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A STUDY OF THE FLOW OF NON-NEWTONIAN FLUID

BETWEEN HEATED PARALLEL PLATES BY HAM

H. A. WAHAB1, SAIRA BHATTI2, SAIFULLAH KHAN1,4, MUHAMMAD NAEEM3,
AND SAJJAD HUSSAIN1

Abstract. This paper presents the heat transfer of a third grade fluid be-
tween two heated parallel plates for two models: constant viscosity model
and Reynold’s model. In both cases the nonlinear energy and momen-
tum equations have been solved by HAM. The graphs for the velocity
and temperature profiles are plotted and discussed for various values of
the emerging parameters in the problem. The main effect is governed by
whether or not the fluid is non-Newtonian and the temperature effects are
being referred to have a less dominant role.
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1. Introduction

In general, the flowing mixtures consist of solid particles in a fluid such
as coal based slurries which exhibit non-Newtonian characteristics. These
mixtures are important in a variety of industrial applications and heat transfer
plays an important role in handling and processing of these mixtures. There
are properties of fluid behavior which cannot be explained on the basis of the
classical, linearly viscous models. Several constitutive equations have been
suggested to characterize such non-Newtonian behaviors. Among those are;
the fluids of the different types of grade n [1] and the incompressible and
homogeneous fluids of grade 1 being the linearly viscous Newtonian fluids.
For example, it has been shown that the substantial performance benefits can
be obtained if coal-water mixture is pre-heated [1,2].
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In this paper, we consider the model described by Szeri and Rajagopal in
1985 [2] for heat transfer flow of a third grade fluid between two parallel plates
maintained at different temperatures located at y = 0 and y = h planes re-
spectively, of an orthogonal Cartesian coordinate system. Szeri and Rajagopal
[2] examined this model for the two cases via a similarity transformation and
concluded that the temperature dependence was not important for third grade
fluid for the considered parameters and the variable viscosity solutions were
not too distinct from that of constant viscosity. With a slight modification,
we consider this model with HAM [9, 10] and compare our results with those
produced by PEM and HPM in [1] and with those produced by Szeri and
Rajagopal in [2]. In each case, the nonlinear momentum and energy equations
have been solved using HAM [9, 10]. The graphs for the velocity and temper-
ature profiles are presented and discussed for the various values of parameters
appearing in the problem.

There have been several studies involving heat and mass transfer in the non-
Newtonian fluids, but most of them seem to lack a systematic and rational
treatment of thermodynamics of the problem; while the stress constitutive
equation is altered to account for non-Newtonian behavior. The constitutive
equations for the specific Helmholtz free energy or the heat flux vector are left
unchanged. Although this might be correct for a particular fluid yet it does
not seem proper to assume the same a priori.

In this paper, we attempt a thermodynamically consistent study of the
heat transfer problem under consideration. We consider two models in our
approach: constant viscosity model and Reynold’s model [1, 2]. The governing
differential equations for the velocity and temperature are non-linear whose
exact solutions are not available. Therefore, asymptotic methods prove a
powerful tool to obtain approximate solutions of these equations.

Among various asymptotic methods, the homotopy perturbation method
provided by He in [7] is a coupling of the traditional perturbation methods
and the homotopy concept used in the topology. He in [7] and others [3, 5, 8]
not only applied this method successfully to obtain the solution of currently
important problems in science and technology, but also have shown its effec-
tiveness and reliability. In this paper, we have used HAM [9, 10] proposed
by Liao to solve the problem under discussion. The HAM has some advan-
tages over the traditional perturbation techniques, such as freedom of choice
of initial guess, linear operator, auxiliary parameter and the auxiliary func-
tion. We have also given a comparison of different perturbation techniques
with illustrative examples in [6].
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2. Analysis of the Problem

We start our analysis of the problem by refereing to the papers [1, 2] and
consider the following two models without further assumptions and transfor-
mations.

2.1. The Constant Viscosity Model. In this case, we have two nonlinear
equations as [1]:

d2w

dx2

[
1 + 6Λ

(
dw

dx

)2
]

= −2, (1)

along with boundary condition, w (0) = 0, and w (1) = 0.

d2v

dx2
+ λ

(
dw

dx

)2
[

Ω + 2Λ

(
dw

dx

)2
]

= 0, (2)

along with the boundary conditions v (0) = 0, and v (1) = 1.
We expand w in powers of parameter η, such as

ℵ1 (x; η) = w0 + ηw1 + η2w2 + . . . = w (x) . (3)

To find the initial guess we put Λ = 0 in equation (1), and comparing the
co-efficients of η0, η1, . . ., we get,

η0 : w
′′
0 = −2, (4)

η1 : w
′′
1 = 0, (5)

and so on. The expression (3) depending upon the parameter η ∈ [0, 1] is used
for comparison reason to get the linear equations. Here η ∈ [0, 1] indicates
the embedding parameter. The equation (4) has the solution using the given
conditions w0 (0) = 0, and w0 (1) = 0, and becomes the initial guess/initial
approximation for our analysis as,

w0 (x) = x− x2, (6)

The homotopy analysis method (HAM) is based on a continuous mapping
w (x)→ ℵ1 (x; η) such that when the embedding parameter η varies from 0 to
1, ℵ1 (x; η) varies from the initial guess w0 (x) to the exact solution w (x).
The nonlinear operator is defined as,

N [ℵ1 (x; η)] =
∂2ℵ1 (x; η)

∂x2
+ 6Λ

[
∂2ℵ1 (x; η)

∂x2

] [
∂ℵ1 (x; η)

∂x

]2
+ 2 = 0. (7)

Let H 6= 0 and τ 6= 0, stands for so called auxiliary function and auxiliary
parameter respectively, so that as we use the embedding parameter η ∈ [0; 1],
we get a series of equations as,

(1− η)L [ℵ1 (x; η)− w0 (x)] = τηHN [ℵ1 (x; η)] , (8)
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with the prescribed boundary conditions. It should be noted that we have a
number of choices for the auxiliary function H, the auxiliary parameter τ, the
initial guess w0 (x) and the auxiliary linear operator L. It is such an indepen-
dence to play the most important role and it establishes the cornerstone of
the validity and flexibility of the homotopy analysis method. For our conve-
nience, we shall take the value of the auxiliary function H = 1 and auxiliary
parameter τ = −1. The rules of expression for these quantities are discussed
in details in [9]. When η = 0, then equation (8) transformed to,

L [ℵ1 (x; 0)− w0 (x)] = 0, (9)

subject to ℵ1 (0; 0) = 0. Thus, the equation (9) is

ℵ1 (x; 0) = w0 (x) . (10)

When η = 1; equation (8) becomes,

τHN [ℵ1 (x; 1)] = 0, (11)

with ℵ1 (0; 1) = 0. Since H 6= 0, and τ 6= 0 and by definition, equation (7) and
equation (11) are corresponding to the original equation (1) and (2), provided
that

ℵ1 (x; 1) = w (x) . (12)

Therefore, according to equation (10) and (12), ℵ1 (x; η) varies from the initial
guess w0 (x) to the exact solution w (x) as the embedding parameter η increases
from 0 to 1. The equation (8) is called the zero-order deformation equation
having independence to choose the auxiliary function H, the auxiliary param-
eter τ, the initial approximation w0 (x) , and the auxiliary linear operatorL.
Now it is assume that all of them are properly chosen so that the solution
ℵ1 (x; η) of the zero-order deformation equation (8) exists for 0 ≤ η ≤ 1. We
present the solution of the problem in the form as

ℵ1 (x; η) = w0 (x) +

∞∑
m=1

wm (x) ηm. (13)

Now, we suppose that the auxiliary function H, the auxiliary parameter τ ,
the initial linear operator L, and the initial approximation w0 (x) are correctly
chosen that series (13) converges at η = 1, then

ℵ1 (x; 1) = w0 (x) +

∞∑
m=1

wm (x) . (14)

The above equation gives us a relationship between the initial guess w0 (x)
and the exact solution w (x) by means of the terms wm (x) for m = 1, 2, 3, . . . ,
which are unknown up to now.
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2.1.1. High –Order deformation equation:-. Define the vector
−→wn = {w0, w1, w2, . . . , wn} ,

then from the given definition (14), the main equation and related initial
condition of wm (x) can be deduced from the zero-order deformation equation
(8). Differentiating the equation (8) m-times with respect to the embedding
parameter η, putting η = 1, and at last dividing by m!, we get the so called
mth order deformation equation as,

L [wm (x)− σmwm−1 (x)] = τH<m (−→wm−1) , (15)

where

<m (−→wm−1) =
1

(m− 1)!

∂m−1N [ℵ1 (x; η)]

∂ηm−1

∣∣∣∣
η=0

. (16)

From the above methodology and using equation (7), we get

<1 (−→w 0) =

[
∂2 (w0 + ηw1 + ....)

∂x2

]∣∣∣∣
η=0

+

[
6Λ

(
∂2 (w0 + ηw1 + ...)

∂x2

)(
∂ (w0 + ηw1 + ...)

∂x

)2

+ 2

]∣∣∣∣∣
η=0

= 0,

and from equation (6), w0 (x) = x− x2. Since

<1 (−→w 0) = −12Λ
(
1 + 4x2 − 4x

)
, (17)

then using equation (17) for equation (15) along with the conditions w1 (0) = 0,
and w1 (1) = 0, we get

w (x) = x− x2 + Λ
(
8τx3 − 4τx4 − 6τx2 + 2τx

)
+ . . . (18)

Now, we come to the other nonlinear equations:

d2v

dx2
+ Ω

(
dw

dx

)2
[

Ω + 2Λ

(
dw

dx

)2
]

= 0, (19)

with boundary conditions v (0) = 0, and v (1) = 1. We expands v in powers of
parameter γ, such that

ℵ2 (x; γ) = v0 + γv1 + γ2v2 + . . . = v (x) . (20)

To find the initial guess, we put Ω = 0, and Λ = 0 in equation (19) and get,
v′′ (x) = 0, which has the solution, after using the given conditions,

v0 (x) = x. (21)

Let γ ∈ [0, 1] indicates the embedding parameter. The homotopy analysis
method is based on continuous mapping v (x)→ ℵ2 (x; γ) such that when the
embedding parameter γ increases from 0 to 1, ℵ2 (x; γ) varies from the initial
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guess v0 (x) to the exact solution v (x) . The expression (20) is dependent
upon the parameter γ ∈ [0, 1] is used for comparison reason to get the linear
equations. The nonlinear operator from equation (19) is define as,

N [ℵ2 (x; γ)] =
∂2ℵ2 (x; γ)

∂x2
+ Ω

(
∂ℵ1 (x; γ)

∂x

)2
[

Ω + 2Λ

(
∂ℵ1 (x; γ)

∂x

)2
]

= 0.

(22)
Let H 6= 0 and τ 6= 0, indicate the so called auxiliary function and auxiliary
parameter respectively. We use the embedding parameter γ ∈ [0, 1], so that
we create a number of linear equations as,

(1− γ)L [ℵ2 (x; γ)− v0 (x)] = τγHN [ℵ2 (x; γ)] . (23)

When γ = 0, then equation (23) becomes,

L [ℵ2 (x; 0)− v0 (x)] = 0. (24)

When γ = 1; the equation (23) becomes;

τHN [ℵ2 (x; 1)] = 0, (25)

Since H 6= 0 and τ 6= 0, we have N [ℵ2 (x; 1)]. We express N [ℵ2 (x; γ)] as,

ℵ2 (x; γ) = v0 (x) +
∞∑
m=1

vm (x) γm. (26)

We also suppose that the auxiliary function H , the auxiliary parameter τ , the
initial approximation v0 (x), and the auxiliary linear operator L are correctly
choose so that the above expression converges at γ = 1,

ℵ2 (x; 1) = v0 (x) +
∞∑
m=1

vm (x) , (27)

2.1.2. High Order deformation equation. Define the vector
−→vn = {v0 (x) , v1 (x) , v2 (x) , . . . vn (x)} ,

and we have

L [vm (x)− σmvm−1 (x)] = τH<m (−→v m−1) ,
then

vm (x) = σmvm−1 + τHL−1<m (−→v m−1) . (28)

When m = 1, then equation (28) becomes

v1 (x) = v0 + τHL−1<1 (−→v 0) , (29)

and by definition we have,

N [ℵ2 (x; γ)] =
∂2ℵ2 (x; γ)

∂x2
+ Ω

(
∂ℵ1 (x; γ)

∂x

)2
[

Ω + 2Λ

(
∂ℵ1 (x; γ)

∂x

)2
]

= 0.
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Also from equation (6), we get

<1 (−→v0) = Ω
(
1 + 4x2 − 4x

)
+ 2Λ

(
1− 8x+ 24x2 − 32x3 + 16x4

)
. (30)

Putting the value of <1 (−→v0) in equation (29) we have,

v1 (x) = τHL−1
[
Ω + 4Ωx2 − 4Ωx+ 2Λ− 16Λx+ 48Λx2 − 64Λx3 + 32Λx4

]
,

and using the given conditions,

v1 (x) = H

[
Ω

(
τx2

2
+
τx4

3
− 2τx3

3
− τx

6

)]
(31)

+

[
Λ
(
τx2 − 8τx3

3
+ 4τx4 − 16τx5

5
+

16τx6

15
− τx

5

)]
.

Then equation (27) becomes

v (x) = x+H

[
Ω

(
τx2

2
+
τx4

3
− 2τx3

3
− τx

6

)]
(32)

+ H

[
Λ
(
τx2 − 8τx3

3
+ 4τx4 − 16τx5

5
+

16τx6

15
− τx

5

)]
+ . . . ,

2.2. Reynold’s Model. In this case we have two nonlinear equations as

d2v

dx2
+ Ω

(
dw

dx

)2
[

exp (−Mv) + 2Λ

(
dw

dx

)4
]

= 0, (33)

with the boundary condition v (0) = 0, and v (1) = 1.

d2w

dx2
+ 6Λ

(
dw

dx

)2

eMv −Mv

(
dw

dx

)
+ 2e−Mv = 0, (34)

with boundary condition w (0) = 0, and w (1) = 0. Following the same ideal of
HAM, we find the initial guess and put M = 0, Ω = 0, and Λ = 0, in equation
(33) so that we get,

v0 (x) = x, (35)

with the boundary condition v0 (0) = 0, and v0 (1) = 1.
We define

N [ℵ2 (x; γ)] =
∂2ℵ2
∂x2

+ Ω

(
∂ℵ1
∂x

)2
[
e−Mℵ2 + 2Λ

(
∂ℵ1
∂x

)4
]

= 0. (36)

We have the first component after the initial guess which is defined as,

v1 (x) = τHL−1<1 (−→v 0) , (37)

where,

<1 (−→v0) = Ω
(
1 + 4x2 − 4x

)
e−Mx + 2ΩΛ (1− 2x)6 .
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Putting the value of <1 (−→v0) in equation (37), we get

v1 (x) = τHL−1
[
Ω
(
1 + 4x2 − 4x

)
e−Mx + 2ΩΛ (1− 2x)6

]
,

or

v1 (x) = τHΩ

[(
24

M4
− 8

M3
+

1

M2

)(
e−Mx − 1

)]
+ τHΩ

[(
1

M
− 8

M3
+

16e−Mx

M3

)
x

]
− τHΩ

[
2x2

M
+

4x3

3M

]
+ τHΩ

[
1

M2
− 1

3M
− Λ

7

]
+ τHΩ

[
Λ(x2 − 4x3 + 10x4 − 16x5 + 16x6 − 64

7
x7 +

16

7
)x8
]

+ τHΩx

[
24

M4
− 24e−M

M4
− 8e−M

M3
− e−M

M2

]
(38)

v (x) = x+ τHΩ

[(
24

M4
− 8

M3
+

1

M2

)(
e−Mx − 1

)]
+ τHΩ

[(
1

M
− 8

M3
+

16e−Mx

M3

)
x

]
− τHΩ

[
2x2

M
+

4x3

3M

]
+ τHΩ

[
1

M2
− 1

3M
− Λ

7

]
+ τHΩ

[
Λ(x2 − 4x3 + 10x4 − 16x5 + 16x6 − 64

7
x7 +

16

7
)x8
]

+ τHΩx

[
24

M4
− 24e−M

M4
− 8e−M

M3
− e−M

M2

]
+ . . . ,

(39)

Now we come to the other nonlinear equation which is given by,

d2w

dx2
+ 6Λ

(
dw

dx

)2

eMv −Mv

(
dw

dx

)
+ 2e−Mv = 0, (40)

with boundary condition w (0) = 0, and w (1) = 0.
We make use of the initial guess as,

w0 (x) = x− x2. (41)
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The nonlinear operator will be described as,

N [ℵ1 (x; η)] =
∂2ℵ1 (x; η)

∂x2
+ 6Λ

(
∂ℵ1 (x; η)

∂x

)2

eMℵ2(x;η) (42)

− Mℵ2 (x; η)

(
∂ℵ1 (x; η)

∂x

)
+ 2e−Mℵ2(x;η) = 0.

The first approximation is given by

w1 (x) = τHL−1<1 (−→w 0) , (43)

where

< (−→w0) = w
′′
0 + 6Λ

(
w

′
0

)2
eMv0 −Mv0

(
w

′
0

)
+ 2e−Mv0 = 0, (44)

which yields

< (−→w0) = −2 + 6Λ
(
1 + 4x2 − 4x

)
eMx −Mx+ 2Mx2 + 2e−Mx. (45)

Putting the value of < (−→w0) in equation (43), to get,

w1 (x) = τHL−1
[
6ΛeMx − 2 + 24Λ(x2 − x)eMx −Mx+ 2Mx2 + 2e−Mx

]
,

or

w1 (x) = τH

[
M

6
x4 −

(
8Λ +

M

6

)
x3 +

(
−1 +

24ΛeMx

M2
− 12Λ

M

)
x2
]

− τH

[
12Λ

M
+

2

M2
(12ΛeMx + 3ΛeM − 3Λ + e−M − 1)

]
x

+ τH

[
48Λ

M3

(
2eMx + eM − 1

)
+ (8Λ + 1)− 144Λ

M4
(eM − 1)

]
x

+ τH

[
144Λ

M4

(
eMx − 1

)
+

48Λ

M3

(
eMx − 1

)]
+ τH

[
2

M2

(
3ΛeMx − 3Λ + e−Mx − 1

)]
. (46)
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Therefore, we finally have,

w (x) = x− x2

+ τH

[
M

6
x4 −

(
8Λ +

M

6

)
x3 +

(
−1 +

24ΛeMx

M2
− 12Λ

M

)
x2
]

− τH

[
12Λ

M
+

2

M2
(12ΛeMx + 3ΛeM − 3Λ + e−M − 1)

]
x

+ τH

[
48Λ

M3

(
2eMx + eM − 1

)
+ (8Λ + 1)− 144Λ

M4
(eM − 1)

]
x

+ τH

[
144Λ

M4

(
eMx − 1

)
+

48Λ

M3

(
eMx − 1

)]
+ τH

[
2

M2

(
3ΛeMx − 3Λ + e−Mx − 1

)]
+ . . .

, (47)

3. Results and Discussion

In this section, we discuss the velocity and temperature distributions with
the variation of parameters M and Λ for both the cases: Reynold’s model
and constant viscosity model keeping the Ω fixed. The values H = 1, τ =
−1 are fixed throughout for our convenience. For dimensionless velocity and
temperature distributions, from the constant viscosity model and Reynold’s
model by HAM keeping Ω = 10, it is clear from the figure 4 that for M = 0, 1
and 3, departure from symmetry is slight. To investigate the effects of M
on the temperature distribution, we include viscous heating Ω = 10. At this
moderate rate of viscous heating, the temperature gives strong dependence on
M only for the Newtonian fluid.

It is clear from the figures 4 and 3 that the temperature and velocity dis-
tributions remain sensibly invariant with respect to the viscosity index M in
non-Newtonian fluids if the viscosity-temperature law for these fluids is given
by Reynolds’ formula.

In fig 2, we sketch velocity profile for constant viscosity model. We have
come on the conclusion that the fluid which is third grade non-Newtonian ,
the temperature dependence of viscosity will not be significant up to which
the velocity distribution is concerned. But there is a significant distinguish
between the characteristics of non-Newtonian and Newtonian fluids.

We marled that from the point of view of velocity and temperature distri-
butions in Poiseuille flow, the dependence of temperature is not important for
third grade fluids for the range of considered parameters. Even if the fluid
is non-Newtonian to some extent, the variable viscosity results are not much
different from that of constant viscosity results.
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Figure 1. Dimensionless temperature distribution for Con-
stant viscosity model by HAM keeping Ω = 10, H = 1 and
τ = −1

Figure 2. Dimensionless velocity distribution for Constant
viscosity model by HAM keeping Ω = 10, H = 1 and τ = −1
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Figure 3. Dimensionless temperature distribution for
Reynolds’s model by HAM keeping Ω = 10, H = 1 and τ = −1

Figure 4. Dimensionless velocity distribution for Reynolds’s
model by HAM keeping Ω = 10, H = 1 and τ = −1
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4. Conclusion

We observed that the flow of third grade fluid between heated parallel plates
using HAM. It is clear from the results obtained by HAM that they are very
close to the numerical results obtained in [2]. Hence, we conclude that this
technique is an efficient and powerful technique to find the analytical solution
for broad class of problems. Moreover, the advantage of HAM is the fast
convergence of the solutions by means of the auxiliary parameter τ and the
freedom to choose the initial guess in HAM, which provide us more accurate
results than those obtained by HPM. We also observe that HPM is the special
case of HAM under certain circumstances [9, 10].
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