 pebbles at x and 3 pebbles at y. Then we cannot move two pebbles to v and hence $f_2(C_7^2) \geq 9$. Now, consider the distribution of 9 pebbles on the vertices of C_7^2 . If p(v) = 1 or $p(u) \geq 2$ (where $uv \in E(C_7^2)$) then we can move two pebbles to v easily, since $p(C_7^2) - 2 \geq 7$ and $f(C_7^2) = 7$ (by Theorem 7). So, we assume p(v) = 0 and $p(u) \leq 1$ for all u (where $uv \in E(C_7^2)$). Clearly, $p(x) \geq 3$ or $p(y) \geq 3$. Let $p(x) \geq 3$. If $p(a_1) = 1$ and $p(a_2) = 1$ then we can move two pebbles to v easily. Let $p(a_1) = 1$ and $p(a_2) = 0$ and so $p(x) \geq 4$. If $p(y) \geq 2$ then we move one pebble to a_2 and hence we can move two pebbles to v. Assume $p(y) \leq 1$ and so $p(x) \geq 6$. We move three pebbles to a_1 and hence we can move two pebbles to v. Similarly, we are done if $p(a_1) = 0$ and $p(a_2) = 1$. Let $p(a_1) = p(a_2) = 0$. Clearly, p(x) + p(y) = 9 and hence we can move two pebble to v easily. Thus $f_2(C_7^2) \leq 9$. Hence we have proved the claim.

We have to show that $f_t(C_7^2) = 4t + 1$ for $t \ge 2$. Clearly, the result is true for t = 2 from Claim 12.1. Assume the result is true for $2 \le t' < t$. Put 4t - 1 pebbles on the vertex x and one pebble at y. Then we cannot move t pebbles to v. Thus $f_t(C_7^2) \ge 4t + 1$. Now, consider the distribution of 4t + 1 pebbles on the vertices of C_7^2 . Either $p(P_C^2) \ge 2t + 1$ or $p(P_D^2) \ge 2t + 1$. Without loss of generality, we let $p(P_C^2) \ge 2t + 1 \ge 5$ and hence we can move one pebble to v from the vertices of P_C^2 , since $P_C^2 \cong P_4^2$ and $f(P_4^2) = 4$ by Theorem 4. Then we have $4t - 3 \ge 4(t - 1) + 1$ pebbles remaining on the vertices of C_7^2 and hence we can move the additional t - 1 pebbles to v by induction. Thus $f_t(C_7^2) \le 4t + 1$.

Proof of (2): $f_t(C_9^2) = 4t + 3$ for $t \ge 2$.

Claim 12.2. $f_2(C_9^2) = 11$.

Put 7 pebbles on the vertex x and put one pebble each on the vertices y, a_3 and b_3 . Then we cannot move two pebbles to v. Thus, $f_2(C_9^2) \ge 11$.

Consider the distribution of 11 pebbles on the vertices of C_9^2 . If p(v) = 1 or $p(u) \ge 2$ (where $uv \in E(C_9^2)$) then we can move two pebbles to v easily, since $p(C_9^2) - 2 \ge 9$ and $f(C_9^2) = 9$ (by Theorem 7). So, we assume p(v) = 0 and $p(u) \le 1$ for all u (where $uv \in E(C_8^2)$). Clearly, $p(x) + p(y) + p(a_3) + p(b_3) \ge 7$. Either $p(P_C^2) \ge 6$ or $p(P_D^2) \ge 6$. Without loss of generality, let $p(P_C^2) \ge 6$. If $p(P_B^2) \ge 4$ then we can move one pebble to v, since $p(P_B^2) \ge 4$. Also we can move one more pebble to v from the vertices of $p(P_S^2) \ge 4$. Let $p(P_B^2) \ge 4$ and $p(v) \ge 4$ then we can move one pebble to v from the vertices of $p(P_S^2) \ge 6$. Let $p(P_B^2) \ge 6$. If $p(v) \ge 6$ or $p(v) \ge 6$ and hence we can move two pebbles to $p(P_B^2) \ge 6$. If both $p(v) \ge 6$ and $p(v) \ge 6$ and $p(v) \ge 6$ and hence we can move two pebbles to $p(v) \ge 6$. If both $p(v) \ge 6$ and $p(v) \ge 6$ and p(

 $p(a_2) = 0$. We move the first pebble to v through a_1 from a_3 . If p(x) = 1or p(y) = 1 then we move one pebble to b_3 and hence we can move one more pebble to v, since $p(P_B^2) + 1 = 4$. Assume p(x) = p(y) = 0 and so $p(a_3) \ge 7$. Clearly, we can move two pebbles to v. Similarly, we are done if $p(a_2) = 1$ and $p(a_1) = 0$. Let $p(a_1) = p(a_2) = 0$ and so $p(a_3) \ge 6$. If p(x) = 1 or p(y) = 1then we move one pebble to b_3 and hence we can move one pebble each from p_B^2 and a_3 , since $p(a_3) - 2 \ge 4$ and $d_{C_0^2}(v, a_3) = 2$. Assume p(x) = p(y) = 0and so $p(a_3) = 8$. Thus we can move two pebbles to v, since $d_{C_0^2}(v, a_3) = 2$. Let $p(P_B^2) = 2$. Clearly, we can move two pebbles to v if $p(y) \ge 2$ or $p(x) \ge 2$. Assume $p(x) \leq 1$ and $p(x) \leq 1$. If any two vertices of $P_B^2 - \{v\}$ have one pebble each on them, then clearly we can move one pebble to v. Then we have five pebbles remaining on the vertices of P_C^2 and hence we can move one more pebble to v, since $f(P_5^2) = 5$. Let $p(b_3) = 2$. If $p(y) \ge 2$ then we can move two pebbles to v easily. Let p(y) = 1. If $p(x) \ge 2$ then we move one pebble to y from x and then we move one pebble each to b_2 from b_3 and y. Thus we can move two pebbles to v. Assume $p(x) \leq 1$ and so $p(a_3) \geq 5$. Now, we move one pebble to y from a_3 and hence we can move two pebbles to v. Let p(y) = 0. Clearly, we can move one pebble to b_2 from a_3 or x and hence we can move two pebbles to v. Let $p(P_B^2) = 1$ and so $p(y) \le 4$. If $p(y) \le 3$ then we can move two pebbles to v easily. Let p(y) = 2, we move one pebble to a_3 and hence we can move two pebbles to v. If $p(y) \leq 1$ then clearly we can move one pebble to v from P_C^2 . Let $p(p_B^2) = 0$ and so $p(y) \leq 5$. Then we can move two pebbles to v. Thus, $f_2(C_9^2) \leq 11$. Hence we have proved the claim.

Theorem 13. 1.
$$f_t(C_{11}^2) = \begin{cases} 11 & \text{if } t = 1 \\ 8t + 1 & \text{if } t \ge 2 \end{cases}$$

2. $f_t(C_{13}^2) = \begin{cases} 13 & \text{if } t = 1 \\ 8t + 4 & \text{if } t \ge 2 \end{cases}$

Proof. Clearly, the results are true for t = 1 by Theorem 8. **Proof of (1):** $f_t(C_{11}^2) = 8t + 1$ for $t \ge 2$.

Claim 13.1. $f_2(C_{11}^2) = 17$.

Put 15 pebbles at x and 1 pebble at y. Then we cannot move two pebbles to v and hence $f_2(C_{11}^2) \geq 17$. Now, consider the distribution of 17 pebbles on the vertices of C_9^2 . Note that, we can move one pebble to v at a cost of at most eight pebbles, since $p(C_{11}^2) = 17$ and $f(C_{11}^2) = 11$. If we have used only six or less pebbles to put the first pebble at v then we can move the second pebble to v easily, since $p(C_{11}^2) - 6 \ge 11$. Suppose we have used seven or eight pebbles to put the first pebble at v. Clearly, $p(P_A^2) \leq 2$. Let $p(a_1) = 1$ and $p(a_4) = 1$ and so $p(x) \le 1$, $p(b_1) = p(b_2) = 0$, either $p(b_4) = 1$ or $p(b_3) = 1$. If p(x) = 1then we move one pebble each to a_4 and x from y. Then we can move one pebble to v through a_3 and a_1 from a_4 and x. Thus $p(y) - 4 \ge 8$ and hence we can move another one pebble to v, since $d_{C_{11}^2}(v,y)=3$. Assume p(x)=0 and so $p(y) \ge 14$. We move three pebbles to a_4 and hence we can move one pebble each to v from a_4 and y, since $p(y) - 6 \ge 8$. Let $p(a_3) = 1$ and $p(a_4) = 1$. Clearly, $p(x) \le 1$, $p(b_1) = p(b_2) = 0$, either $p(b_4) = 1$ or $p(b_3) = 1$. If p(x) = 1then we move one pebble each to a_4 and x from y. Then we can move one pebble to v through a_3 , and a_2 from a_4 and x. Thus $p(y) - 4 \ge 8$ and hence we can move another one pebble to v, since $d_{C_{11}^2}(v,y)=3$. Assume p(x)=0 and so $p(y) \ge 14$. We move three pebbles to a_4 and hence we can move one pebble each to v from a_4 and y, since $p(y) - 6 \ge 8$. Let $p(P_A^2) = 1$. If $p(P_B^2) = 0$ then we can move two pebbles to v, since $p((P_C \cup \{y\})^2) = 17$ and $f_2(P_7^2) = 17$. Assume $p(P_B^2) = 1$. Since p(x) + p(y) = 15, we can move two pebbles to v (by moving pebbles from x and y to a_4 or b_4) if $p(a_4) = 1$ or $p(b_4) = 1$. Let $p(a_3) = 1$. Clearly, we can move four pebbles to a_2 if $p(x) \ge 1$. Otherwise, we can move two pebbles to v, since $p(P_D^2) = 16$ and $f_2(P_6^2) = 16$. Let $p(a_1) = 1$ and so $1 \le p(x) \le 2$. Assume p(x) = 2 This implies that $p(y) \ge 13$. We move one pebble each to a₃ from y and x and hence we can move one pebble to v through a_1 . Then we can move the another one pebble to v, since $p(y)-4\geq 8$ and $d_{C_{2,1}^{2}}(v,y)=3$. Let p(x)=1 and so $p(b_{3})=1$. We move three pebbles to b_3 from y and hence we can move one pebble each from b_3 and y, since $p(y) - 6 \ge 8$. Thus $f_2(C_{11}^2) \le 17$. Hence we have proved the claim.

We have to show that $f_t(C_{11}^2)=8t+1$ for $t\geq 2$. Clearly, the result is true for t=2 from Claim 13.1. Assume the result is true for $2\leq t'< t$. Put 8t-1 pebbles on the vertex x and one pebble at y. Then we cannot move t pebbles to v. Thus $f_t(C_{11}^2)\geq 8t+1$. Now, consider the distribution of 8t+1 pebbles on the vertices of C_{11}^2 . Either $p(P_C^2)\geq 4t+1$ or $p(P_D^2)\geq 4t+1$. Without loss of generality, we let $p(P_C^2)\geq 4t+1\geq 9$ and hence we can move one pebble to v at a cost of at most eight pebbles from the vertices of P_C^2 , since $P_C^2\cong P_6^2$ and $f(P_6^2)=8$ by Theorem 4. Then we have at least 8t-7=8(t-1)+1 pebbles

remaining on the vertices of C_{11}^2 and hence we can move the additional t-1 pebbles to v by induction. Thus $f_t(C_{11}^2) \leq 8t+1$.

Proof of (2): $f_t(C_{13}^2) = 8t + 4$ for $t \ge 2$.

Claim 13.2. $f_2(C_{13}^2) = 20$.

Let $p(a_5) = 13$, $p(b_5) = 5$ and p(x) = 1. Then we cannot move two pebbles to v. Thus, $f_2(C_{13}^2) \geq 20$. Now, consider the distribution of 20 pebbles on the vertices of C_{13}^2 . Note that we can move one pebble to v at a cost of at most 8 pebbles, since $p(C_{13}^2) = 20$ and $f(C_{13}^2) = 13$. Suppose if we have used only seven or less pebbles to put one pebble to v, then we can move another one pebble to v, since $p(C_{13}^2) - 7 \ge 13$ and $f(C_{13}^2) = 13$. Assume that we have used exactly eight pebbles to put a pebble on the vertex v. Clearly, $p(P_A^2 - \{a_5\}) \le 2$. Assume $p(P_A^2) - \{a_5\} = 2$. Let $p(a_1) = 1$ and $p(a_2) = 1$ and so either $p(a_5) \le 1$ or $p(x) \leq 1$. Assume $p(a_5) = 1$ and so p(x) = 0, and $p(y) \geq 13$. We move three pebbles to a_5 and hence we can move one pebble to v through a_1 or a_2 . If $p(P_B^2) \geq 2$ then we can move another one pebble to v, since $p(P_D^2) \geq 9$ and $f(P_7^2) = 9$. If $p(P_B^2) \le 1$ then $p(y) \ge 8$ and hence we can move the another one pebble to v, since $d_{C_{13}^2}(v,y)=3$. Let $p(a_1)=1$ and $p(a_4)=1$ and so $p(a_5) \leq 1$ and $p(x) \leq 5$. Assume p(x) = 4 or 5. First, we move one pebble to a_4 from x and also we move one pebble each to a_5 from x and y and then we move one pebble each to a_3 from a_4 and a_5 and hence we can move one pebble to v through a_1 . Clearly, we can move another one pebble to v, since $p(P_D^2) - 2 \ge 10$ and $f(P_7^2) = 9$. Assume p(x) = 2 or 3. First, we move one pebble to a₄ from x and also we move two pebbles to a₅ from y and then we move one pebble each to a_3 from a_4 and a_5 and hence we can move one pebble to v through a_1 . Clearly, we can move another one pebble to v, since $p(P_D^2) - 4 \ge 10$ and $f(P_7^2) = 9$. Assume $p(x) \le 1$. If p(x) = 0 or $p(a_5) = 0$ then clearly we can move two pebbles to v, since $p(P_D^2) \ge 17$ and $f_2(P_7^2) = 17$. Assume p(x) = 1 and $p(a_5) = 1$. We move one pebble each to a_5 and x from y and then we move one pebble each to a_3 from a_4 and a_5 and hence we can move one pebble to v through a_1 from a_3 . Then we can move one more pebble to v, since $p(y)-4\geq 8$. Let $p(a_3)=1$ and $p(a_4)=1$ and so $p(a_5)\leq 1$ and $p(x) \leq 5$. In a similar way, we can move two pebbles to v for this case. Clearly, we can move two pebbles to v if $p(a_3) = 2$ or $p(a_4) = 2$. Assume $p(P_A^2 - \{a_5\}) = 1.$

Let $p(P_A^2 - \{a_5\}) = 1$ and so $p(a_5) + p(b_5) + p(x) + p(y) \ge 18$. Let $p(a_1) = 1$ and so $p(a_5) \le 1$. This implies that $p(x) + p(y) \ge 16$. Either $p(x) \ge 8$ or $p(y) \ge 8$. Assume $p(x) \ge 8$. Let $p(a_5) = 1$. First we move 3 pebbles to a_5 from x and hence we can move one pebble to v, since $p(a_1) = 1$. Let p(x) = 8, 9, or 10. After using six pebbles from x, we move $\lfloor \frac{p(x)}{2} \rfloor$ pebbles to y. Clearly, $p(y) + \lfloor \frac{p(x) - 6}{2} \rfloor \ge 8$ and hence we can move one more pebble to v. Let $p(x) \ge 12$. After using six pebbles from x, we move $\lfloor \frac{p(y)}{2} \rfloor$ pebbles to x.

Clearly, $p(x) + \lfloor \frac{p(y)}{2} \rfloor \ge 8$ and hence we can move one more pebble to v. Let p(x) = 11. If $p(P_B^2 - \{b_5\}) = 1$ then we can move one more pebble to v, since p(x) = 5 and $p(y) \ge 5$. Assume $p(P_B^2 - \{b_5\}) = 0$. Then $p(y) + \lfloor \frac{p(x) - 6}{2} \rfloor \ge 8$ and hence we can move one more pebble to v. Assume $p(x) \le 7$. Clearly, we can move two pebbles to v if $p(x) \ge 2$. Let $p(x) \le 1$. We move three pebbles to a_5 and then we move one pebble to v through a_1 . Then we can move the another one pebble to v, since $p(y) - 6 \ge 8$. Let $p(a_5) = 0$ and so $p(x) + p(y) \ge 18$. Let $p(x) \ge 9$. Clearly we can move one pebble to v easily if $p(x) \le 12$ (by moving pebbles from x to y after using eight pebbles from x) or $p(x) \ge 14$ (by moving pebbles from y to x after using eight pebbles from x). Assume p(x) = 13. Clearly, we are done if $p(P_B^2) = 1$. Assume $p(P_B^2) = 0$. We move two pebbles to y and hence we can move one pebble each to v from y and x, since p(y) + 2 = 8 and p(x) - 4 = 9. In a similar way, we can move one pebble to v if $p(a_i) = 1$ for some i = 2, 3, 4.

Let $p(P_A^2 - \{a_5\}) = 0$ and so $p(a_5) + p(b_5) + p(x) + p(y) = 20$. Without loss of generality, let $p(a_5) + p(x) \ge 10$ and so $p(b_5) + p(y) \le 10$. If $p(a_5) + p(x) \le 13$, then we move $|\frac{p(a_5)+p(x)-9}{2}|$ pebbles to b_5 and y, and hence we can move two pebbles to v, since $p(a_5)+p(x)\geq 9$, $p(b_5)+p(y)+\lfloor\frac{p(a_5)+p(x)-9}{2}\rfloor\geq 9$ and $f(P_7^2) = 9$. If $p(a_5) + p(x) \ge 15$, then we move $\lfloor \frac{p(b_5) + p(y)}{2} \rfloor$, pebbles to a_5 and x, and hence we can move two pebbles to v, since $p(a_5) + p(x) + \lfloor \frac{p(b_5) + p(y)}{2} \rfloor \ge 17$ and $f_2(P_7^2) = 17$. Let $p(a_5) + p(x) = 14$ and so $p(b_5) + p(y) = 6$. If both $p(b_5)$ and p(y) are even then we can move three pebble to x and hence we can move two pebbles to v, since $f_2(P_7^2) = 17$. Assume both $p(b_5)$ and p(y) are odd. Let $p(b_5) = 3$ and p(y) = 3. If $p(x) \ge 1$ then we can move one pebble to v through b_2 using at most five pebbles from the vertices a_5 and x. Hence we can move one more pebble to v, since $p(a_5) + p(x) - 5 \ge 9$ and $f(P_7^2) = 9$. Assume p(x) = 0. Then we can move one pebble to v through b_2 using six pebbles from the vertex a_5 and then we can move one pebble to v, since $p(a_5) = 8$ and $d_{C_{13}^2}(v, a_5) = 3$. Similarly, we can move two pebbles to v if $p(b_5) = 1$ and p(y) = 5 or $p(b_5) = 5$ and p(y) = 1. Thus, $f_2(C_{13}^2) \le 20$. Hence we have proved the claim.

We have to show that $f_t(C_{13}^2) = 8t + 4$ for $t \ge 2$. Clearly, the result is true for t = 2 from Claim 13.2. Assume the result is true for $2 \le t' < t$. Put 8t - 3 pebbles on the vertex a_5 , 5 pebbles on the vertex b_5 and one pebble at x. Then we cannot move t pebbles to v. Thus $f_t(C_{13}^2) \ge 8t + 4$. Now, consider the distribution of 8t + 4 pebbles on the vertices of C_{13}^2 . Either $p(P_C^2) \ge 4t + 2$ or $p(P_D^2) \ge 4t + 2$. Without loss of generality, we let $p(P_C^2) \ge 4t + 2 \ge 10$ and hence we can move one pebble to v at a cost of at most eight pebbles, from the vertices of P_C^2 , since $P_C^2 \cong P_7^2$ and $f(P_7^2) = 9$ by Theorem 4. Then we have $8t + 4 - 8 \ge 8(t - 1) + 4$ pebbles remaining on the vertices of C_{13}^2

and hence we can move the additional t-1 pebbles to v by induction. Thus $f_t(C_{13}^2) \leq 8t+4$.

Theorem 14. (1)
$$f_t(C_{4k+3}^2) = t2^{k+1} + 1 \ (k \ge 3)$$
, (2) $f_t(C_{4k+1}^2) = (t-1)2^k + \lceil \frac{2^{k+2}}{3} \rceil + 1 = (t-1)2^k + \begin{cases} 2\lceil \frac{2^{k+1}}{3} \rceil + 1 & \text{if } k \text{ is even} \\ 2\lfloor \frac{2^{k+1}}{3} \rfloor + 2 & \text{if } k \text{ is odd} \end{cases}$ $(k \ge 4)$.

Proof. Consider the graph C_{2n+1}^2 , where $n \geq 7$.

Proof of (1): Consider the graph C_{4k+3}^2 $(k \ge 3)$. Put $t2^{k+1} - 1$ pebbles on the vertex x and one pebble on the vertex x. Then we cannot move t pebbles to v and thus $f_t(C_{4k+3}^2) \ge t2^{k+1} + 1$. Next, we have to show that $f_t(C_{4k+3}^2) \leq t2^{k+1} + 1$. Clearly, the result is true for t=1 by Theorem 8. Assume the result is true for $1 \le t' \le t$. Consider the distribution of $t2^{k+1} + 1$ pebbles on the vertices of C_{4k+3}^2 . Without loss of generality, we assume that $p(P_C^2) \ge t2^k + 1 \ge 2^{k+1} + 1$. Clearly, we can move one pebble to v, since $P_C^2 \cong P_{2(k+1)}^2$ and $f(P_{2(k+1)}^2) = 2^{k+1}$. Then we have $t2^{k+1} - 2^{k+1} + 1 \ge 2^{k+1}$ $(t-1)2^{k+1}+1$ pebbles remaining on the vertices of C_{4k+3}^2 and hence we can move the additional t-1 pebbles to v by induction. Thus $f_t(C_{4k+3}^2) \leq t2^{k+1}+1$. **Proof of (2):** Consider the graph C_{4k+1}^2 $(k \ge 4)$. If k is even, then we place $(t-1)2^k + \lceil \frac{2^{k+1}}{3} \rceil$ pebbles on the vertex a_{n-1} and place $\lceil \frac{2^{k+1}}{3} \rceil$ pebbles on the vertex b_{n-1} . If k is odd, then we place $(t-1)2^k + \lfloor \frac{2^{k+1}}{3} \rfloor$ pebbles on the vertex a_{n-1} , place $\lfloor \frac{2^{k+1}}{3} \rfloor$ pebbles on the vertex b_{n-1} and place one pebble at x. Then, we cannot move t pebbles to v. Thus, $f_t(C_{4k+1}^2) \ge (t-1)2^k + \lceil \frac{2^{k+2}}{3} \rceil + 1$. Now, consider the distribution of $(t-1)2^k + \lceil \frac{2^{k+2}}{3} \rceil + 1$ pebbles on the vertices of C_{4k+1}^2 . Clearly, the result is true for t=1 by Theorem 8. We assume the result is true for $1 \le t' < t$. Without loss of generality, we assume that $p(P_2^2) > t2^{k-1} + 1 > 2^k + 1$. Clearly, we can reconstruct the period of t. $p(P_C^2) \ge t2^{k-1} + 1 \ge 2^k + 1$. Clearly, we can move one pebble to v at a cost of at most 2^k pebbles, since $P_C^2 \cong P_{2k+1}^2$ and $f(P_{2k+1}^2) = 2^k + 1$. Then we have at least $(t-2)2^k + \lceil \frac{2^{k+2}}{3} \rceil + 1$ pebbles remaining on the vertices of C_{4k+1}^2 and hence we can move the additional t-1 pebbles to v by induction. Thus $f_t(C_{4k+1}^2) \le (t-1)2^k + \lceil \frac{2^{k+2}}{3} \rceil + 1.$

Acknowledgments

We thank the anonymous referees for the suggestions and useful comments for the improvement of the paper.

$G = C_n^2$	f(G)	$f_t(G) \ (t \ge 2)$
For $n=4$	4	2t+2
For $n = 6$	6	4t
For $n = 8$	8	4t+2
For $n = 10$	10	8t
For $n = 12$	12	8t + 3
For $n = 4k + 2 \ (k \ge 3)$	2^{k+1}	$t(2^{k+1})$
For $n = 4k \ (k \ge 4)$	$2\lfloor \frac{2^{k+1}}{3} \rfloor + 1$	$\left[(t-1)2^k + 2\left\lfloor \frac{2^{k+1}}{3} \right\rfloor + 1 \right]$

Table 1. The t-pebbling numbers of squares of even cycles

$G = C_n^2$	f(G)	$f_t(G) \ (t \ge 2)$
For $n=5$	5	2t+3
For $n = 7$	7	4t+1
For $n = 9$	9	4t+3
For $n = 11$	11	8t + 1
For $n = 13$	13	8t + 4
For $n = 4k + 3 \ (k \ge 3)$	$2^{k+1} + 1$	$t2^{k+1} + 1$
For $n = 4k + 1 \ (k \ge 4)$	$\lceil \frac{2^{k+2}}{3} \rceil + 1$	$\left[(t-1)2^k + \left\lceil \frac{2^{k+2}}{3} \right\rceil + 1 \right]$

Table 2. The t-pebbling numbers of squares of odd cycles

References

- A. Lourdusamy, t-pebbling the graphs of diameter two, Acta Ciencia Indica, XXLX (M. No. 3) (2003), 465-470.
- [2] A. Lourdusamy, and T. Mathivanan, *The t-pebbling conjecture on squares of paths*, Submitted for publication.
- [3] A. Lourdusamy, and T. Mathivanan, The t-pebbling number of the Jahangir graph J_{3,m}, Proyecciones Journal of Mathematics, Vol. 34, No.2 (2015), 161-174.
- [4] A. Lourdusamy and A. Punitha Tharani, On t-pebbling graphs, Utilitas Mathematica, Vol. 87 (2012), 331-342.
- [5] A. Lourdusamy, S. Samuel Jayaseelan and T. Mathivanan, The t-pebbling number of Jahangir graph, International Journal of Mathematical Combinatorics, Vol. 1 (2012), 92-95.
- [6] A. Lourdusamy and S. Somasundaram, *The t-pebbling number of graphs*, South East Asian Bulletin of Mathematics, Vol. 30 (2006), 907-914.
- [7] D. A. Mojdeh and A. N. Ghameshlou, *Domination in Jahangir graph J*_{2,m}, International Journal of Contemporary Mathematical Sciences, Vol. 2, No. 24, (2007), 1193-1199.
- [8] F.R.K. Chung, Pebbling in hypercubes, SIAM Journal on Discrete Mathematics, Vol. 2, No. 4 (1989), 467-472.
- [9] L. Pachter, H.S. Snevily and B. Voxman, *On pebbling graphs*, Congressus Numerantium, Vol. 107 (1995), 65-80.

- [10] Y. Ye, M. Zhai and Y. Zhang, *Pebbling number of squares of odd cycles*, Discrete Mathematics, Vol. 312 (2012), 3174-3178.
- [11] Y. Ye, P. Zhang and Y. Zhang, *The pebbling number of squares of even cycles*, Discrete Mathematics, Vol. 312 (2012), 3203-3211.