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THE t-PEBBLING NUMBER OF SOME WHEEL RELATED
GRAPHS

A. LOURDUSAMY1, F. PATRICK2 AND T. MATHIVANAN3

Abstract. Let G be a graph and some pebbles are distributed on its
vertices. A pebbling move (step) consists of removing two pebbles from
one vertex, throwing one pebble away, and moving the other pebble to an
adjacent vertex. The t-pebbling number of a graph G is the least integer m
such that from any distribution of m pebbles on the vertices of G, we can
move t pebbles to any specified vertex by a sequence of pebbling moves.
In this paper, we determine the t-pebbling number of some wheel related
graphs.
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1. Introduction

Pebbling in graphs was first considered by Chung [1]. Graph Pebbling is
a network optimization model for the transportation of resources that are
consumed in transit. The central problem in this model asks whether discrete
pebbles from one set of vertices can be moved to another while pebbles are lost
in the process. The graph pebbling model was born as a method for solving
a combinatorial number theory conjecture of Erds and Lemke and has since
been applied to problems in combinatorial group theory and p-adic diophantine
equations. Here, the term graph refers to a simple graph. A configuration C
of pebbles on a graph G = (V,E) can be thought of as a function C : V (G) →
N ∪{0}. The value C(v) equals the number of pebbles placed at vertex v, and
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the size of the configuration is the number |C| =
∑

v∈V (G) C(v) of pebbles
placed in total on G. Suppose C is a configuration of pebbles on a graph G.
A pebbling move (step) consists of removing two pebbles from one vertex and
then placing one pebble at an adjacent vertex. We say a pebble can be moved
to a vertex v, the target vertex, if we can apply pebbling moves repeatedly (if
necessary) so that in the resulting configuration the vertex v has at least one
pebble.

Definition 1.1. ([2]) The t-pebbling number of a vertex v in a graph G,
ft(v, G), is the smallest positive integer m such that however m pebbles are
placed on the vertices of the graph, t pebbles can be moved to v in finite num-
ber of pebbling moves, each move removes two pebbles of one vertex and placing
one on an adjacent vertex. The t-pebbling number of G, ft(G), is defined to
be the maximum of the pebbling numbers of its vertices.

Thus the t-pebbling number of a graph G, ft(G), is the least m such that,
for any configuration of m pebbles to the vertices of G, we can move t pebbles
to any vertex by a sequence of moves, each move removes two pebbles of one
vertex and placing one on an adjacent vertex. Clearly, f1(G) = f(G), the
pebbling number of G.
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Figure 1. An illustration of moving one pebble to the end vertex of the path
P5 from a configuration of size 9

Fact 1.2. ([8]) For any vertex v of a graph G, f(v, G) ≥ n where n = |V (G)|.
Fact 1.3. ([8]) The pebbling number of a graph G satisfies

f(G) ≥ max{2diam(G), |V (G)|}.
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With regard to t-pebbling number of graphs, we find the following theorems:

Theorem 1.4. ([3]). Let Kn be the complete graph on n vertices where n ≥ 2.
Then ft(Kn) = 2t + n− 2.

Theorem 1.5. ([6]). Let Cn denote a simple cycle with n vertices, where
n ≥ 3. Then ft(C2k) = t2k and ft(C2k+1) = 2k+2−(−1)k+2

3 + (t− 1)2k.

Theorem 1.6. ([8]). Let Pn be a path on n vertices. Then ft(Pn) = t.2n−1.

Theorem 1.7. ([6]). Let Qn be the n-cube. Then ft(Qn) = t.2n.

Lourdusamy et al. proved the t-pebbling number of Jahangir graph J2,m

and the t-pebbling number of Jahangir graph J3,m (for m ≥ 3) in [7, 4]. And
also they proved the t-pebbling number for squares of cycles (t ≥ 2) in [5].

Notation 1.8. Let p(v) denote the number of pebbles on the vertex v and
p(A) denote the number of pebbles on the vertices of A, where A ⊆ V (G). Let
< A > denote the subgraph induced by the vertices of A. Let d(u, v) denote
the distance between the vertices u and v in G.

Remark 1.9. Consider a graph G with n vertices and f(G) pebbles are placed
on its vertices. Suppose we choose a target vertex v from G to put a pebble on
it. If p(v) ≥ 1 or p(u) ≥ 2 where uv ∈ E(G), then we can move one pebble to
v easily. So, we always assume that p(v) = 0 and p(u) ≤ 1 for all uv ∈ E(G)
when v is the target vertex.

2. The t-pebbling number of Wn

Definition 2.1. The join G+H of two graphs G and H is the graph with vertex
set V (G+H) = V (G)∪V (H) and edge set E(G+H) = E(G)∪E(H)∪{uv :
u ∈ V (G), v ∈ V (H)}.
Definition 2.2. Let V (Cn) = {v1, v2, · · · , vn} (n ≥ 3) and V (K1) = {v0},
where Cn is the cycle graph of order n and K1 is the trivial graph. Then the
graph Cn + K1 is called as wheel graph Wn of order n + 1. We call the vertex
v0 as apex vertex and the vertex vi (i 6= 0) as rim vertex of Wn.

Theorem 2.3. [3] The pebbling number of the wheel graph Wn is f(Wn) =
n + 1 (n ≥ 3).

Theorem 2.4. [3] The t-pebbling number of the wheel graph W3 is ft(W3) =
ft(K4) = 2t + 2.

Theorem 2.5. For the wheel graph Wn (n ≥ 4), f2(Wn) = n + 4.

Proof. Consider the following distribution: p(v0) = 0, p(v1) = 0, p(v2) = 0,
p(v3) = 7, p(v4) = 0, p(vi) = 1 for all i 6= 0, 1, 2, 3, 4. Then we cannot move
two pebbles to the vertex v1. Thus f2(Wn) ≥ n + 4.
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Now, consider the distribution of n + 4 pebbles on the vertices of Wn. Let
vi be the target vertex. Clearly, we are done if p(vi) ≥ 2. If p(vi) = 1 then we
can move another one pebble to the vertex vi, since p(Wn) − 1 ≥ n + 1. So,
we assume that p(vi) = 0 when vi is the target vertex.
Case 1: Let v0 be the target vertex.
Since f(Wn) = n + 1, we can move one pebble to the vertex v0 using at
most two pebbles. Then we can move another one pebble to v0 easily, since
p(Wn)− 2 ≥ n + 1.
Case 2:Let v1 be the target vertex.
Since f(Wn) = n + 1, we can move one pebble to the vertex v1 using at most
four pebbles. If we have used only two or three pebbles, to put a pebble
on the vertex v1, then we can move another one pebble to v1 easily, since
p(Wn) − 3 ≥ n + 1. Suppose we have used four pebbles to move a pebble
to v1, then on those distributions, we must have p(v0) = p(v2) = p(vn) = 0.
Clearly, at most n−3 vertices of V (Wn)−{v0, v1, v2, vn} should have received
the n + 4 pebbles. By our assumption, first, we move one pebble to v1 using
exactly four pebbles. Then the remaining n pebbles are on the n− 3 vertices
or less vertices of V (Wn) − {v0, v1, v2, vn} (i.e. we get at least three pebbles
extra). Thus there exists a vertex vi such that p(vi) ≥ 4 or there exists two
vertices vi and vj such that p(vi) ≥ 2 and p(vj) ≥ 2, where 3 ≤ i, j ≤ n − 1.
Clearly, we can move two pebbles to the vertex v0 in both situations and hence
we can move one pebble to v1.

Thus f2(Wn) ≤ n + 4. ¤

Theorem 2.6. For the wheel graph Wn, ft(Wn) = 4t + n − 4 (t ≥ 2 and
n ≥ 4).

Proof. Consider the following distribution: p(v0) = 0, p(v1) = 0, p(v2) = 0,
p(v3) = 4t − 1, p(v4) = 0, p(vi) = 1 for all i 6= 0, 1, 2, 3, 4. Then we cannot
move t pebbles to the vertex v1. Thus ft(Wn) ≥ 4t + n− 4.

Next, we have to prove that ft(Wn) ≤ 4t+n−4. We prove this by induction
on t. Clearly, it is true for t = 2 by Theorem 2.5. So, we assume the result
is true for 3 ≤ t′ < t. Now, consider the distribution of 4t + n − 4 pebbles
on the vertices of Wn. Since 4t + n − 4 ≥ n + 8 and f(Wn) = n + 1, we
can move one pebble to any target vertex vi of Wn at a cost of at most four
pebbles. Then the remaining number of pebbles on the vertices of Wn is at
least 4(t− 1) + n− 4 and hence we can move the additional t− 1 pebbles to
the target vertex vi by induction. Thus ft(Wn) ≤ 4t + n− 4. ¤

We introduce the following graph in this paper:

Definition 2.7. Let Wn ∗ iPm (1 ≤ i ≤ n) be the graph obtained by attaching
a copy of Pm each to any of the i rim vertices of Wn.
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Note that Wn ∗ iPm is a class of graphs depending on the choice of the i rim
vertices of Wn. If i = n then this class contains a unique graph.

3. The t-pebbling number of Wn ∗ nP2

For the graph Wn ∗nP2, we label the pendant vertex as ui which is adjacent
to the rim vertex vi (1 ≤ i ≤ n) of Wn. Thus V (Wn ∗ nP2) = V (Wn) ∪
{u1, u2, · · · , un}.

Let A = {v1, v2, · · · , vn}, B = {u1, u2, · · · , un} and C = A ∪ {v0}.
v1

v2

v3

v0
v4

u1

u2

u3

u4

Figure 2. The graph W4 ∗ 4P2

Theorem 3.1. For the graph W3 ∗ 3P2, f(W3 ∗ 3P2) = 12.

Proof. Consider the following distribution: p(u1) = 0, p(u2) = 3, p(u3) = 7,
p(v0) = 1, p(vi) = 0 for all i 6= 0. Then we cannot move one pebble to the
vertex u1. Thus f(W3 ∗ 3P2) ≥ 12.

Now, consider the distribution of 12 pebbles on the vertices of W3 ∗ 3P2.
Case 1: Let vi be the target vertex.
Since < C >∼= W3 and f(W3) = 4, we can move one pebble to the vertex vi

if p(C) ≥ 4. So, we assume p(C) ≤ 3. This implies that, p(B) ≥ 9 and note
that at most three pebbles can be retained on the vertices of B. Hence we
can move at least three pebbles to the vertices of A . Clearly we can move
one pebble to vi if p(C) ≥ 1. Let p(C) = 0. Then p(B) = 12 and note that at
most two pebbles can be retained on the vertices of B. Thus we can move at
least four pebbles to the vertices of A and hence we can move one pebble to
vi easily.
Case 2: Let u1 be the target vertex.
Since < C >∼= W3 and f2(W3) = 6, we can move two pebbles to the vertex
v1 if p(C) ≥ 6 and hence we can move one pebble to u1. So, we assume
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p(C) = x ≤ 5. Thus p(u2)+p(u3) = 12−x and note that at most two pebbles
can be retained on the vertices u2 and u3. Thus we can move at least 5− ⌊

x
2

⌋
pebbles to the vertices of A. Now, the number of pebbles on the vertices of
C is at least x + 5 − ⌊

x
2

⌋ ≥ 5 +
⌈

x
2

⌉
. Clearly we can move two pebbles to

v1, if x ≥ 1 and hence we can move one pebble to u1 easily. Let p(C) = 0.
We have p(u2) + p(u3) = 12. Without loss of generality, let p(u2) ≥ 6. Since
d(u1, u2) = 3, we can move one pebble to u1, if p(u2) ≥ 8. Assume p(u2) = 6
or 7. We get p(u3) ≥ 4 and hence we move one pebble each to v1 from the
vertices u2 and u3. So, one pebble can be moved to the vertex u1.

Thus f(W3 ∗ 3P2) ≤ 12. ¤

Theorem 3.2. For the graph Wn ∗ nP2, f(Wn ∗ nP2) = 3n + 6 (n ≥ 4).

Proof. Consider the following distribution: p(u1) = 0, p(u2) = 1, p(u3) = 15,
p(un) = 1, p(uj) = 3 for all j 6= 1, 2, 3, n, and p(vi) = 0 for all i. Then we
cannot move one pebble to the vertex u1. Thus f(Wn ∗ nP2) ≥ 3n + 6.

Now, consider the distribution of 3n+6 pebbles on the vertices of Wn ∗nP2.
Case 1: Let vi be the target vertex.
Case 1.1: Let p(C) ≥ n + 1.
Clearly, we can move one pebble to vi, since < C >∼= Wn and f(Wn) = n + 1.
Case 1.2: Let 0 ≤ p(C) = x ≤ n.
We have p(B) = 3n + 6− x and note that at most n pebbles can be retained
on the vertices of B. Thus we can move at least n + 3 − ⌊

x
2

⌋
pebbles to the

vertices of A. Now, the number of pebbles on the vertices of C is at least
x + n + 3− ⌊

x
2

⌋ ≥ n + 1 and hence we can move one pebble to vi.
Case 2: Let u1 be the target vertex.
Case 2.1: Let p(C) ≥ n + 4.
Clearly, we can move two pebbles to v1, since < C >∼= Wn and f2(Wn) = n+4.
Hence we can move one pebble to u1 easily.
Case 2.2: Let 0 ≤ p(C) = x ≤ n + 3.
We have p(B−{u1}) = 3n+6−x and note that at most n− 2 pebbles can be
retained on the vertices of B. Thus we can move at least n + 4− ⌊

x
2

⌋
pebbles

to the vertices of A. Now, the number of pebbles on the vertices of C is at
least x+n+4−⌊

x
2

⌋ ≥ n+4 and hence we can move one pebble to u1 through
v1.

Thus f(Wn ∗ nP2) ≤ 3n + 6. ¤

Theorem 3.3. For the graph W3 ∗ 3P2, ft(W3 ∗ 3P2) = 8t + 4.

Proof. Consider the following distribution: p(u3) = 8t− 1, p(u2) = 3, p(v0) =
1, p(u1) = 0, p(vi) = 0 for all i 6= 0. Then we cannot move t pebbles to the
vertex u1. Thus ft(W3 ∗ 3P2) ≥ 8t + 4.

Next, we have to prove that ft(W3 ∗ 3P2) ≤ 8t + 4. We prove this by
induction on t. Clearly, it is true for t = 1 by Theorem 3.1. So, we assume the
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result is true for 2 ≤ t′ < t. Now, consider the distribution of 8t + 4 pebbles
on the vertices of W3 ∗ 3P2. Since 8t + 4 ≥ 20 and f(W3 ∗ 3P2) = 12, we can
move one pebble to any target vertex of W3 ∗ 3P2 at a cost of at most eight
pebbles. Then the remaining number of pebbles on the vertices of W3 ∗ 3P2

is at least 8(t− 1) + 4 and hence we can move the additional t− 1 pebbles to
the target vertex by induction. Thus ft(W3 ∗ 3P2) ≤ 8t + 4. ¤

Theorem 3.4. For the graph Wn ∗nP2, ft(Wn ∗nP2) = 16t+3n−10 (n ≥ 4).

Proof. Consider the following distribution: p(u1) = 0, p(u2) = 1, p(u3) =
16t− 1, p(un) = 1, p(uj) = 3 for all j 6= 1, 2, 3, n, and p(vi) = 0 for all i. Then
we cannot move t pebbles to the vertex u1. Thus ft(Wn∗nP2) ≥ 16t+3n−10.

Next, we have to prove that ft(Wn ∗ nP2) ≤ 16t + 3n − 10. We prove
this by induction on t. Clearly, it is true for t = 1 by Theorem 3.2. So,
we assume the result is true for 2 ≤ t′ < t. Now, consider the distribution of
16t+3n−10 pebbles on the vertices of Wn∗nP2. Since 16t+3n−10 ≥ 3n+22
and f(Wn ∗ nP2) = 3n + 6, we can move one pebble to any target vertex of
Wn ∗nP2 at a cost of at most sixteen pebbles. Then the remaining number of
pebbles on the vertices of Wn ∗ nP2 is at least 16(t− 1) + 3n− 10 and hence
we can move the additional t − 1 pebbles to the target vertex by induction.
Thus ft(Wn ∗ nP2) ≤ 16t + 3n− 10. ¤

4. The t-pebbling number of Wn ∗ Pm

Let V (Pm) = {u1, u2, · · · , um} where Pm is the path on m ≥ 2 vertices.
Without loss of generality, we attach a copy of Pm to the rim vertex v1 of Wn.
Thus V (Wn ∗ Pm) = V (Wn) ∪ (V (Pm)− {u1}). Let D = {v0, v1, v2, · · · , vn},
E = {u2, · · · , um} and F = {v1} ∪ E. Note that < D >∼= Wn, < E >∼= Pm−1

and < F >∼= Pm.

v1

v2

v3

v4

v5

v6

v7
v8

u2 u3 u4 u5 u6

v0

Figure 3. The graph W8 ∗ P6

Theorem 4.1. For the graph W3 ∗ Pm (m ≥ 2), f(W3 ∗ Pm) = 2m + 2.

Proof. Consider the following distribution: p(v0) = 0, p(v1) = 0, p(v2) =
1, p(v3) = 1, p(um) = 2m − 1 and p(uj) = 0 where 2 ≤ j ≤ m − 1. Then
we cannot move one pebble to the vertex v0. Thus, f(W3 ∗ Pm) ≥ 2m + 2.
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Now, consider the distribution of 2m +2 pebbles on the vertices of W3 ∗Pm.
Case 1: Let vi be the target vertex. (0 ≤ i ≤ 3)
If p(D) ≥ 4 then clearly we can move one pebble to vi, since f(W3) = 4.
So assume that p(D) ≤ 3. This implies that p(E) ≥ 2m− 1 ≥ 2m−1 and hence
we can move one pebble to v1 (since f(Pm) = 2m−1). Clearly we are done if
v1 is our target vertex. Let vi (i 6= 1) be our target.
If p(D) = 3 then p(E) = 2m − 1 and hence we can move one pebble to v1,
since f(Pm) = 2m−1. Now p(D) + 1 = 4 and thus we can move one pebble to
vi easily.
If 0 ≤ p(D) ≤ 2 then we can move two pebbles to v1 easily (since p(E) ≥ 2m).
Also, note that, d(vi, v1) = 1 (i 6= 1). Thus we can move one pebble to vi

easily, from v1.
Case 2: Let uj be the target vertex. (2 ≤ j ≤ m)
If p(E) ≥ 2m−2 then clearly we can move one pebble to uj , since f(Pm−1) =
2m−2.
If p(E) = y ≤ 2m−2 − 1 then p(D) = 2m + 2 − y and hence we can move
2m+2−y−3

2 = 2m−1−y
2 ≥ 2m−1−

⌊
y+1
2

⌋
pebbles to the vertex v1 from the vertices

of D. Thus we have 2m−1 + y −
⌊

y+1
2

⌋
≥ 2m−1 pebbles on the vertices of F .

Hence, we can move one pebble to uj , since f(Pm) = 2m−1.
Thus f(W3 ∗ Pm) ≤ 2m + 2. ¤

Theorem 4.2. For the graph Wn ∗ Pm (n ≥ 4 and m ≥ 2), f(Wn ∗ Pm) =
2m+1 + n− 4.

Proof. Consider the following distribution: p(v0) = 0, p(v1) = 0, p(v2) =
0, p(v3) = 0, p(vn) = 0, p(vi) = 1(for all i 6= 0, 1, 2, 3, n), p(um) = 2m+1 − 1
and p(uj) = 0 where 2 ≤ j ≤ m− 1. Then we cannot move one pebble to the
vertex v3. Thus, f(Wn ∗ Pm) ≥ 2m+1 + n− 4.

Now, consider the distribution of 2m+1 + n − 4 pebbles on the vertices of
Wn ∗ Pm.
Case 1: Let vi be the target vertex (0 ≤ i ≤ n).
If p(D) ≥ n+1 then clearly we can move one pebble to vi, since f(Wn) = n+1.
So assume that p(D) ≤ n. This implies that p(E) ≥ 2m+1−4 ≥ 2m and hence
we can move at least two pebbles to v1 (since f(Pm) = 2m−1). Clearly we are
done if vk is our target vertex, where k = 0, 1, 2, n. Let vi (i 6= 0, 1, 2, n) be
our target. If p(v0) = 1 then we can move one pebble to vi easily. Assume
p(v0) = 0. If there exists a vertex vl such that p(vl) ≥ 2 (1 ≤ l ≤ n), then
also we can move two pebbles to v0 and hence we can move one pebble to vi.
So, we assume p(vl) ≤ 1 for all l = 1 to n. Clearly, p(D) 6= n by Remark 1.9.
Let p(D) = n − 1 or n − 2. We can see that there exists a path v1v2 · · · vi−1

or the path v1vn · · · vi+1 such that each vertex has exactly one pebble on it.
Thus we can move one pebble to vi easily (we use the two pebbles of v1 which
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are received from the vertices of E). If p(D) = n − 3 then we move at least
three pebbles to the vertex v1 from the vertices of E. Clearly, we are done if
p(v1) = 1. So, we assume that p(v1) = 0. Now, there exists a path v2v3 · · · vi−1

or the path vnvn−1 · · · vi+1 such that each vertex has exactly one pebble on
it. Thus we can move one pebble to vi easily. If 0 ≤ p(D) ≤ n − 4 then
we can move four pebbles to v1 easily (since p(E) ≥ 2m+1). Also, note that,
d(vi, v1) ≤ 2. Thus we can move one pebble to vi easily.
Case 2: Let uj be the target vertex. (2 ≤ j ≤ m)
If p(E) ≥ 2m−2 then clearly we can move one pebble to uj , since f(Pm−1) =
2m−2.
If p(E) = y ≤ 2m−2− 1 then p(D) = 2m+1 + n− 4− y and hence we can move
2m+1+n−4−y−n

4 = 2m+1−4−y
4 ≥ 2m−1−

⌊
y+4
4

⌋
pebbles to the vertex v1 from the

vertices of D. Thus we have 2m−1+y−
⌊

y+4
4

⌋
≥ 2m−1 (only for y ≥ 1) pebbles

on the vertices of F . Hence, we can move one pebble to uj if y ≥ 1, since
f(Pm) = 2m−1. If y = 0 then p(D) = 4(2m−1) + n− 4. Clearly, we can move
2m−1 pebbles to the vertex v1 (by Theorem 2.6) and hence we can move one
pebble to the vertex uj .

Thus f(Wn ∗ Pm) ≤ 2m+1 + n− 4. ¤
Theorem 4.3. For the graph W3 ∗ Pm, ft(W3 ∗ Pm) = t.2m + 2.

Proof. Consider the following distribution: p(v0) = 0, p(v1) = 0, p(v2) =
1, p(v3) = 1, p(um) = t.2m − 1 and p(uj) = 0 where 2 ≤ j ≤ m − 1. Then we
cannot move t pebbles to the vertex v0. Thus, ft(W3 ∗ Pm) ≥ t.2m + 2.

Next, we have to prove that ft(W3 ∗ Pm) ≤ t.2m + 2. We prove this by
induction on t. Clearly, it is true for t = 1 by Theorem 4.1. So, we assume the
result is true for 2 ≤ t′ < t. Now, consider the distribution of t.2m +2 pebbles
on the vertices of W3∗Pm. Since t.2m+2 ≥ 2.2m+2 and f(W3∗Pm) = 2m+2,
we can move one pebble to any target vertex of W3 ∗ Pm at a cost of at most
2m pebbles. Then the remaining number of pebbles on the vertices of W3 ∗Pm

is at least (t − 1)2m + 2 and hence we can move the additional t − 1 pebbles
to the target vertex by induction. Thus ft(W3 ∗ Pm) ≤ t.2m + 2. ¤
Theorem 4.4. For the graph Wn ∗Pm (n ≥ 4), ft(Wn ∗Pm) = t.2m+1 +n−4.

Proof. Consider the following distribution: p(v0) = 0, p(v1) = 0, p(v2) =
0, p(v3) = 0, p(vn) = 0, p(vi) = 1(for all i 6= 0, 1, 2, 3, n), p(um) = t.2m+1 − 1
and p(uj) = 0 where 2 ≤ j ≤ m − 1. Then we cannot move t pebbles to the
vertex v3. Thus, ft(Wn ∗ Pm) ≥ t.2m+1 + n− 4.

Next, we have to prove that ft(Wn ∗Pm) ≤ t.2m+1 +n−4. We prove this by
induction on t. Clearly, it is true for t = 1 by Theorem 4.2. So, we assume the
result is true for 2 ≤ t′ < t. Now, consider the distribution of t.2m+1 + n− 4
pebbles on the vertices of Wn ∗ Pm. Since t.2m+1 + n− 4 ≥ 4.2m + n− 4 and
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f(Wn ∗ Pm) = 2m+1 + n− 4, we can move one pebble to any target vertex of
Wn ∗ Pm at a cost of at most 2m+1 pebbles. Then the remaining number of
pebbles on the vertices of Wn ∗ Pm is at least (t − 1)2m+1 + n − 4 and hence
we can move the additional t − 1 pebbles to the target vertex by induction.
Thus ft(Wn ∗ Pm) ≤ t.2m+1 + n− 4. ¤
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