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ON MULTIPLICATION GROUP OF AN AG-GROUP

M. SHAH1, A. ALI2, I. AHMAD3 AND V. SORGE4

Abstract. We are investigating the multiplication group of a special class
of quasigroup called AG-group. We prove some interesting results such as:
The multiplication group of an AG-group of order n is a non-abelian group
of order 2n and its left section is an abelian group of order n. The inner
mapping group of an AG-group of any order is a cyclic group of order 2.
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1. Introduction

A groupoid G is an AG-group if (i) (xy)z = (zy)x for all x, y, z ∈ G, (ii)
There exists left identity e ∈ G (that is ex = x for all x ∈ G), (iii) For all

x ∈ G there exists x
−1 ∈ G such that x

−1
x = xx

−1
= e. x and x

−1
are called

inverses of each other. AG-group is a subclass of cancellative AG-groupoids
[9]. Some basic properties of AG-groups have been derived in [8].

AG-group is a generalization of abelian group and is a special quasigroup.
AG-groups have been counted computationally in [11] and algebraically in [10].
The counting of AG-groups up to order 6 can also be found in [1]. AG-groups
have been studied as a generalization of abelian group as well as a special case
of quasigroups in [10]. The present paper studies the multiplication group and
inner mapping group of an AG-group and thus is related to both aspects of
AG-group.
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Multiplication group and inner mapping group of a loop have been investi-
gated in a number of papers for example [2, 13, 5, 6, 7]. This has always been
remained the most interesting topic of group theorists in loop theory. Multi-
plication group of quasigroup has also been considered in quite a few papers
for example [12, 3]. Quasigroup does not have inner mapping group because it
does not have an identity element unless it is not a loop. An AG-group though
not a loop but has a left identity and thus has a multiplication group as well
as an inner mapping group. We will prove here some interesting results about
the multiplication group and inner mapping group of an AG-group that do
not hold in case of a loop. For example for an AG-group G of order n the LS

is an abelian group of order n. Its multiplication group is a nonabelian group
of order 2n. The inner mapping group of an AG-group is always a cyclic group
of order 2 regardless of its order. The following lemma of [8] will be used to
prove various results.

Lemma 1. Let G be an AG-group G. Let a, b, c, d ∈ G and e is the left identity
in G. Then the following conditions hold in G.

(i) (ab)(cd) = (ac)(bd) medial law;
(ii) ab = cd. This implies that ba = dc;

(iii) a · bc = b · ac;
(iv) (ab)(cd) = (db)(ca) paramedial law;
(v) (ab)(cd) = (dc)(ba);

(vi) ab = cd. This implies that d−1b = ca−1;
(vii) If e the right identity in G then it becomes left identity in G, i.e, ae =

a. This implies that ea = a;

Let G be an AG-group and a ∈ G be an arbitrary element. The mapping
La : G → G defined by La(x) = ax is called left translation on G and the
mapping Ra : G→ G defined by Ra(x) = xa is called right translation on G.

Our first result discusses the relations between a left translation and a right
translation.

Lemma 2. Let G be an AG-group. Let a, b ∈ G and e is left identity in G.
Then

(i) LaRb = Rab.
(ii) RaRb = Lab.

(iii) LaLb = R(ae)Rb.
(iv) LaLb = L(ae)b = L(be)a.
(v) RaLb = R(ae)b.

(vi) LaLb = LbLa.
(vii) RaLb = RbLa.

Proof. (i) LaRb(x) = La(xb) = a(xb) = x(ab) = Rab(x). ⇒ LaRb = Rab.
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(ii) RaRb(x) = Ra(xb) = (xb)a = (ab)x = Lab(x). ⇒ RaRb = Lab.
(iii) LaLb(x) = La(bx) = a(bx) = (ea)(bx) = (xb)(ae) = R(ae)(xb) = R(ae)Rb(x).

This implies that LaLb = R(ae)Rb.
(iv) By (ii) and (iii) and left invertive law.
(v) RaLb(x) = Ra(bx) = (bx)a = (bx)(ea) = (ae)(xb) = Lae(xb) = LaeRb(x).

This implies that RaLb = LaeRb.
This implies that RaLb = R(ae)b by (i).

(vi) LaLb = L(be)a by (iv). This implies that LaLb = LbLa again by (iv).
(vii) RaLb = R(ae)b by (v). This implies that RaLb = R(be)a by left invertive

law. This implies that RaLb = RbLa again by (v).
�

Remark 1. From Lemma 2 we note that if G is an AG-group, then the left
translation La and the right translation Ra behave like an even permutation
and an odd permutation respectively, that is;

LaLa = La, RaRa = La, LaRa = Ra, RaLa = Ra.

Next we recall the following definition.

Definition 1. Let G be an AG-group. Then the set LS = {La : La(x) = ax for
all x ∈ G} is called left section of G and the set RS = {Ra : Ra(x) = xa for
all x ∈ G} is called right section of G.

We remark that left section of a loop is not a group but left section of an
AG-group does form a group as the following theorem claims.

Theorem 3. Let G be an AG-group of order n. Then LS is an abelian group
of order n.

Proof. By definition LS = {La : La(x) = ax for all x ∈ G}. Let La, Lb ∈ LS for
some a, b ∈ G. Then by Lemma 2 Part(iv), we have LaLb = L(ae)b ∈ LS ⇒ LS

is an AG-groupiod. LeLa = L(ee)a = La and LaLe = L(ae)e = L(ee)a = La.
Therefore, Le is the identity in LS .

Let La, Lb, Lc ∈ LS . Consider (LaLb)Lc = L(ae)bLc = L[{(ae)b}e]c = L(ce)((ae)b)

= L(ce)((be)a) = L(ae)((be)c) = LaL(be)c = La(LbLc). Let La ∈ LS ⇒ a ∈ G ⇒
a−1 ∈ G⇒ a−1e ∈ G. Let a−1e = b then Lb ∈ LS .

Now LaLb = L(ae)b = L(ae)(a−1e) = Le = LbLa ⇒ Lb is the inverse of La.
Thus LS is a group. Since from Lemma 2, we have LaLb = LbLa. Therefore
LS is an abelian group. �

We illustrate the above result by an example.

Example 1. An AG-group of order 3 :
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· 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

The Multiplication group of the AG-group given in Example 1 is isomorphic
to S3, the symmetric group of degree 3 as the following example shows.

Example 2. Multiplication group of the AG-group given in Example 1.

· L0 L1 L2 R0 R1 R2

L0 L0 L1 L2 R0 R1 R2

L1 L1 L2 L0 R2 R0 R1

L2 L2 L0 L1 R1 R2 R0

R0 R0 R1 R2 L0 L1 L2

R1 R1 R2 R0 L2 L0 L1

R2 R2 R0 R1 L1 L2 L0

Here LS = {L0, L1, L2} which is an abelian group as the following table
shows:

· L0 L1 L2

L0 L0 L1 L2

L1 L1 L2 L0

L2 L2 L0 L1

But RS = {R0, R1, R2} does not form an AG-group as the following table
shows:

· R0 R1 R2

R0 L0 L1 L2

R1 L2 L0 L1

R2 L1 L2 L0

Remark 2. Right section does not form even an AG-groupoid.

Definition 2. Let G be an AG-group. The set 〈La, Ra : a ∈ G〉 forms a
group which is called multiplication group of the AG-group G and is denoted
by M(G) i.e M(G) = 〈La, Ra : a ∈ G〉.

Lemma 2 guarantees that for an AG-group G, M(G) = 〈La, Ra : a ∈ G〉 =
{La, Ra : a ∈ G}

Theorem 4. Let G be an AG-group of order n. The set {La, Ra : a ∈ G}
forms a non-abelian group of order 2n which is called multiplication group of
the AG-group G and is denoted by M(G) i.e M(G) = {La, Ra : a ∈ G}.
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Proof. From Lemma 2, it is clear that M(G) is closed. Le plays the role
of identity as LaLe = LeLa = La and RaLe = R(ae)e = R(ee)a = Ra =
Rea = LeRa. By Theorem 3, La ∈ M(G) has an inverse La−1 ∈ M(G). Let
Ra ∈ M(G) ⇒ a ∈ G ⇒ a−1 ∈ G ⇒ Ra−1 ∈ M(G) and RaRa−1 = Laa−1 =
Le = La−1a = Ra−1Ra. Therefore Ra−1 of Ra is in M(G). Associativity in
M(G) follows from the associativity of mappings. Thus M(G) is a group.
Note that M(G) is non-abelian because RaRb 6= RbRa. �

To make things a bit more clear, we consider the following example.

Example 3. An AG-group of order 4.

· 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 3 2 1 0
3 2 3 0 1

Its multiplication group is:

Example 4. Multiplication group of the AG-group in Example 3.

· L0 L1 L2 L3 R0 R1 R2 R3

L0 L0 L1 L2 L3 R0 R1 R2 R3

L1 L1 L2 L3 L0 R3 R0 R1 R2

L2 L2 L3 L0 L1 R2 R3 R0 R1

L3 L3 L0 L1 L2 R1 R2 R3 R0

R0 R0 R1 R2 R3 L0 L1 L2 L3

R1 R1 R2 R3 R0 L3 L0 L1 L2

R2 R2 R3 R0 R1 L1 L2 L3 L0

R3 R3 R0 R1 R2 L2 L3 L0 L1

From Example 3 we observe that: (i) The multiplication group of an AG-
group is not necessarily dihedral. For example, (L1 · R3)

2 = R2
2 = L3 6= L0.

So here M(G) is not D4. From Examples 1 and 3 we observe that: (ii) The
left sections in both the examples are C3 and C4 respectively.

Theorem 5. Let G be an AG-group. Let a be an element of G distinct from
e. Then a is self-inverse ⇐⇒ R−1a = Ra is self-inverse.

Proof. Suppose a is self-inverse. Since Ra(x) = xa, then Ra is of order 2, as
Ra(Ra(x)) = (xa)a = (xa)a−1 = x this implies R2

a = Le this further implies
R−1a = Ra.

Conversely let R2
a = Le then R2

a(x) = Le(x) for all x ∈ G. This implies that
(xa)a = ex = x. Now by left invertive law, a2x = x. This by right cancellation
implies a2 = e or a−1 = a. �
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Remark 3. Ra cannot fix all the elements of AG-group G. For if we suppose
that Ra fixes all the elements. That is; Ra(x) = x for all x ∈ G. This implies
xa = x for all x ∈ G. Hence a is the right identity and thus G is abelian.

Theorem 6. The inner mapping group of every AG-group G is Inn(G) =
{L0, R0} ∼= C2.

Proof. As Ra(0) = 0a = a. This implies that only R0 maps 0 on 0. On
the other hand L0(0) = 0 and no other La can map 0 on 0. Because let
La(0) = 0 where a 6= 0. Then a0 = 0. This implies R0(a) = 0. But R0(0) = 0.
This implies that R0 is not a permutation which is a contradiction. Hence
Inn(G) = {L0, R0} ≡ C2. The following table verifies the claim.

· L0 R0

L0 L0 R0

R0 R0 L0

Hence the proof. �

Again the following are some quick observations:

(i) The Inn(G) is not necessarily normal in M(G) for example consider the
multiplication group of the AG-group given in 3. Here L1 {L0, R0} =
{L1, R3} 6= {L1, R1} = {L0, R0}L1.

(ii) For every AG-group G, LS being of index 2 is normal in M(G) and hence
M(G)/LS ≡ C2.

(iii) For every AG-group G, left multiplication group of G coincides with LS

and right multiplication group of G coincides with M(G).

A non-associative quasigroup can be left distributive as well as right dis-
tributive but a non-associative AG-group can neither be left distributive nor
right distributive as the following theorem shows.

Theorem 7. Every left distributive AG-group and every right distributive AG-
group is abelian group.

Proof. Let G be a left distributive AG-group. Then for all a, b, c ∈ G, we have

a(bc) = (ab)(ac)

= (aa)(bc) by Lemma 1 Part(i)

which implies that a = aa by right cancellation.

This further implies that G is an abelian group. The second part is similar.
A non-associative quasigroup can be left distributive as well as right distribu-
tive but a non-associative AG-group can neither be left distributive nor right
distributive as the following theorem shows. �
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Theorem 8. If G is an AG-group then the M(G) cannot be the group of
automorphisms of L.

Proof. Assume that the M(G) is the group of automorphisms of G. It means
that every element of M(G) is an automorphism of G. Since La, Ra ∈ M(G)
for all a ∈ G. Thus La and Ra are both automorphisms of G. So we can write

(xy)La = (x)La · (y)La ∵ La is homomorphism

⇒ a(xy) = (ax)(ay) for all x, y ∈ G

⇒ G is left distributive

Similarly,

(xy)Ra = (x)Ra · (y)Ra ∵ Ra is homomorphism

⇒ (xy)a = (xa)(ya) for all x, y ∈ G

⇒ G is right distributive.

Thus G is distributive which is a contradiction to Theorem 7. Hence our
supposition is wrong and thus M(G) of an AG-group G cannot be the group
of automorphisms of G. �

Theorem 9. Let G be an AG-group and M(G) its multiplication group. Let
x, y ∈ G and e be the identity element in G. Then

(i) R−1x = Rx−1 ;
(ii) L−1x = Lx−1e.

Proof. (i) Since G satisfies right inverse property. Therefore,

(yx)x−1 = y

⇒ Rx−1Rx(y) = y = Le(y),∀x, y ∈ G

⇒ Rx−1Rx = Le

⇒ R−1x = Rx−1 .

(ii) By Lemma 2 Part (iv)

LxLx−1e = L(xe)(x−1e) = L(xx−1)e = Le

⇒ L−1x = Lx−1e.

�

Future Work: We have proved that an AG-group G of order n has its
multiplication group as a nonabelian group of order 2n and its LS is an abelian
group of order n. It is now an interesting question which nonabelian group
can occur as a multiplication group of an AG-group G and which cannot and
which abelian group can occur as its left section and which cannot. Similar
work has been done for loops for example see [4].
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