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g-NONCOMMUTING GRAPH OF SOME FINITE GROUPS

M. NASIRI1, A. ERFANIAN2, M. GANJALI3, A. JAFARZADEH4

Abstract. Let G be a finite non-abelian group and g a fixed element of
G. In 2014, Tolue et al. introduced the g-noncommuting graph of G, which
was denoted by Γg

G with vertex set G and two distinct vertices x and y
join by an edge if [x, y] 6= g and g−1. In this paper, we consider induced
subgraph of Γg

G on G \Z(G) and survey some graph theoretical properties
like connectivity, the chromatic and independence numbers of this graph
associated to symmetric, alternating and dihedral groups.
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1. Introduction

Studying algebraic structure via graphs is an interesting subject, which has
been widely discussed in recent years. There are many graphs assigned to
groups, semigroups and rings. We may refer to the works of Bertram et al.
[4], Grunewald et al. [6], Moghadamfar et al. [8] and Williams [10] or recent
papers on non-commuting graph, Engel graph and non-cyclic graph of groups
given in [2, 1, 3]. Let Z(G) be the center of a group G. Associate a graph
ΓG to G as follows: Take G \ Z(G) as vertex set of ΓG and join two distinct
vertices x and y whenever xy 6= yx. This graph is called the non-commuting
graph of G. Paul Erdös considered the non-commuting graph for the first time
and asked if ω(ΓG) is finite when ΓG has no infinite clique. Abdollahi et al.

1Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran.
Email: mahnasiri@yahoo.com
2Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Struc-
tures, Ferdowsi University of Mashhad, Mashhad, Iran. Email: erfanian@math.um.ac.ir
3Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran. Email:
m.ganjali20@yahoo.com
4Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran. Email:
jafarzadeh@um.ac.ir .

16



g-noncommuting graph of some finite groups 17

[2] tried to explore how the graph theoretical properties of ΓG can affect the
group theoretical properties of G. Recently, Tolue et al. [9] generalized the
non-commuting graph as follows,

Definition 1. The g-noncommuting graph of G is the graph with vertex set G
and two distinct vertices x and y join by an edge if [x, y] 6= g and g−1. They
denote this graph by Γg

G.

In [9], Tolue et al. determined planarity, regularity, clique and dominating
numbers. Moreover, they proved that if G and H are isoclinic groups with
|Z(G)| = |Z(H)| and (φ, ψ) is an isoclinism between G and H, then Γg

G
∼=

Γψ(g)
H .
In this paper, we are going to consider the induced subgraph of

g-noncommuting graph on G \ Z(G). We denote it by ∆g
G and will inves-

tigate connectivity, chromatic and independence numbers. One may note that
if Γg

G is connected, then it is not necessary for the induced subgraph ∆g
G to

be connected. For instance, Γ(1 2 3)
S3

is connected, but ∆(1 2 3)
S3

consists of one
edge and three isolated vertices. It is clear that ∆e

G coincides with the non-
commuting graph.
Recall that K(G) = {[x, y] : x, y ∈ G} is the set of commutators of G and
G′ = 〈K(G)〉 (see [7] for more details). If g 6∈ K(G), then ∆g

G is complete
graph. So in the sequel, we always assume that g ∈ K(G) and g 6= e.

In section 2 of this paper, we prove that for every g ∈ An and n ≥ 4, ∆g
Sn

and ∆g
An

are connected. Moreover, diam(∆g
Sn

) = 2, girth(∆g
Sn

) = 3 and Γg
Sn

is not complete graph.
Section 3 is devoted to a determination of the chromatic and independence

numbers of ∆g
D2n

. Here our notations and terminologies are standard and can
be found in [5].

2. Connectivity of g-noncommuting Graph of Sn and An

In this section, we will discuss connectivity, diameter and girth of
g-noncommuting graph of the symmetric group Sn and the alternating group
An, where n ≥ 4. We start with the following interesting lemma.

Lemma 1. ∆g
Sn

is connected for all non-identity elements g ∈ An and all
n ≥ 4.

Proof. Using the group theory package GAP and direct drawing the graph
for S4, we can see that ∆g

S4
is connected for all cases that g ∈ A4. So, it

is enough to prove the lemma for n ≥ 5. First, let us remind that for every
element σ ∈ Sn, support of σ, denoted by supp(σ), is the set of all letters
k ∈ {1, 2, · · · , n} for which σ(k) 6= k. If |supp(g)| ≤ n− 2, then there are two
letters i and j such that g(i) = i and g(j) = j. The transposition (i j) joins
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to all vertices x ∈ Sn \ {e}, because the equality (ix jx) = (i j)g = g(i j) is
impossible for such x. Note that (ix jx) is a permutation which moves only
two letters and fixes others, but (i j)g = g(i j) moves more than two letters.
Now, assume |supp(g)| = n − 1, then g(i) = i for some letter {1, · · · , n}. We
claim that the transposition (i j), where j ∈ {1, 2, · · · , n} and g(j) 6= j, is
adjacent to all other vertices. It is clear that (i j)x is a transposition but
|supp((i j)g)| ≥ 3. Therefore, the equality (i j)x = (i j)g is impossible.
Similarly, (i j)x = g(i j) is not possible. Finally, suppose |supp(g)| = n. Then
g ∈ An can be written as a product of cycles of length 3. If (α1 α2 α3) is
one of the cycles which appear in this product, then (α1 α2) joins to all other
vertices, because all the letters appear in g, and so g(α1 α2) and (α1 α2)g will
fix at most one letter. Thus (α1 α2)x 6= (α1 α2)g and (α1 α2)x 6= g(α1 α2).
Hence the result follows. ¤

Proposition 2. ∆g
Sn

is not a complete graph for all g ∈ An. Moreover
diam(∆g

Sn
) = 2 and girth(∆g

Sn
) = 3.

Proof. For e 6= g ∈ K(Sn) = An, there exist permutations α and β such that
[α, β] = g. Thus ∆g

Sn
is not a complete graph. Proof of Lemma 1 implies that

diam(∆g
Sn

) = 2. If a ∈ Sn \ {e} with a2 6= e, then a joins a−1 and one can see
that there is a transposition which is adjacent to all other vertices. Thus the
girth of the graph is 3. ¤

In the next theorem, we prove that ∆g
An

is connected. The strategy of the
proof is similar to the proof of Lemma 1.

Theorem 3. ∆g
An

is connected for all e 6= g ∈ An and n ≥ 4.

Proof. Connectivity of ∆g
A4

obtains by direct drawing the graph. Now, we can
consider that the case n ≥ 5. Suppose g is an arbitrary element in An and
|supp(g)| ≤ n−3. Then there are letters i, j and k such that g(i) = i, g(j) = j
and g(k) = k. Since g is an even permutation, there exist at least three letters
which appear in g and so n ≥ 6. We claim that (i j k) is adjacent to all other
vertices, because equalities (i j k)x = (i j k)g and (i k j)x = g(i k j) are not
valid here. Now, assume |supp(g)| = n−2. Then, we have g(i) = i and g(j) = j
for some letters i and j. Consider the 3-cycle (i j k), where k is a letter which
is not fixed by g. Again we will have the following equality which is impossible
(i j k)x = (i j k)g = (k i j k′ · · · ) where k′ = g(k). Note that the left hand
side moves three letters, but the right hand side moves at least four letters.
Similarly, (i k j)x is a 3-cycle but g(i k j) moves more than three letters. Hence
(i j k) joins to all other vertices in ∆g

An
. If |supp(g)| = n − 1, then g(i) = i.

We may choose (i j k) such that g(j) = j′ 6= k and g(k) = k′ 6= j for some
letters j′ and k′. Then, the equalities (i j k)x = (i j k)g and (i k j)x = g(i k j)
are not possible and so (i j k) is adjacent to all other vertices. Finally, in case
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|supp(g)| = n, we can choose (i j k) such that g(j) = j′ 6= k, g(k) = k′ 6= j
and g(i) = i′ for some letters j′, i′ and k′. The following two cases arise:
Case 1. Transposition (i j) appears in decomposition of g to disjoint cycles.
In this case, permutation (i j k)g fixes only letter i and moves at least four
letters, so (i j k)x = (i j k)g is not possible.
Case 2. Transposition (i k) appears in decomposition of g. Similar to the
previous case (i j k)g fixes only letter k and moves other letters then (i j k)x =
(i j k)g does not hold. Hence again (i k j)x = g(i k j) is not possible and the
proof is complete. ¤

Since K(Sn) = K(An) = An, so Theorem 3 implies to state the same result
as in the Proposition 2 for ∆g

An
.

3. Some Properties of g-noncommuting Graph of D2n

This section is devoted to a determination of some graph theoretical prop-
erties for instance connectivity, Eulerian, Hamiltonian, chromatic and inde-
pendence numbers of g-noncommuting graph of the dihedral group D2n of
order 2n where D2n = 〈a, b|an = b2 = e, bab = a−1〉. We remind that D2n

has trivial center and D′
2n = 〈a〉 if n is odd and when n is even we have

Z(D2n) = {e, an/2} and D′
2n = 〈a2〉. First, we state the following result on

the connectivity of ∆g
D2n

.

Theorem 4. ∆g
D2n

is connected if and only if n 6= 3, 4 and 6.

Proof. It is easy to see that ∆g
D6

, ∆g
D8

and ∆g
D12

are not connected for all
g ∈ K(D2n). Let n 6= 3, 4 and 6. The following two cases occur.

(i) n is an even number. We have g = a2i for some integer i where
2 ≤ i ≤ (n − 1)/2. Suppose g 6= an/2. If [arb, aj ] = g and [b, aj ] = g
for every integers r, j such that 1 ≤ r, j ≤ n − 1, then j = i or
j = (n/2) + i. If [arb, aj ] = g−1 and [b, aj ] = g−1, then j = (n/2) − i
or j = n − i. There exists an integer j, 1 ≤ j ≤ n − 1, such that
j 6= i, (n/2) − i, (n/2) + i and n − i. Thus aj is adjacent to all other
vertices. When g = an/2, then g = g−1 and by the same method, aj is
adjacent to all others if and only if j 6= n/4 and 3n/4. Thus ∆g

D2n
is

connected when n ≥ 8 is an even number.
(ii) n is an odd number. In this case, again there exists an integer 1 ≤ j ≤

n− 1 such that aj is adjacent to every other vertices.

¤
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Theorem 5. Let D2n be dihedral group of order 2n, where n is an odd integer
and g = ai, 1 ≤ i ≤ n− 1. If n = 3m, then χ(∆g

D2n
) = 4n/3− 3. Otherwise

χ(∆g
D2n

) =





2n− m
2 [

n

m
]− 3 if [

n

m
] is even

n + m
2

(
[
n

m
] + 1

)
− 3 if [

n

m
] is odd,

where m = i/2 or (n− i)/2 whenever i is an even or odd, respectively.

Proof. Assume that i is an even number and m = i/2. It is clear that
[arb, asb] = a2(r−s), 0 ≤ r, s ≤ n− 1. If [arb, asb] = g or g−1, then r − s = i/2
or r − s = n− (i/2). Thus, two vertices arb and asb are adjacent if and only
if r − s 6= i/2 and n − (i/2). Similarly, ar is adjacent to asb if and only if
r 6= i/2 and n − i/2, where r 6= 0. To find the chromatic number of ∆g

D2n
, it

is enough to count the number of vertices arb with different colours. Consider
the vertices a0b, a1b, · · · , an−1b, since n− i/2 > i/2 we put them in the boxes
with i/2 members.
Initially, assume that n − i/2 6= i. In each box all vertices are adjacent to-
gether, so for colouring the first box, we need i/2 different colours. We denote
this colours with c1, · · · , ci/2. In the second box, vertices are not adjacent to
some vertices of the first box. Thus, we can use all the colours c1, · · · , ci/2 in
the second box. In the third box, we can not use colours c1, · · · , ci/2. Since,
although the vertex arb in the third box is not adjacent to ar−i/2b in the sec-
ond box, but it is adjacent to ar−ib in the first box. Thus, we can not colour
arb the same as ar−i/2b. Therefore we need new i/2 colours for vertices in the
third box. Similarly, we can use these colours in the forth box. If [n/(i/2)]
is an even number, then we need i/2([n/i]) colours for colouring [n/(i/2)]
of boxes. Moreover, n − [n/(i/2)](i/2) colours are needed for colouring the
remain vertices. If [n/(i/2)] is an odd number, then i/2(([n/(i/2)] + 1)/2)
colours are used for colouring [n/(i/2)] of boxes. Also, in this case we can
colour n − [n/(i/2)](i/2) remain vertices with colours which are used in the
final box. Now, since ai/2 and an−i/2 are not adjacent to arb, then we can
apply two colours which are used for colouring ar to arb.
Secondly, suppose n − i/2 = i. We have exactly 3 boxes with i/2 vertices
where can be coloured by i/2 colours. Hence the result holds.
Now, let i be an odd number and m = (n− i)/2. If [arb, asb] = g or g−1, then
r−s = (n+ i)/2 or r−s = (n− i)/2. It is enough to replace i/2 with (n− i)/2
in the previous case. ¤
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Theorem 6. Let n 6= 6 be an even number and g = a2i /∈ Z(D2n), where
1 ≤ 2i ≤ n− 1 is an integer. Then

χ(∆g
D2n

) =





2n− 6− kt[
n

(k + 1)t
] 0 ≤ n− (k + 1)t[

n

(k + 1)t
] < t

n− 6 + t([
n

(k + 1)t
] + 1) n− (k + 1)t[

n

(k + 1)t
] ≥ t,

where t = min{i, n/2− i, n/2 + i, n− i}, for some integer k.

Proof. We know that aj is adjacent to arb, 0 ≤ r ≤ n − 1, if and only if
j 6= i, (n/2)− i, (n/2) + i and n− i. Furthermore arb and asb are adjacent if
and only if r−s 6= i, (n/2)−i, (n/2)+i and n−i. Thus, for computing chromatic
number of Γg

D2n
, it is enough to count the number of vertices arb with different

colours. Suppose A = {i, (n/2)−i, (n/2)+i, n−i} and t := min(A). Put every
vertices a0b, a1b, · · · , an−1b in the boxes with t members. In each box all the
vertices are adjacent. Thus for colouring of the first box we need t different
colours. Every vertices in the second box is not adjacent to some vertices in
the first box. Therefore we can apply the previous colours. If 2t ∈ A, then
we can use all the previous colours in the third box. Since vertices in the
third box are not adjacent to some vertices of the first and the second box.
But if 2t /∈ A, then in the third box, we can not use the previous colours.
Assume t, 2t, · · · , kt ∈ A and (k + 1)t /∈ A for some positive integer k. Count
the number of boxes with t members such that each (k + 1) box have the
same colours. Suppose that n = q(k + 1)t + r′. If r′ < t, then we need r′
different colours. Otherwise t different colours are required. Thus, we can
colour a0b, a1b, · · · , an−1b with t[n/((k + 1)t)] + r′ colours if r′ < t, otherwise
with t[n/((k + 1)t)] + t colours. Now, since ai, an/2−i, an/2+i and an−i are not
adjacent to arb for each r, then we can use four different colours of ar to colour
arb. Hence the proof is complete. ¤
Proposition 7. Let n 6= 6 be an even number, then

χ(∆a
n
2

D2n
) =

3n

2
− 4

Proof. Similar to the proof of Theorem 6, all vertices can be classified into
the boxes with n/2 members such that each box are coloured by n/4 colors.
Thus, we will have χ(∆an/2

D2n
) = 3n/2− 4. ¤

In Theorems 5 and 6, we compute the chromatic number for g-noncommuting
graph of D2n. Now, we are going to find an independence number of this graph.
The method of the proof is very similar to the proof of Theorems 5 and 6 so
we omit it here.

Proposition 8. The independence number of ∆g
D2n

is 3 or 4.
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Lemma 9. For every n ≥ 1, ω(∆g
D2n

) = n − 1 if n is odd number and
ω(∆g

D2n
) = n− 2 if n is even number.

Proof. The subset < a > \Z(D2n) is a maximal clique in ∆g
D2n

, because every
element arb , 0 ≤ r ≤ n − 1, is not adjacent to at least one elemnet aj ,
1 ≤ j ≤ n− 1 and the proof follows. ¤

We know that the grpah is Eulerian if and only if degree of all vertices are
even. Thus we have the following lemma.

Lemma 10. The g-noncommuting graph of D2n is not Eulerian graph.

Proof. With computing the commutators of elements in D2n and counting
the all corresponding edges, we can get the degree of all vertices. The set of
degrees of vertices of graph is denoted by D(∆g

D2n
), then we have

D(∆
g
D2n

) = {n− 2, 2n− 2, 2n− 5}, when n is an odd number,
D(∆

g
D2n

) = {n− 3, 2n− 3, 2n− 7, 2n− 11}, when n is an even number,
It is observed that there is at least one vertice of odd degree, therefore ∆g

D2n

is not Eulerian graph. ¤

Remind that a graph that contains a Hamiltonian cycle is called a Hamil-
tonian graph.

Lemma 11. The g-noncommuting graph of D2n is Hamiltonian graph, unless
∆a2

D16
.

Proof. Let n be an odd number and g = ai where i is an even number. We
know that vertices arb and asb, 0 ≤ r, s ≤ n − 1 are adjacent if and only if
r − s 6= i

2 , n − i
2 , Similarly aj is adjacent to arb if and only if j 6= i

2 , n − i
2 .

Now, If i
2 , n− i

2 6= 1, then {a, b, ab, a2b, ..., an−1b, an−1, an−2, ..., a2} visits each
vertices exactly once. If i

2 or n− i
2 = 1, then there is the following cycle

{a2, b, a2b, a4b, ..., an−1b, ab, a3b, ..., an−2b, an−2, an−1, an−3, ..., a}. Thus, the
graph is Hamiltonian. If i is an odd number, then the proof is very similar.
Similarly, we can observe that ∆g

D2n
is Hamiltonian when n is an even number,

unless ∆a2

D16
. ¤

Finally, we state the following conjecture for the g-noncommuting graph of
Sn to be Hamiltonian. In spite of the fact that it is true for some small values
of n, but we are not able to prove it as yet, for all n ≥ 3.

Conjecture. The g-noncommuting graph of Sn is Hamiltonian.
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