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A NOTE ON SELF-DUAL AG-GROUPOIDS
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Abstract. In this paper, we enumerate self-dual AG-groupoids up to
order 6, and classify them on the basis of commutativity and associa-
tivity. A self-dual AG-groupoid-test is introduced to check an arbitrary
AG-groupoid for a self-dual AG-groupoid. We also respond to an open
problem regarding cancellativity of an element in an AG-groupoid. Some
features of ideals in self-dual AG-groupoids are explored. Some desired al-
gebraic structures are constructed from the known ones subject to certain
conditions and some subclasses of self-dual AG-groupoids are introduced.
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1. Introduction

Kazim and Naseeruddin introduced AG-groupoid in 1972 and various prop-
erties of the structure were investigated in [9]. An AG-groupoid S is an al-
gebraic structure satisfying the left invertive law (ab)c = (cb)a for all a, b, c
in S. The same structure has also been called left almost semigroup in [9].
A groupoid G is called a right AG-groupoid if it satisfies the right invertive
law [19] a(bc) = c(ba) for all a, b, c in G. The same structure has been called
right almost semigroup in [9]. Every AG-groupoid S satisfies the medial law
(ab) (cd) = (ac) (bd) for all a, b, c, d in S [19]. An AG-groupoid S that satisfies
the paramedial law (ab)(cd) = (db)(ca) for all a, b, c, d in S, is called paramedial
AG-groupoid [7, 5]. An AG-groupoid S that satisfies the identity a(bc) = b(ac)
for all a, b, c in S, is called AG∗∗-groupoid [16]. If AG-groupoid S has left iden-
tity, then S is an AG∗∗-groupoid [12]. An AG-groupoid S that satisfies any
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of the weak associative laws (ab)c = b(ac) or (ab)c = b(ca) for all a, b, c in
S, is called AG∗-groupoid [5]. An AG∗-groupoid with left identity becomes a
commutative semigroup [17]. An element a of an AG-groupoid S is called left
cancellative (right cancellative) if ax = ay ⇒ x = y (xa = ya ⇒ x = y) for
all x, y ∈ S [5]. It is easy to prove that every right cancellative element is left
cancellative [19]. An AG-groupoid S that satisfies the identity (ba)b = a for
all a, b in S, is called anti-rectangular AG-groupoid [15]. An AG-groupoid S
is called Type-1 AG-groupoid (T 1-AG-groupoid) if ab = cd ⇒ ba = dc for all
a, b, c, d in S [5]. An AG- groupoid S is called a Type-2 AG-groupoid (T 2-AG-
groupoid) if ab = cd ⇒ ac = bd for all a, b, c, d in S [19]. An AG-groupoid S is
called a forward Type-4 AG-groupoid (T 4

f -AG-groupoid) if ab = cd ⇒ ad = cb

for all a, b, c, d in S [21]. An AG-groupoid S is called a backward Type-4 AG-
groupoid (T 4

b -AG-groupoid) if ab = cd ⇒ da = bc for all a, b, c, d in S [21].
An AG-groupoid S is called a Type-4 AG-groupoid (T 4-AG-groupoid) if it is
both a T 4

f -AG-groupoid and a T 4
b -AG-groupoid.

After the exposure of the structure of AG-groupoid, researchers took a keen
interest in the field and as a result many notions such as AG-group, ideals,
LA-ring, almost field, Γ -AG-groupoid, inflations, zeroids, and idempoids were
introduced [1, 10, 11, 13, 22, 23]. Recently, the notions of fuzzy AG-subgroup,
and modulo AG-group were introduced and some usefull results were estab-
lished in [2, 3, 4]. Also, a variety of classes of AG-groupoids were introduced
in [19]. These classes were studied with various angles and many interesting
results were derived [18, 20, 21]. It is worth mentioning here that the structure
of AG-groupoid has its applications in various fields like theory of flocks [9],
geometry [19], Matrix theory [3], and Topology [15].

The notion of almost semigroup (a groupoid G in which both left and right
invertive laws hold) was first inducted in [9]. The same structure was called
self-dual AG-groupoid in [19], but not studied in detail. We study and inves-
tigate some features of the structure in this very note.

The article contains various sections. In section 2, self-dual AG-groupoids
are enumerated and classified. A self-dual AG-groupoid-test is introduced in
section 3. We devote section 4 to respond to an open problem in connection
with cancellativity of an element in an AG-groupoid, proposed in [19]. We
discuss ideals in self-dual AG-groupoids to some extent, hence section 5 is
reserved for the purpose. In section 6, we discuss connected sets in self-dual
AG-groupoids. Some algebraic structures are constructed from the known
ones in section 7. We introduce some subclasses of self-dual AG-groupoid in
section 8.

To begin, we recall the definition of a self-dual AG-groupoid and give its
example in the form of a Cayley’s table.

Definition. [5] An AG-groupoid S that satisfies right invertive law is called
self-dual AG-groupoid.
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Example. (S, ·) is a self-dual AG-groupoid with the following Cayley table.
· 1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4

2. Enumeration and classification of self-dual AG-groupoids

Enumeration and classification of algebraic structures is a well worked area
of research in pure mathematics and indeed it plays a vital role in the de-
velopment of an algebraic structure. Various classes of AG-groupoids have
been enumerated up to order 6 [8]. In the same fashion, we also enumer-
ate and classify self-dual AG-groupoids up to order 6, using GAP package
AGGROUPOIDS as below.

Table 2.1 shows the enumeration of self-dual AG-groupoids up to order 6
and their classification on the basis of associativity and commutativity.

Order 3 4 5 6
Total AG-groupoids 20 331 31913 40104513
Total self-dual AG-groupoids 12 70 579 17273
Associative & commutative 12 58 325 7510
Associative & non-commutative 0 4 121 5367
Non-associative & non-commutative 0 8 133 4396

Table 2.1: Enumeration, classification of self-dual AG-groupoids

3. Self-dual AG-groupoid-Test

In this section, we provide a method that helps check an arbitrary AG-
groupoid for self-dual AG-groupoid. We also illustrate the method with ex-
amples.

Let (S, ·) be an arbitrary finite AG-groupoid with a Cayley table. In order
to test whether (S, ·) is a self-dual AG-groupoid, for all a, b ∈ S, we define the
binary operations:

a⊗ b = a(bx),
a× b = x(ba),

for some fixed x ∈ S. To test whether (S, ·) is a self-dual AG-groupoid, it is
enough to check if the operations ⊗ and × coincide for all x ∈ S. We construct
the table of the operation ⊗ for any fixed x ∈ S by rewriting x-column of the
“·” table as an index row of the new table and by multiplying its elements with
the index column of the “·” table. The table of the operation × for any fixed
x ∈ S can be obtained by multiplying elements of the “·” table row wise from
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the left by x to write the columns of the new table for each x. It is convenient
to write the × tables under the ⊗ tables. Then it is checked whether the upper
table coincide with the lower one.

Example 1. Let (S, ·) be an AG-groupoid given by the following Cayley table:

· a b c d
a a c d b
b d b a c
c b d c a
d c a b d

Table 3.1.

To check whether (S, ·) is a self-dual AG-groupoid, we extend Table 3.1 in
the way explained earlier to get the following table:

· a b c d a d b c c b d a d a c b b c a d
a a c d b a b c d d c b a b a d c c d a b
b d b a c d c b a a b c d c d a b b a d c
c b d c a b a d c c d a b a b c d d c b a
d c a b d c d a b b a d c d c b a a b c d

a b c d d c b a b a d c c d a b
d c b a a b c d c d a b b a d c
b a d c c d a b a b c d d c b a
c d a b b a d c d c b a a b c d

Table 3.2.

It is obvious that ⊗ and × tables coincide for every x ∈ S. Thus (S, ·) is a
self-dual AG-groupoid.

Example 2. Let (S, ·) be an AG-groupoid with the following Cayley table:

· a b c
a b c a
b a b c
c c a b

Table 3.3.

To test whether AG-groupoid S shown by Table 3.3 is a self-dual AG-
groupoid, we extend the table in the way explained earlier and obtain, for the
binary operations ⊗ and ×, the following table.



A Note on Self-dual AG-groupoids 5

· a b c b a c c b a a c b
a b c a c b a a c b b a c
b a b c b a c c b a a c b
c c a b a c b b a c c b a

c b a b a c a c b
a c b c b a b a c
b a c a c b c b a

It is evident that the × table doesn’t coincide with the ⊗ table, hence S is not
a self-dual AG-groupoid.

4. A partial solution to an open problem

In this section, we respond to an open problem in connection with can-
cellativity of an element in an AG-groupoid. We find out a partial solution
to the problem and prove that every left cancellative element of a self-dual
AG-groupoid is right cancellative. To begin, we restate the following theorem.

Theorem 1. [19] Every right cancellative element of an AG-groupoid S is left
cancellative.

Generally, the converse of the above theorem is not true. Thus, in his
Ph.D thesis, M. Shah proposed the open problem: prove or disprove that
in an AG-groupoid S, without left identity, every left cancellative element is
right cancellative. In [19], the problem has partially been resolved: (a) In an
AG-groupoid S, with left identity e, every left cancellative element is right
cancellative, (b) In an AG-groupoid S, a left cancellative element a is right
cancellative if any of the following holds; (i) If a2 is left cancellative, (ii) If
a is idempotent, (iii) If there exists a left nuclear left cancellative element in
S. The converse of the problem has been proved for AG∗-groupoid, i.e., every
left cancellative element of an AG∗-groupoid is right cancellative [19]. For
AG∗∗-groupoid, the converse has also been proved, i.e., every left cancellative
element of an AG∗∗-groupoid is right cancellative [19]. We claim that the
converse of Theorem 1 holds for a self-dual AG-groupoid as well. Thus, we
have the following theorem.

Theorem 2. Every left cancellative element of a self-dual AG-groupoid is
right cancellative.

Proof. Let S be a self-dual AG-groupoid and a an arbitrary left cancellative
element of S. To show that a is right cancellative, let xa = ya for any x, y ∈ S.
Then, using left invertive, right invertive and medial laws, we have

a(a(ax)) = (ax)(aa) = (aa)(xa)
= (aa)(ya) = (ay)(aa) = a(a(ay)),
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which by repeated use of left cancellativity of a implies that x = y. Hence a
is right cancellative. The proof is complete. ¤

Theorem 3. Every cancellative element of a self-dual AG-groupoid is the
product of two cancellative elements.

Proof. Let S be a self-dual AG-groupoid and a an arbitrary left cancellative
element of S. Let a = a1a2, where a1 and a2 are any arbitrary elements of S.
We show that a1 and a2 are cancellative. Let xa2 = ya2 for any x, y in S.
Then, we have

ax = (a1a2)x = (xa2)a1

= (ya2)a1 = (a1a2)y = ay,

which by left cancellativity of a implies that x = y. Thus a2 is right cancella-
tive and hence cancellative by Theorem 1 . Now suppose a1x = a1y for any
x, y in S. Then, we have

a(xa2) = (a1a2)(xa2) = (a1x)(a2a2)
= (a1y)(a2a2) = (a1a2)(ya2) = a(ya2),

which by left cancellativity of a and right cancellativity of a2 implies that x =
y. This shows that a1 is left cancellative, hence it is cancellative by Theorem
2. Thus a1 and a2 are cancellative elements. The proof is complete. ¤

Theorem 4. Let S be a self-dual AG-groupoid and k any fixed element of S
such that ak = ka and bk = kb for some a, b in S. If k is cancellative element,
then a, b commute.

Proof. Let a, b ∈ S such that ak = ka and bk = kb. First, assume that k is left
cancellative. Then, we have k(ab) = b(ak) = b(ka) = a(kb) = a(bk) = k(ba),
which by left cancellativity of k implies that ab = ba.

Now, suppose that k is right cancellative. Then, we have (ab)k = (kb)a =
(bk)a = (ak)b = (ka)b = (ba)k, which by right cancellativity of k implies that
ab = ba. Hence the theorem follows. ¤

5. Ideals in self-dual AG-groupoids

Here, ideals are dealt with in self-dual AG-groupoids.

Definition 1. [14] A subset I of an AG-groupoid S is called a left ideal (right
ideal), if SI ⊆ I (IS ⊆ I). A subset I of an AG-groupoid S is called ideal if
it is both a left and a right ideal of S. .

In [6], the authors have defined left commutative, right commutative and
bi-commutative groupoids. We induct the same notions here.
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Definition 2. An AG-groupoid S is said to be left commutative AG-groupoid
if and only if (xy)z = (yx)z for any x, y, z ∈ S. Similarly, an AG-groupoid S
is said to be right commutative AG-groupoid if and only if x(yz) = x(zy) for
any x, y, z ∈ S. An AG-groupoid is said to be bi-commutative if it is both left
and right commutative.

Theorem 5. Any subset of a self-dual AG-groupoid S with a cancellative
element is left ideal if and only if it is right ideal.

Proof. Let I be a left ideal of S. Then, using right invertive law and the facts
SI ⊆ I, SS = S, we have IS = I(SS) = S(SI) ⊆ SI ⊆ I. Thus I is a right
ideal of S. Conversely, suppose that I be a right ideal of S. Then, using left
invertive law and the facts IS ⊆ I, SS = S, we have SI = (SS)I = (IS)S ⊆
IS ⊆ I. Thus I is a left ideal of S. The proof is complete. ¤

Theorem 6. If I is a right ideal of a self-dual-AG-groupoid S , then I2 is a
left ideal of S.

Proof. Let I be a right ideal of S. Then, we have SI2= S(II) = I(IS) ⊆ II
= I2. This implies that I2 is a left ideal of S. Hence, the theorem follows. ¤

Theorem 7. If A is an ideal of a self-dual AG-groupoid S, then A2 is an ideal
of S.

Proof. Let A be an ideal of S. Then A2 is a left ideal of S by Theorem 6.
Next, we have (AA)S = (SA)A ⊆ AA = A2. This implies that A2 is a right
ideal of S. Hence A2 is an ideal of S, being a left and a right ideal of S. ¤

Theorem 8. Let S be a self-dual-bi-commutative AG-groupoid. Then I2 is a
left ideal of S if any of the following assertions holds:

(1) I is a left ideals of S.
(2) I is a right ideals of S.

Proof. Straightforward. ¤

Theorem 9. Let S be a self-dual-AG-groupoid and B an ideal of S. If A is a
subset of S such that SA = AS, then AB is a left ideal of S.

Proof. If A be a subset of S and B an ideal. Then, we have S(AB) = B(AS)
= B(SA) = A(SB) ⊆ AB. Thus AB is a left ideal of S. The proof is
complete. ¤

Theorem 10. Let S be a self-dual-right commutative AG-groupoid. Then AB
is an ideal of S if any of the following assertions holds:

(1) A and B are left ideals of S.
(2) A and B are right ideals of S.
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Proof. Straightforward. ¤
Theorem 11. Let A be a subset of a self-dual-AG∗-groupoid S. Then AB is
an ideal of S if B is an ideal of S.

Proof. Easy. ¤
Theorem 12. Let S be a self-dual-T 1-AG-groupoid and B a non-empty subset
of S. Then AB is a right ideal of S if A is a left ideal of S.

Proof. Let A be a left ideal of S. Then, we have

S(AB) = B(AS) ⇒ (AB)S = (AS)B = (BS)A
⇒ S(AB) = A(BS) = S(BA)
⇒ (AB)S = (BA)S = (SA)B ⊆ AB.

Thus AB is a right ideal of S. The proof is complete. ¤
Theorem 13. Let S be a self-dual-AG∗∗-groupoid and A a non-empty subset
of S. Then AB is a left ideal of S if B is a right ideal of S.

Proof. Let B is a right ideal of S. Then, we have S(AB) = B(AS) = A(BS)
⊆ AB. Hence AB is a left ideal of S. The proof is complete. ¤
Theorem 14. If I is a right ideal of a self-dual-AG∗∗-groupoid S, then aI is
a left ideal of S for any a ∈ S.

Proof. Let I be a right ideal of S. Then, for an arbitrary element a ∈ S, we
have S(aI) = I(aS) = a(IS) ⊆ aI. This implies that aI is a left ideal of S
for any a ∈ S. The proof of the theorem is complete. ¤
Theorem 15. If I is a right ideal of a self-dual-AG∗-groupoid S, then Ia is
a right ideal of S for any a ∈ S.

Proof. Let I be a right ideal of S. Then, for an arbitrary element a ∈ S, we
have (Ia)S = a(IS) = S(Ia) = (IS)a ⊆ Ia. This implies that Ia is a right
ideal of S for any a ∈ S. The proof is complete. ¤
Theorem 16. Let A be a right ideal of a self-dual-AG∗∗-groupoid S. If B is
an ideal of S such that SB = BS, then AB is an ideal of S.

Proof. Let B be an ideal of S such that SB = BS. Then, we have

S(AB) = B(AS) = A(BS) ⊆ AB,

which implies that AB is a left ideal of S. Now, we have

(AB)S = (SB)A = (BS)A = (AS)B ⊆ AB,

which implies that AB is a right ideal of S. Hence AB is an ideal of S, being
a left and a right ideal of S. ¤
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Theorem 17. Let A be a subset of a self-dual-AG∗-groupoid S. Then AB is
an ideal of S if B is a left ideal of S.

Proof. Straightforward. ¤

Theorem 18. Let S be a self-dual-T 1-AG-groupoid and A a subset of S. Then
AB is a left ideal of S if B is a right ideal of S.

Proof. Let A be a subset of S and B a right ideal ideal. Then, we have S(AB)
= B(AS) ⇒ (AB)S = (AS)B = (BS)A ⇒ S(AB) = A(BS) ⊆ AB. Thus
AB is a left ideal of S. The proof is complete. ¤

Theorem 19. Let S be a self-dual-T 1-AG-groupoid. If A be a left and B a
right ideal of S, then AB is an ideal of S.

Proof. Let A be a left and B a right ideal of S. Then, we have

(AB)S = (SB)A ⇒ S(AB) = A(SB) = B(SA)
⇒ (AB)S = (SA)B ⊆ AB.

Thus AB is a right ideal of S. Similarly, we have

S(AB) = B(AS) ⇒ (AB)S = (AS)B = (BS)A
⇒ S(AB) = A(BS) ⊆ AB.

Thus AB is a left ideal of S. Hence AB is an ideal of S, being a left and a
right ideal of S. The proof is complete. ¤

Theorem 20. Let S be a self-dual-T 1-AG-groupoid. If A be a right and B a
left ideal of S, then AB is an ideal of S.

Proof. Let A be a right and B a left ideal of S. Then, we have

(AB)S = (SB)A ⇒ S(AB) = A(SB) ⊆ AB.

Thus AB is a left ideal of S. Similarly, we have

S(AB) = B(AS) ⇒ (AB)S = (AS)B ⊆ AB.

Thus AB is a right ideal of S. Hence AB is an ideal of S, being a left and a
right ideal of S. The proof is complete. ¤

Theorem 21. Let S be a self-dual-T 1-AG-groupoid. Then AB is an ideal of
S if any of the following assertions holds:

(1) A and B are left ideals of S.
(2) A and B are right ideals of S.

Proof. Easy. ¤
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6. Connected sets in self-dual AG-groupoids

In this section, we discuss connected sets in self-dual AG-groupoids. To
begin, we recall the following definition.

Definition 3. [14] Two subsets A and B of an AG-groupoid S are called right
(left) connected, if AS ⊆ B and BS ⊆ A (resp. SA ⊆ B, SB ⊆ A ). A and
B are connected if they are both left and right connected.

Theorem 22. If A and B are ideals of a self-dual AG-groupoid, then AB and
BA are connected sets.

Proof. Easy. ¤

Theorem 23. If A and B are left ideals of a self-dual-right commutative
AG-groupoid S, then AB and BA are connected sets.

Proof. Let A,B be left ideals of S. Then, we have

(AB)S = (SB)A ⊆ BA.

Similarly, we have

(BA)S = (SA)B ⊆ AB.

Thus AB and BA are left connected. Next, we have

S(AB) = B(AS) = B(SA) ⊆ BA.

Similarly, we have

S(BA) = A(BS) = A(SB) ⊆ AB.

Thus AB and BA are right connected. Hence AB and BA are connected,
being left and right connected. ¤

Theorem 24. If A and B are right ideals of a self-dual-left commutative
AG-groupoid S, then AB and BA are connected sets.

Proof. Similar to Theorem 23 ¤

Theorem 25. For any ideals A and B of a self-dual AG-groupoid S, the
following assertions hold.

(1) A2B2 and B2A2 are connected.
(2) A2(A2B2) and (A2A2)B2 are connected.

Proof. Easy. ¤

Theorem 26. Let B be a subset of a self-dual-AG∗-groupoid S. If A is an
ideal of S, then AB and BA are connected.



A Note on Self-dual AG-groupoids 11

Proof. Let A be an ideal and B a subset of S. Then, we have

S(AB) = B(AS) ⊆ BA.

Similarly, we have

S(BA) = A(BS) = (BA)S = (SA)B ⊆ AB.

This implies that AB and BA are left connected.
Next, we have

(AB)S = B(AS) ⊆ BA.

Similarly, we have

(BA)S = (SA)B ⊆ AB.

This implies that AB and BA are right connected. Hence AB and BA are
connected, being left and right connected. ¤

7. Self-dual AG-groupoids and construction of some desired
algebraic structures

Construction of Algebraic structure has been always important as well as
a challenging task. Here, we show that how and under what conditions some
specific structures can be obtained from the known ones.

Theorem 27. Let a be a fixed idempotent element of a self-dual AG-groupoid
S.Then the set Q = { x ε S : ax = x } is a subsemigroup of S.

Proof. Since a = aa, we have a ∈ Q. This implies that Q is non-empty. For
arbitrary elements x, y ∈ Q, we have xy = (ax)(ay) = (aa)(xy) = a(xy).
This implies that Q is closed. Also left invertive law holds in Q as it holds
in S. Thus Q is an AG-subgroupoid of S. Now, it remains to show that Q
is a semigroup. For this, let x, y ∈ Q. Then, we have xy = x(ay) = y(ax)
= yx. Thus Q is commutative, so it is associative as commutativity of an
AG-groupoid implies associativity. Hence Q is a subsemigroup of S. ¤
Theorem 28. Let (S, ·) be a self-dual AG-groupoid. Define (∗) as x ∗ y =
y(px) for a fixed p ∈ S. Then (S, ∗) is commutative medial.

Proof. Let a, b, c, d ∈ S. Then, we have a ∗ b = b(pa) = a(pb) = b ∗ a. Next,
we have

(a ∗ b) ∗ (c ∗ d) = (d · pc) [p(b · pa)] = (d · pc)(pa · bp)
= (d · pc)(pb · ap) = (d · pb)(pc · ap)
= (d · pb)(pa · cp) = (d · pb) [p(c · pa)]
= (a ∗ c) ∗ (b ∗ d).

Thus (S, ∗) is commutative medial. The proof is complete. ¤



12 Aziz-ul-Hakim I. Ahmad and M. Shah

Theorem 29. Let (S, ·) be a self-dual-right commutative AG-groupoid. Define
(∗) as x∗y = y(px) for a fixed p ∈ S. Then (S, ∗) is a commutative semigroup.

Proof. Let x, y, z ∈ S. Then, by definition of (∗), we have x ∗ y = y(px) =
x(py) = y ∗ x. Thus (S, ∗) is commutative. Next, we have

(x ∗ y) ∗ z = z [p(y · px)] = z [p(x · py)]
= (x · py)(pz) = (x · py)(zp)
= p [z(x · py)] = p [z(py · x)]
= p [x(py · z)] = p [x(z · py)]
= (z · py)(xp) = (z · py)(px)
= x ∗ (y ∗ z).

Thus (S, ∗) is a commutative semigroup. The proof is complete. ¤
Theorem 30. Let (S, ·) be a self-dual-paramedial AG-groupoid. Define (∗) on
S as x ∗ y = x(py) for a fixed p ∈ S. Then (S, ∗) is commutative semigroup.

Proof. Let x, y, z ∈ S. Then, we have

(x ∗ y) ∗ z = (x · py)(pz) = (z · py)(px)
= x [p(z · py)] = x(py · zp)
= x(pz · yp) = x [p(y · pz)]
= x ∗ (y ∗ z).

Thus (S, ∗) is semigroup. Now, using definition of (∗) and right invertive law,
we have x∗y = x ·py = y ·px = y ∗x. Hence (S, ∗) is commutative semigroup.
The proof is complete. ¤

8. Discovery of subclasses of self-dual AG-groupoids

Self-dual AG-groupoids possess a dual nature, satisfying both left and right
invertive laws, which is its beauty. Hence, it is highly desired and interesting
to discover subclasses of self-dual AG-groupoids.

Theorem 31. Every anti-rectangular AG-groupoid is a self-dual AG-groupoid.

Proof. Let S be an anti-rectangular AG-groupoid and a, b, c ∈ S. Then, using
definition of anti-rectangular AG-groupoid and left invertive law, we have a(bc)
= (ba · b)(bc) = (bc · b)(ba) = c(ba). This shows that S satisfies right invertive
law. Thus S is a self-dual AG-groupoid. The proof is complete. ¤

However, the converse of the above theorem is not true. The following
counterexample confirms the claim.

Example 3. A self-dual AG-groupoid S has been shown by the following table
which is not an anti-rectangular AG-groupoid.
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· 1 2 3 4
1 2 4 3 1
2 3 1 2 4
3 1 3 4 2
4 4 2 1 3

Here, we have (3 · 4)3 6= 4, hence S is not anti-rectangular.

Theorem 32. An AG-groupoid S is a self-dual AG-groupoid if, for all a, b, c, d
in S, the following identity holds:

(ab)(cd) = a(bc) (1)

Proof. Let a, b, c, d ∈ S. Then, we have

a(bc) = (ab)(ca) (by identity 1)
= (ab · c)(aa) (by identity 1)
= (cb · a)(aa) by left invertive law
= (cb)(aa) (by identity 1)
= c(ba) (by identity 1)

⇒ a(bc) = c(ba).

Thus S satisfies right invertive law. Hence S is a self-dual AG-groupoid. ¤
Theorem 33. Every right commutative AG∗∗-groupoid is self-dual AG-groupoid.

Proof. Let S be a right commutative AG∗∗-groupoid and a, b, c ∈ S. Then,
using right commutative and AG∗∗-properties, we have a(bc) = a(cb) = c(ab)
= c(ba). Thus S satisfies right invertive law. Hence S is a self-dual AG-
groupoid. ¤
Corollary 1. Every right commutative T 1 -AG-groupoid is self-dual AG-
groupoid.

Corollary 2. Every right commutative T 2 -AG-groupoid is self-dual AG-
groupoid.

Corollary 3. Every right commutative T 4 -AG-groupoid is self-dual AG-
groupoid.

Conclusion

In this article, self-dual AG-groupoids have been enumerated and classified
on the basis of commutativity and associativity. A self-dual AG-groupoid-test
has been introduced to check an arbitrary AG-groupoid for a self-dual AG-
groupoid. A partial solution to an open problem has been searched out. It has
been proved that every left cancellative element of a self-dual AG-groupoid is
right cancellative. Some features of ideals have also been discussed in self-dual
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AG-groupoids. It was revealed that if A is an ideal of a self-dual AG-groupoid
S, then A2 is an ideal of S. Also, connected sets in self-dual AG-groupoids
have been studied to some extent. It has been proved that if A,B are ideals of
a self-dual AG-groupoid S, then A2B2 and B2A2 are connected sets. Subject
to certain conditions, some desired algebraic structures have been constructed
from the known ones. Moreover, some subclasses of self-dual AG-groupoid
have been discovered that enjoy both left and right invertive laws, hence they
are more innovative. The readers are motivated to study these new subclasses
in more detail.
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