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ON MULTIPLICATION GROUP OF AN AG-GROUP

M. SHAH!, A. ALI2, I. AHMAD? AND V. SORGE*

ABSTRACT. We are investigating the multiplication group of a special class
of quasigroup called AG-group. We prove some interesting results such as:
The multiplication group of an AG-group of order n is a non-abelian group
of order 2n and its left section is an abelian group of order n. The inner
mapping group of an AG-group of any order is a cyclic group of order 2.
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1. INTRODUCTION

A groupoid G is an AG-group if (i) (:L‘y)z = (zy)x for all z,y,z € G, (ii)
There exists left 1dent1ty e € G (that 1s er = x for all x € G), (iii) For all
z € G there exists z = € G such that z z =2z =e. z and 2 are called
inverses of each other. AG-group is a subclass of cancellative AG-groupoids
[9]. Some basic properties of AG-groups have been derived in [8].

AG-group is a generalization of abelian group and is a special quasigroup.
AG-groups have been counted computationally in [11] and algebraically in [10].
The counting of AG-groups up to order 6 can also be found in [1]. AG-groups
have been studied as a generalization of abelian group as well as a special case
of quasigroups in [10]. The present paper studies the multiplication group and
inner mapping group of an AG-group and thus is related to both aspects of
AG-group.
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Multiplication group and inner mapping group of a loop have been investi-
gated in a number of papers for example [2, 13, 5, 6, 7]. This has always been
remained the most interesting topic of group theorists in loop theory. Multi-
plication group of quasigroup has also been considered in quite a few papers
for example [12, 3]. Quasigroup does not have inner mapping group because it
does not have an identity element unless it is not a loop. An AG-group though
not a loop but has a left identity and thus has a multiplication group as well
as an inner mapping group. We will prove here some interesting results about
the multiplication group and inner mapping group of an AG-group that do
not hold in case of a loop. For example for an AG-group G of order n the Lg
is an abelian group of order n. Its multiplication group is a nonabelian group
of order 2n. The inner mapping group of an AG-group is always a cyclic group
of order 2 regardless of its order. The following lemma of [8] will be used to
prove various results.

Lemma 1. Let G be an AG-group G. Let a,b,c,d € G and e is the left identity
in G. Then the following conditions hold in G.
(i) (ab)(cd) = (ac)(bd) medial law;
(ii) ab = cd. This implies that ba = dc;
(iii) a-bec=b-ac;
(iv) (ab)(cd) = (db)(ca) paramedial law;
(v) (ab)(cd) = (dc)(ba);
(vi) ab = cd. This implies that d='b = ca™";
(vii) If e the right identity in G then it becomes left identity in G, i.e, ae =
a. This implies that ea = a;

Let G be an AG-group and a € G be an arbitrary element. The mapping
L, : G — G defined by L,(x) = az is called left translation on G and the
mapping R, : G — G defined by R,(x) = xa is called right translation on G.

Our first result discusses the relations between a left translation and a right
translation.

Lemma 2. Let G be an AG-group. Let a,b € G and e is left identity in G.
Then

(i) LoRp = Rap.

(i) RqRp = Lgp.

(i4i) LoLy = R4e) Ro.

(iv) LoLy = L(ae)b = L(be)a‘

(1}) RaLb = R(ae)b-

(m’) LaLb = LbLa.
(vii) RqLy = RyLyg.

Proof. (1) LoRp(x) = La(xb) = a(xb) = x(ab) = Rep(x). = LaRp = Rgp-
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(ii) RqRp(x) = Ra(xb) = (zb)a = (ab)x = Lap(x). = RaRy = Lap.
(iii) LoLy(7) = La(bz) = a(bx) = (ea)(bz) = (xb)(ae) = Riue)(2b) = R(qe) Ro(T).
This implies that L,Ly = R(ae) Ry.
(iv) By (ii) and (iii) and left invertive law.
(V) RoLp(x) = Ra(bzx) = (bx)a = (bx)(ea) = (ae)(xb) = Lae(xb) = LaeRp(x).
This implies that RyLp = Lge Rp.
This implies that RoLy = Rse)p by (i)
(vi) LaLp = L(ye)q by (iv). This implies that L, Ly = Ly L, again by (iv).
(vii) RoLy = Rgey by (v). This implies that RyLy = Rpe)q by left invertive
law. This implies that RyLy = RpL, again by (v).
O

Remark 1. From Lemma 2 we note that if G is an AG-group, then the left
translation L, and the right translation R, behave like an even permutation
and an odd permutation respectively, that is;

LaLa = Laa RaRa = Laa LaRa = Raa RaLa = Ra-
Next we recall the following definition.

Definition 1. Let G be an AG-group. Then the set Ls = {Lq : Lq(x) = ax for
all x € G} is called left section of G and the set Rg = {R, : Rq(x) = xa for
all x € G} is called right section of G.

We remark that left section of a loop is not a group but left section of an
AG-group does form a group as the following theorem claims.

Theorem 3. Let G be an AG-group of order n. Then Lg is an abelian group
of order n.

Proof. By definition Lg = {L, : Lo(z) = axfor all z € G}. Let Ly, Ly € Lg for
some a,b € G. Then by Lemma 2 Part(iv), we have LoLy = L4y € Ls = Ls
is an AG-groupiod. LeLqs = Leeya = La and LoLe = Lge)e = Lce)a = La-
Therefore, L. is the identity in Lg.

Let Lq, Ly, L. € Lg. Consider (LaLb)Lc = L(ae)ch = L[{(ae)b}e]c = L(ce)((ae)b)
= Lce)((be)a) = Liae)((be)e) = LaLl(veye = La(LpLe). Let Ly € Ls = a € G =
aleG=a'lecG. Let ate =bthen L; € Lg.

Now LoLy = Ligeyy, = L(ae)(a—te) = Le = LyLa = Ly is the inverse of Lg.
Thus Lg is a group. Since from Lemma 2, we have L,L, = LyL,. Therefore
Lg is an abelian group. U

We illustrate the above result by an example.

Example 1. An AG-group of order 3 :
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The Multiplication group of the AG-group given in Example 1 is isomorphic
to S3, the symmetric group of degree 3 as the following example shows.

Example 2. Multiplication group of the AG-group given in Example 1.

- | Lo L1 Ly Ry Ri Ry
Lo | Lo L1 Ly Ry Ri Ry
Ly | Ly Ly Ly Ry Ry Ry
Ly | Ly Lo L1 Ry Ry Ry
Ro| Ry Ri Ry Lo Ly Lo
Ri|Ry Ry Ry Lo Lo L
Ry | Ry Ryg Ry Ly Lo Lo

Here Ls = {Lo, L1, Lo} which is an abelian group as the following table
shows:

Ly Ly Ly
Lo | Lo Ly Lo
Ly | Ly Ly Lo
Lo | Ly Lo Ly

But Rg = {Ro, R1, R2} does not form an AG-group as the following table
shows:
Ry Ry Ry
Ro | Lo L, IL»
Ry| Ly Lo Iy
Ry | Ly Ly Lo

Remark 2. Right section does not form even an AG-groupoid.

Definition 2. Let G be an AG-group. The set (Ly, R, : a € G) forms a
group which is called multiplication group of the AG-group G and is denoted
by M(G) i.e M(G) = (Lq, R, : a € G).

Lemma 2 guarantees that for an AG-group G, M(G) = (L4, R, :a € G) =
{La, Ry :a € G}

Theorem 4. Let G be an AG-group of order n. The set {Lq, Ry : a € G}
forms a mon-abelian group of order 2n which is called multiplication group of

the AG-group G and is denoted by M(G) i.e M(G) = {Lq, R, : a € G}.
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Proof. From Lemma 2, it is clear that M(G) is closed. L. plays the role
of identity as L,L. = L¢L, = L, and R,L. = Raeye = Rieeya = Ra =
Reow = LeR,. By Theorem 3, L, € M(G) has an inverse L,-1 € M(G). Let
R,eEMG)=aeG@=a'leG=R,1€MG)and RyR; 1 = Ly =
L. = L,~1, = R,-1R,. Therefore R,—1 of R, is in M(G). Associativity in
M(G) follows from the associativity of mappings. Thus M(G) is a group.
Note that M (G) is non-abelian because R, R, # RpR,. O

To make things a bit more clear, we consider the following example.

Example 3. An AG-group of order 4.

-0 1 2 3
0[0 1 2 3
1110 3 2
203210
3/2 3 01

Its multiplication group is:

Example 4. Multiplication group of the AG-group in Example 3.
- | Lo Ly Lo L3 Ry Ry Ry Rj
Lo | Ly L1 Ly L3 Ry Ri Rs R3
Li| Ly Ly Ly Lo R3 Ry Ri Ro
Ly | Ly L3 Lo L1 Ry R3 Ry Ry
L3 | L3 Lo Li Ly Ri Ry Rz Ry
Ry|Ry Rt Ry Rz Lo Ly Lo L3
Ry |Ri Ry R3 Ro L3 Lo Li Lo
Ry| Ry R3 Ro Ry L1 Lo L3 Lo
R3|R3 Ry Ri Ro Lo L3 Lo L

From Example 3 we observe that: (i) The multiplication group of an AG-
group is not necessarily dihedral. For example, (L; - R3)? = R3 = L3 # Ly.
So here M(G) is not D4. From Examples 1 and 3 we observe that: (ii) The
left sections in both the examples are C3 and Cy respectively.

Theorem 5. Let G be an AG-group. Let a be an element of G distinct from
e. Then a is self-inverse <= R, = R, is self-inverse.

Proof. Suppose a is self-inverse. Since R,(z) = xa, then R, is of order 2, as
Ru(Ru(7)) = (za)a = (za)a™! = x this implies R2 = L. this further implies
R;'=R,.

Conversely let R2 = L, then R2(z) = L¢(z) for all x € G. This implies that
(ra)a = ex = x. Now by left invertive law, a?x = x. This by right cancellation

implies a®> = e or a™! = a. O
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Remark 3. R, cannot fix all the elements of AG-group G. For if we suppose
that R, fizes all the elements. That is; Ry(x) = x for all x € G. This implies
xa =z for allx € G. Hence a is the right identity and thus G is abelian.

Theorem 6. The inner mapping group of every AG-group G is Inn(G) =
{Lo, Ro} = Co.

Proof. As R,(0) = 0a = a. This implies that only Ry maps 0 on 0. On
the other hand Ly(0) = 0 and no other L, can map 0 on 0. Because let
L4(0) = 0 where a # 0. Then a0 = 0. This implies Ryg(a) = 0. But Ry(0) = 0.
This implies that Ry is not a permutation which is a contradiction. Hence
Inn(G) = {Lo, Ry} = C3. The following table verifies the claim.

Hence the proof. O

Again the following are some quick observations:
(i) The Inn(G) is not necessarily normal in M (G) for example consider the
multiplication group of the AG-group given in 3. Here Lq{Lgy, Ry} =
{L1, Rs} # {L1, R} = {Lo, Ro} L1.
(ii) For every AG-group G, Lg being of index 2 is normal in M (G) and hence
(iii) For every AG-group G, left multiplication group of G coincides with Lg
and right multiplication group of G coincides with M (G).
A non-associative quasigroup can be left distributive as well as right dis-
tributive but a non-associative AG-group can neither be left distributive nor
right distributive as the following theorem shows.

Theorem 7. Every left distributive AG-group and every right distributive AG-
group s abelian group.
Proof. Let G be a left distributive AG-group. Then for all a, b, c € G, we have
a(be) = (ab)(ac)
= (aa)(bc) by Lemma 1 Part(i)
which implies that a = aa by right cancellation.

This further implies that G is an abelian group. The second part is similar.
A non-associative quasigroup can be left distributive as well as right distribu-
tive but a non-associative AG-group can neither be left distributive nor right
distributive as the following theorem shows. O
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Theorem 8. If G is an AG-group then the M(G) cannot be the group of
automorphisms of L.

Proof. Assume that the M (G) is the group of automorphisms of G. It means
that every element of M (G) is an automorphism of G. Since Ly, R, € M(G)
for all @ € G. Thus L, and R, are both automorphisms of G. So we can write
(xy)La = (x)Lq-(y)Lg . Lq is homomorphism
= a(zy) = (ax)(ay) for all z,y € G
= G is left distributive
Similarly,
(xzy)Re = ()R- (y)Rq . Ry is homomorphism
= (zy)a = (za)(ya) for all z,y € G
= (@ is right distributive.
Thus G is distributive which is a contradiction to Theorem 7. Hence our

supposition is wrong and thus M (G) of an AG-group G cannot be the group
of automorphisms of G. O

Theorem 9. Let G be an AG-group and M(G) its multiplication group. Let
x,y € G and e be the identity element in G. Then
(1) R;l = R,-1;
(ii) L' = Ly 1,.
Proof. (i) Since G satisfies right inverse property. Therefore,
(yr)a™ =y
= R,-1R;(y)=y=Lc(y),Vz,y € G
= R$71 R, =1L,
= R;l = Rx—l.
(ii) By Lemma 2 Part (iv)
LyLy—1. = L(xe)(:cfle) = L(acxfl)e = L
= L =L,
O

Future Work: We have proved that an AG-group G of order n has its
multiplication group as a nonabelian group of order 2n and its Lg is an abelian
group of order n. It is now an interesting question which nonabelian group
can occur as a multiplication group of an AG-group G and which cannot and
which abelian group can occur as its left section and which cannot. Similar
work has been done for loops for example see [4].
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