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PROJECTIVE CONFIGURATIONS AND THE VARIANT OF
CATHELINEAUS COMPLEX

SADAQAT HUSSAIN1, RAZIUDDIN SIDDIQUI2

A. In this paper we try to connect the Grassmannian subcomplex defined
over the projective differential map d′ and the variant of Cathelineau’s complex. To
do this we define some morphisms over the configuration space for both weight 2
and 3. we also prove the commutativity of corresponding diagrams.
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1. I

Goncharov proves Zagier’s conjecture, about polylogarithm and special L-values,
for n = 3 see [5]. Some important ingredients of his work are, the introduction
of motivic complexes (see [6]), morphism between Grassmannian subcomplexes and
motivic complexes for trilogarithm, introduction of triple-ratio of six points and proof
of the commutativity of corresponding diagrams.

Also in [6] he discussed the motivic complexes and Grassmannian complex by
means of geometry of configurations and defines his maps f 3

0 , f 3
1 and f 3

2 in config-
uration spaces. Cathelineau extended the work of Goncharov to infinitesimal and
tangential settings by introducing F-vector spaces (F being a field of zero character-
istic) βn(F) for infinitesimal case and a group TB2(F) for tangential case (see [2] and
[10]). Using the vector spaces βn(F), we can obtain another complex called Cathe-
lineau’s complex. To obtain vector spaces of the form βD

n (F), a derivation map D is
defined over βn(F), for n = 2 and n = 3 (see [4] and [10]) and by setting this vector
space into a complex, we obtain variant of Cathelineau’s complex.
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In [10] the author discussed the geometry of configuration complexes for infinites-
imal polylogarithms. He connected the Grassmannian subcomplex (C∗(n), d), defined
over the differential map ”d”

d : (x1, . . . , xm) 7→
m∑

i=0

(−1)m(x1, . . . , x̂i, . . . , xm)

In order to connect Grassmannian subcomplex to variant of Cathelineau’s complex,
he introduced homomorphisms τ2

0 and τ2
1 for n = 2 and τ3

0 , τ3
1 , τ3

2 for n = 3 and he
also shown that the corresponding diagrams are commutative.

Since the Grassmannian complex is a bi-complex containing two differential maps
d and d′. In [10] the Grassmannian subcomplex defined over the differential map d
is connected to the variant of Cathelineau’s complex. But in this work we have tried
to relate the Grassmannian subcomplex, defined for the projective differential map d′
such that

d′ : (x1, . . . , xm) 7→
m∑

i=0

(−1)m(xi|x1, . . . , x̂i, . . . , xm)

and the variant of Cathelineau complex for weight 2 weight 3. For weight 2, we
define homomorphisms π2

0 and π2
1 (see §3.1) and also prove the commutativity of the

corresponding diagram. The homomorphisms for weight 3 are defined as π3
0 , π3

1 and
π3

2 (see §3.2) and we prove that the diagrams are commutative.

2. F  B 

In this section we explain the terminologies that will be used in our work and give
a brief description of the prior work. We closely follow the work of ([6],[5],[7]) and
([10]) to define most of the terms.

2.1. Grassmannain Complex. For any set X, let Cm(X) be a free abelian group gen-
erated by the elements of G/Xm (which are called configurations of m points), where
G is a group which acts on X, then we can define a differential map d : Cm(X) →
Cm−1(X) as

d : (x1, . . . , xm) 7→
m∑

i=1

(−1)m(x1, . . . , x̂i, . . . , xm)

Let Cm(n) be a free abelian group generated by the configurations of m-vectors of
an n-dimensional vector space Vn. The configuration (xi|x1, . . . , x̂i, . . . , xm) is called
a projective configuration of m − 1 vectors projected from xi. Define a projective
differential map d′ as

d′ : Cm(n)→ C(m−1)(n − 1)
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d′ : (x1, . . . , xm) 7→
m∑

i=1

(−1)i(xi|x1, . . . , x̂i, . . . , xm)

then we have the following bi-complex

...

²²

...

²²

...

²²
· · · // Cn+5(n + 2) d //

d′
²²

Cn+4(n + 2) d //

d′
²²

Cn+3(n + 2)

d′
²²

· · · // Cn+4(n + 1) d //

d′
²²

Cn+3(n + 1) d //

d′
²²

Cn+2(n + 1)

d′
²²

· · · // Cn+3(n) d // Cn+2(n) d // Cn+1(n)

called Grassmannian bi-complex.
From the above we will use the subcomplex (C∗(n), d′) in the remainder of the

text.

2.2. Bloch-Suslin. Let �[�1
F] be a free abelian group defined over a projective line

�1
F generated by the elements [x] where x ∈ �1

F , then B2(F) can be defined as the
quotient of the �[�1

F] and the subgroup R2(F), i.e

B2(F) =
�[�1

F \ {0, 1,∞}]
R2(F)

where R2(F) is a subgroup of �[�1
F] generated by the five term relation

R2(F) =

〈 4∑

i=0

(−1)i[r(x0, . . . , x̂i, . . . , x4)], xi ∈ �1
F

〉

where r(x0, . . . , x3) =
(x0−x3)(x1−x2)
(x0−x2)(x1−x3) is the cross ratio of four points.

If we define a map

δ2 : �[�1
F]→ ∧2F×, [x] 7→ (1 − x) ∧ x

where ∧2F× represents the second exterior power defined as

∧2F× = F× ⊗z F×/〈x ⊗z x/x ∈ F×〉
It is easy to verify that R2(F) ⊆ ker δ2, so we can induce a map δ for which we have
a complex BF(2) of the form

δ : B2(F)→ ∧2F×

called Bloch-Suslin complex.
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2.3. Goncharov’s Complex. Bloch group of weight 3 denoted by B3(F) can be
obtained by substituting n=3 in the Zagier’s generelized Bloch group [4], i.e.

B3(F) =
�[�1

F]
R3(F)

where the subgroup R3(F) ⊆ �[�1
F] can be defined as

R3(F) =

〈 6∑

i=0

(−1)i[r3(l0, . . . , l̂i, . . . , l6)]|(l0, . . . , l̂i, . . . , l6) ∈ C6(�2
F)

〉

where r3(l0, . . . , , . . . , l5) represents the Goncharove’s triple-ratio of six points (l0, . . . , l5) ∈
C6(P2(F)) which can be written as

r3(l0, . . . , l5) = Alt6
∆(l0, l1, l3)∆(l1, l2, l4)∆(l2, l0, l5)
∆(l0, l1, l4)∆(l1, l2, l5)∆(l2, l0, l3)

Now if we define a map
δ3 : �[P1(F)]→ ∧3F×

then by [5], we have δ3(R3(F)) = 0, so we can write a complex BF(3)

δ : B2(F)→ ∧2F×

where δ is induced map of ∂3.

2.4. Cathelineau’s Complex. [2] introduces another version of Goncharov and Bloch
groups by using infinitesimal procedure. He defines the infinitesimal vector spaces
as

β1(F) = F
where F is any field of characteristic 0. Also

β2(F) =
F[F••]
r2(F)

where F•• = F − {0, 1} and r2(F) is the subspace of F[F] generated by the following

[a] − [b] + a
[
b
a

]
+ (1 − a)

[
1 − b
1 − a

]

and there is a map δ2 : F[F••]→ F ⊗� F× defined as

[a] 7→ a ⊗� a + (1 − a) ⊗F (1 − a)

such that r2(F) ⊆ ker ∂2. From the above setup we have have a complex

β2(F)
δ−→ F ⊗� F×

called infinitesimal complex of weight n = 2, where ∂ is induced by δ2. Further,
infinitesimal complex for weight n = 3 can be defined as

β3(F) =
F[F••]
r3(F)
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where r3(F) is the kernel of the map

δ3 : F[F••]→ β2(F) ⊗ F× ⊕ F ⊗ B2(F)

[a] 7→ 〈a〉2 ⊗ a + (1 − a) ⊗ [a]2

where 〈a〉2 is a class of [a] in β2(F), we can form a complex for the map δ as

β3(F))
δ−→ (

β2(F) ⊗F F×
) ⊕ (F ⊗ B2(F)))

δ−→ F ⊗ ∧2F×

where
δ : 〈a〉3 7→ 〈a〉2 ⊗ a + (1 − a) ⊗ [a]2

and

δ : 〈a〉2 ⊗ b + x ⊗ [y]2 7→ − (a ⊗ a ∧ b + (1 − a) ⊗ (1 − a) ∧ b) + x ⊗ (1 − y) ∧ y

where 〈a〉3 is a class of [a] in β3(F)

2.5. Variant of Cathelineau’s Infinitesimal Complex. Let D be the derivation map
defined on the field F and denote D(x) for the derivative of x ∈ F over �, we define
a vector space βD

2 (F) generated by the elements ~a�D and satisfying the relation

~a�D
2 − ~b�D

2 +

�
b
a

�D

2
−

�
1 − b
1 − a

�D

2
+

�
1 − b−1

1 − a−1

�D

2
; a , b, a , 1

where ~a�D := D(a)
a(1−a) [a] ∈ F[F••]

Now we can apply this derivative map to all the constructions of infinitesimal
vector spaces to form new vector spaces and to do this we will follow the work of
[10]. First we define a map

∂2
D : F[F••]→ F ⊗ F×

∂2
D : ~a�D

2 7→ −D log(1 − a) ⊗ a + D log(a) ⊗ (1 − a)

where ~a�D
2 =

D(a)
a(1−a) 〈a〉2

we define βD
3 (F) as

βD
3 (F) =

F(F••)
ρD

3 (F)

where ρD
3 (F) is the kernel of the map

∂3
D : [a]D 7→ ~a�D

2 ⊗ a + Dlog(a) ⊗ [a]2

From which another map ∂D can be induced which enables us to form the following
complex

βD
3 (F)

∂D

−−→ βD
2 (F)F× ⊕ F ⊗ B2(F)

∂D

−−→ F ⊗ ∧2F
where

∂D
(
~a�D

3

)
= [a]D

2 ⊗ a + Dlog(a) ⊗ [a]2
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2.5.1. Functional equations of βD
n (F). Functional equations of βD

n (F) for n = 2 and
n = 3 can easily be computed from the functional equations of βn(F) by using the
definition of derivation map see [10]

For the case n = 2
(1) Two term relation

~a�D
2 = −~1 − a�D

2

(2) Inversion relation

~a�D
2 = −

�
1
a

�D

2
(3) Five term relation

~a�D
2 − ~b�D

2 +

�
b
a

�D

2
−

�
1 − b
1 − a

�D

2
+

�
1 − b−1

1 − a−1

�D

2
= 0

3. M R

In this section we are Considering Grassmannian subcomplex (C∗(n), d′) which
requires slightly different morphisms from [10] between Grassmannian and infinites-
imal complexes for weight n = 2, 3.

3.1. Dilogarithmic complexes. Consider the following

C4(2)
π2

1 //

d′

²²

βD
2 (F)

∂D

²²
C3(1)

π2
0 // F ⊗ F×

(3.1a)

then we can define

π2
0 : (l0, l1, l2) 7→

2∑

i=0

D (∆(li))
∆(li)

⊗ ∆(li+2) − D (∆(li+1))
∆(li+1)

⊗ ∆(li+2), i mod 3

where ∆(li) = 〈ω, li〉, such that ω ∈ V∗1 is a volume element.

π2
1 : (l0, l1, l2, l3) 7→ ~r(l0, l1, l2, l3)�D

2

∂D([a]D
2 ) = −D log(1 − a) ⊗ a + D log(a) ⊗ (1 − a)

where ~a�D
2 =

D(a)
a(a−1) 〈a〉2 is the element of βD

2 (F) and r(l0, . . . , l3) =
∆(l0,l3)∆(l1,l2)
∆(l0,l2)∆(l1,l3) is

the cross ratio of four points.
Now it is easy to verify that maps π2

0 and π2
1 are well-defined.

Theorem 1. The diagram (3.1a) is commutative. i.e.

π2
0 ◦ d′ = ∂D ◦ π2

1
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Proof. First we will compute π2
0 ◦ d′(l0, l1, l2, l3)

π2
0 ◦ d′(l0, l1, l2, l3) = π2

0 {(l0|l1, l2, l3) − (l1|l0, l2, l3) + (l2|l0, l1, l3) − (l3|l0, l1, l2)} (1)

We deal all four summands individually, take the last term and apply definition of
π2

0.

π2
0(l3|l0, l1, l2) =

D(30)
(30)

⊗ (32) − D(31)
(31)

⊗ (32) − D(31)
(31)

⊗ (30)

+
D(32)
(32)

⊗ (30) − D(32)
(32)

⊗ (31) − D(30)
(30)

⊗ (31)

for the simplicity we use ∆(li, l j) = (i j) where ∆(li, l j) = 〈ω, li, l j〉, such that ω ∈ V∗2
is a volume element. This is the expansion of last summand of (3.1) which contains
six terms. Similarly the expansion of other three summands will give 18 more terms
and by combining all of them we will get an expression of 24 terms. These 24 terms
can be combined into two terms as

= D log r(0321) ⊗ r(0123) − D log r(0123) ⊗ r(0321)

This completes the calculation of left hand side.
Now we come to find the value of ∂D ◦ π2

1 From the definition of ∂D and π2
1 we

have

∂D ◦ π2
1(l0, l1, l2, l3) =

D{1 − r(0123)}
{1 − r(0123)} ⊗ r(0123) − D{r(0123)}

r(0123)
⊗ {1 − r(0123)}

where (lp, lq, lr, ls) = (pqrs), using the property of cross-ratio we can write

= D log r(0321) ⊗ r(0123) − D log r(0123) ⊗ r(0321)

�

3.2. Trilogarithmic complexes. Consider the diagram

C6(3) d′ //

π3
2

²²

C5(2) d′ //

π3
1

²²

C4(1)

π3
0

²²
βD

3 (F) ∂D
// (βD

2 (F) ⊗ F×) ⊕ (F ⊗ B2(F)) ∂D
// F ⊗ ∧2F×

(3.2a)

where

π3
0 : (l0, . . . , l3) 7→

3∑

i=0

(−1)i D∆(li)
∆(li)

⊗ ∆(li+1)
∆(li+2)

∧ ∆(li+3)
∆(li+2)

, i mod 4 (2)
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π3
1 : (l0, . . . , l4) 7→ −1

3

4∑

i=0

(−1)i
{
~[r(l0, . . . , l̂i, . . . , l4)�]D

2 ⊗ Πi, j∆(li, l j)

+
D(Πi, j∆(li, l j))

Πi, j∆(li, l j)
⊗ [r(l0, . . . , l̂i, . . . , l4)]2

}
(3)

π3
2 : (l0, . . . , l5) 7→ 2

45
Alt6

�
∆(l0, l1, l3)∆(l1, l2, l4)∆(l2, l0, l5)
∆(l0, l1, l4)∆(l1, l2, l5)∆(l2, l0, l3)

�D

3
(4)

d′ : (x0, . . . , x4) 7→
4∑

i=0

(−1)m(xi|x1, . . . , x̂i, . . . , x4)

where

~[a�]D
3 =

D(a)
a(a − 1)

〈a〉3
and

∂D(~[a�]D
2 ) = [a]D

2 ⊗ a +
D(a)

a
⊗ [a]2

The maps (3.2) , (3.3) and (3.4) are well defined and this can easily be varified by
same procedure used in [10]. Here we only prove the commutativity of above dia-
gram and will see that the diagram is still commutative by using projection maps in
Grassmannian complex.

Theorem 2. The diagram

C5(2) d′ //

π3
1

²²

C4(1)

π3
0

²²
(βD

2 (F) ⊗ F×) ⊕ (F ⊗ B2(F)) ∂D
// F ⊗ ∧2F×

is commutative. i.e.

∂D ◦ π3
1 = π3

0 ◦ d′

Proof. Since we have already defined all the maps so here we do direct calculations

π3
0 ◦ d′(l0, . . . , l4) =π3

0


4∑

i=0

(−1)i(li|l0, . . . , l̂i, . . . , l4)



=π3
0(l0|l1, l2, l3, l4) − π3

0(l1|l0, l2, l3, l4) + π3
0(l2|l0, l1, l3, l4)

−π3
0(l3|l0, l1, l2, l4) + π3

0(l4|l0, l1, l2, l3) (5)
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Now we solve each term individually

π3
0(l0|l1, l2, l3, l4) =

4∑

i=1

(−1)i
(

D (∆(l0, li))
∆(l0, li)

⊗ ∆(l0, li+1)
∆(l0, li+2)

∧ ∆(l0, li+3)
∆(l0, li+2)

)
(6)

Form the expansion of this sum we get 12 terms of the form

D (∆(l0, l1))
∆(l0, l1)

⊗ ∆(l0, l2) ∧ ∆(l0, l4)

and the terms with common D log factor can be combined. i.e. (6) can be written as

=
D (∆(l0, l1))

∆(l0, l1)
⊗ {∆(l0, l2) ∧ ∆(l0, l4) − ∆(l0, l2) ∧ ∆(l0, l3) − ∆(l0, l3) ∧ ∆(l0, l4)}

−D (∆(l0, l2))
∆(l0, l2)

⊗ {∆(l0, l3) ∧ ∆(l0, l1) − ∆(l0, l3) ∧ ∆(l0, l4) − ∆(l0, l4) ∧ ∆(l0, l1)}

+
D (∆(l0, l3))

∆(l0, l3)
⊗ {∆(l0, l4) ∧ ∆(l0, l2) − ∆(l0, l4) ∧ ∆(l0, l1) − ∆(l0, l1) ∧ ∆(l0, l2)}

−D (∆(l0, l4))
∆(l0, l4)

⊗ {∆(l0, l1) ∧ ∆(l0, l3) − ∆(l0, l1) ∧ ∆(l0, l2) − ∆(l0, l2) ∧ ∆(l0, l3)} (7)

Similarly we can expand the remaining four summands of (5) and will get 12 terms
of each that can be converted into 4 terms as (7) . After setting all these terms of (5)
we get a total of 20 terms.This completes the calculation of the right hand side.

Now we come to compute the other part. i.e. ∂D ◦ π3
1

∂D ◦ π3
1(l0, . . . , l4) =∂D

(
− 1

3

4∑

i=0

(−1)i{[r(l0, . . . , l̂i, . . . , l4)]D
2 } ⊗ Πi, j∆(li, l j)

+
D(Πi, j∆(li, l j))

Πi, j∆(li, l j)
⊗ [r(l0, . . . , l̂i, . . . , l4)]2

)

= − 1
3

4∑

i=0

(−1)i
(

D(1 − r(l0, . . . , l̂i, . . . , l4))

(1 − r(l0, . . . , l̂i, . . . , l4))
⊗ [r(l0, . . . , l̂i, . . . , l4)] ∧ Πi, j∆(li, l j)

− D(r(l0, . . . , l̂i, . . . , l4))

(r(l0, . . . , l̂i, . . . , l4))
⊗ [(1 − r(l0, . . . , l̂i, . . . , l4))] ∧ Πi, j∆(li, l j)

+
D

(
Πi, j∆(li, l j)

)

Πi, j∆(li, l j)
⊗ [1 − r(l0, . . . , l̂i, . . . , l4)] ∧ [r(l0, . . . , l̂i, . . . , l4)]

)

(8)

For short hand we will use (i j) instead of ∆(li, l j) and (pqrs) instead of (lp, lq, lr, ls).
From the above sum, for different values of i we get five different expressions. For
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example, if we put i = 0, we get

−1
3

(
D log (1 − r(1234)) ⊗ r(1234) ∧ (01)(02)(03)(04) − D log (r(1234)) ⊗ (1 − r(1234)) ∧ (01)(02)(03)(04)

+D log ((01)(02)(03)(04)) ⊗ (1 − r(1234)) ∧ r(1234)
)

or

−1
3

(
D log

(
(12)(43)
(13)(42)

)
⊗ (

(14)(23)
(13)(24)

) ∧ (01)(02)(03)(04)

−
D

(
(14)(23)
(13)(24)

)
(

(14)(23)
(13)(24)

) ⊗ (
(12)(43)
(13)(42)

) ∧ (01)(02)(03)(04)

+
D ((01)(02)(03)(04))

(01)(02)(03)(04)
⊗ (12)(43)

(13)(42)
∧ (14)(23)

(13)(24)
In a similar way we can find the other four expressions by putting i = 1, 2, 3, 4 in (8).
After combining all five the expressions and simplifying we will get a large number
of terms but most of them will cancel each other and remaining terms can be added to
the similar ones . After this process only 60 terms will remains all with co-efficient 3
and if we arrange these terms in such a way that the terms whose first factor is same
are combined then we get

−1
3

D(12)
(12)

⊗
{
3(13) ∧ (14) + 3(14) ∧ (10) − 3(13) ∧ (10)

+3(23) ∧ (20) − 3(23) ∧ (24) − 3(24) ∧ (20)
}

−1
3

D(14)
(14)

⊗
{
3(10) ∧ (12) + 3(12) ∧ (13) − 3(10) ∧ (13)

+3(42) ∧ (40) − 3(42) ∧ (43) − 3(43) ∧ (40)
}

...

and so on.
At last we cancel the coefficient 3 with the factor −1

3 which gives the required
result. �

Theorem 3. The diagram

C6(3) d′ //

π3
2

²²

C5(2)

π3
1

²²
βD

3 (F) ∂D
// (βD

2 (F) ⊗F F×) ⊕ (F ⊗ B2(F))

is commutative. i.e.
∂D ◦ π3

2 = π3
1 ◦ d′
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Proof. Since there is no significant changes in map of π3
2 and map defined in [10], so

we are reffering Theorem 3.11 of [10] for the proof. �

R
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