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VERTEX-TO-CLIQUE DETOUR DISTANCE IN GRAPHS

I. KEERTHI ASIR1, S. ATHISAYANATHAN2

Abstract. Let v be a vertex and C a clique in a connected graph G. A
vertex-to-clique u − C path P is a u − v path, where v is a vertex in C
such that P contains no vertices of C other than v. The vertex-to-clique
distance, d(u, C) is the length of a smallest u−C path in G. A u−C path of
length d(u, C) is called a u−C geodesic. The vertex-to-clique eccentricity
e1(u) of a vertex u in G is the maximum vertex-to-clique distance from u to
a clique C ∈ ζ, where ζ is the set of all cliques in G. The vertex-to-clique
radius r1 of G is the minimum vertex-to-clique eccentricity among the
vertices of G, while the vertex-to-clique diameter d1 of G is the maximum
vertex-to-clique eccentricity among the vertices of G. Also the vertex-to-
clique detour distance, D(u, C) is the length of a longest u−C path in G. A
u−C path of length D(u, C) is called a u−C detour. The vertex-to-clique
detour eccentricity eD1(u) of a vertex u in G is the maximum vertex-to-
clique detour distance from u to a clique C ∈ ζ in G. The vertex-to-clique
detour radius R1 of G is the minimum vertex-to-clique detour eccentricity
among the vertices of G, while the vertex-to-clique detour diameter D1 of
G is the maximum vertex-to-clique detour eccentricity among the vertices
of G. It is shown that R1 ≤ D1 for every connected graph G and that
every two positive integers a and b with 2 ≤ a ≤ b are realizable as the
vertex-to-clique detour radius and the vertex-to-clique detour diameter,
respectively, of some connected graph. Also it is shown that for any three
positive integers a, b, c with 2 ≤ a ≤ b < c, there exists a connected graph
G such that r1 = a, R1 = b, R = c and for any three positive integers
a, b, c with 2 ≤ a ≤ b < c and a + c ≤ 2b, there exists a connected graph G
such that d1 = a, D1 = b, D = c.
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1. Introduction

By a graph G = (V, E), we mean a finite undirected connected simple graph.
For basic graph theoretic terminologies, we refer to Chartrand and Zhang [2].
If X ⊆ V , then 〈X〉 is the subgraph induced by X. A clique C of a graph G is
a maximal complete subgraph and we denote it by its vertices. A u− v path
P beginning with u and ending with v in G is a sequence of distinct vertices
such that consecutive vertices in the sequence are adjacent in G. For a graph
G, the length of a path is the number of edges on the path.

For example if one is locating an emergency facility like police station,
fire station, hospital, school, college, library, ambulance depot, emergency
care center, etc., then the primary aim is to minimize the distance between
the facility and the location of a possible emergency. In 1964, Hakimi [3]
considered the facility location problems as vertex-to-vertex distance in graphs.
For any two vertices u and v in a connected graph G, the distance d(u, v) is
the length of a shortest u−v path in G. A u−v path of length d(u, v) is called
a u − v geodesic in G. For a vertex v in G, the eccentricity of v is defined
by e(v) = max{d(v, u) : u ∈ V }. A vertex u of G such that d(u, v) = e(v) is
called an eccentric vertex of v. The radius r and diameter d of G are defined
by r = rad(G) = min{e(v) : v ∈ V } and d = diam(G) = max{e(v) : v ∈ V }
respectively. A vertex v in G is called a central vertex if e(v) = r and the
center of G is defined by C(G) = Cen(G) = 〈{v ∈ V : e(v) = r}〉. A vertex
v in G is called a peripheral vertex if e(v) = d and the periphery of G is
defined by P (G) = Per(G) = 〈{v ∈ V : e(v) = d}〉. If every vertex of a graph
is central vertex then G is called self-centered.

For example if one is making an election canvass or circular bus service the
distance from the location is to be maximized. In 2005, Chartrand et. al. [1]
introduced and studied the concepts of detour distance in graphs. For any
two vertices u and v in a connected graph G, the detour distance D(u, v) is
the length of a longest u − v path in G. A u − v path of length D(u, v) is
called a u − v detour in G. For a vertex v in G, the detour eccentricity of
v is defined by eD(v) = max{D(v, u) : u ∈ V }. A vertex u of G such that
D(u, v) = eD(v) is called a detour eccentric vertex of v. The detour radius R
and detour diameter D of G are defined by R = radDG = min{eD(v) : v ∈ V }
and D = diamD(G) = max{eD(v) : v ∈ V } respectively. A vertex v in G
is called a detour central vertex if eD(v) = R and the detour center of G is
defined by CD(G) = CenD(G) = 〈{v ∈ V : eD(v) = R}〉. A vertex v in G is
called a detour peripheral vertex if eD(v) = D and the detour periphery of G
is defined by PD(G) = PerD(G) = 〈{v ∈ V : eD(v) = D}〉. If every vertex of
a graph is detour central vertex then G is called detour self-centered.

For example when a railway line, pipe line or highway is constructed, the
distance between the respective structure and each of the communities to
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be served is to be minimized. In a social network a clique represents a
group of individuals having a common interest. Thus the centrality with
respect to cliques have interesting applications in social networks. In 2002,
Santhakumaran and Arumugam [6] introduced the facility locational prob-
lem as vertex-to-clique distance in graphs as follows: For a vertex u and
a clique C in a connected graph G, the vertex-to-clique distance is defined
by d(u,C) = min{d(u, v) : v ∈ C}. The vertex-to-clique eccentricity of
u is defined by e1(u) = max{d(u,C) : C ∈ ζ}, where ζ is the set of all
cliques in G. A clique C of G such that e1(u) = d(u,C) is called a vertex-
to-clique eccentric vertex of u. The vertex-to-clique radius r1 is defined by
r1 = min{e1(v) : v ∈ V } and the vertex-to-clique diameter d1 of G is de-
fined by d1 = max{e1(v) : v ∈ V }. A vertex v in G is called a vertex-
to-clique central vertex if e1(v) = r1 and the vertex-to-clique center of G
is defined by Z1(G) = 〈{v ∈ V : e1(v) = r1}〉. For our convenience Z1(G) is
denoted by C1(G). A vertex v in G is called a vertex-to-clique peripheral
vertex if e1(v) = d1 and the vertex-to-clique periphery of G is defined by
P1(G) = 〈{v ∈ V : e1(v) = d1}〉. If every vertex of a graph is vertex-to-clique
central vertex then G is called vertex-to-clique self-centered.

For example when a dam, lake, pond, river or channel is constructed, the
maximum number of places should be covered between the respective structure
and each of the communities to be served. These motivated us to introduce a
distance called the vertex-to-clique detour distance in graphs and investigate
certain results related to vertex-to-clique detour distance and other distances
in graphs. Further these ideas have interesting applications in channel assign-
ment problem in radio technologies. Also there are useful applications of these
concepts to security based communication network design. Throughout this
paper, G denotes a connected graph with at least two vertices.

2. Vertex-To-Clique Detour Distance

Definition 1. Let u be a vertex and C a clique in a connected graph G. A
vertex-to-clique u − C path P is a u − v path, where v is a vertex in C such
that P contains no vertices of C other than v. The vertex-to-clique detour
distance D(u,C) is the length of a longest u−C path. A u−C path of length
D(u,C) is called a vertex-to-clique u−C detour or simply u−C detour. For
our convenience a u−C path of length d(u,C) is called a vertex-to-clique u−C
geodesic or simply u− C geodesic.

Example 1. Consider the graph G given in Fig 2.1. For the vertex u and the
clique C = {x, y, z}, the paths P1 : u, t, s, x, P2 : u,w, v, r, z and P3 : u, z are
u−C paths, while the paths Q1 : u, t, s, x, y, z and Q2 : u,w, v, r, z, y, x are not
u − C paths. Now the vertex-to-clique distance d(u,C) = 1 and the vertex-
to-clique detour distance D(u,C) = 4. Thus the vertex-to-clique distance is
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different from the vertex-to-clique detour distance. Also P2 is a u− C detour
and P3 is a u− C geodesic. Note that the x− C, y − C and z − C paths are
trivial paths of length 0 and any non-trivial u − C path does not contain a
simplicial vertex of C.

x

s

t

u

z

r

v

w

y

Fig. 2.1: G

Since the length of a u − C path between a vertex u and a clique C in a
graph G of order n is at most n− 2, we have the following observation.

Observation 1. For any vertex u and a clique C in a non-trivial connected
graph G of order n, 0 ≤ d(u,C) ≤ D(u,C) ≤ n − 2. The bounds are sharp.
If G is a complete graph of order n, then d(u,C) = D(u,C) = 0 for every
vertex u in G and if G is a path P : u = u1, u2, . . . , un−1, un of order n, then
d(u,C) = D(u,C) = n − 2, where C = {un−1, un}. Also we note that if G
is a tree, then d(u,C) = D(u,C) and if G is an even cycle with u /∈ C, then
d(u,C) < D(u,C) for every vertex u in G.

Since a vertex of degree n − 1 in a graph G of order n, belongs to every
clique C in G, we have the following observation.

Observation 2. Let G be a connected graph of order n and C a clique in G.
If u is a vertex of degree n − 1, then D(u,C) = 0. The converse is not true.
Consider the graph G given in Fig. 2.1, D(u,C) = 0, where C = {u, z}, but
deg(u) 6= n− 1.

Theorem 1. Let Kn,m(n < m) be a complete bipartite graph with the partition
V1, V2 of V (Kn,m) such that |V1| = n and |V2| = m. Let u be a vertex and C
a clique such that u /∈ C in Kn,m, then

D(u,C) =

{
2n− 2, if u ∈ V1

2n− 1 if u ∈ V2

Proof. Let V1 = {x1, x2, . . . , xn} and V2 = {y1, y2, . . . , yn, yn+1, . . . , ym}. Since
any edge is a clique, without loss of generality assume that C = {xn, yn} is a
clique and u = x1 or u = y1.
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Case 1. u = x1. Let P1 : u = x1, y1, x2, y2, . . . , xn−1, yn−1, xn be a longest
u − xn path, which has n vertices of V1 and n − 1 vertices of V2. It must
contain 2n − 1 vertices of Kn,m. So that its length is 2n − 2. Also P2 : u =
x1, y1, x2, y2, . . . , xn−1, yn be a longest u − yn, which has n − 1 vertices of V1

and n− 1 vertices of V2. It must contain 2n− 2 vertices of Kn,m. So that its
length is 2n− 3. Thus D(u,C) = 2n− 2 if u ∈ V1.
Case 2. u = y1. Let Q1 : u = y1, x1, y2, x2, . . . , yn−1, xn−1, yn+1, xn be a
longest u − xn path, which has n vertices of V1 and n vertices of V2. It
must contain 2n vertices of Kn,m. So that its length is 2n − 1. Also Q2 :
u = y1, x1, y2, x2, . . . , yn−1, xn−1, yn be a longest u− yn path, which has n− 1
vertices of V1 and n vertices of V2. It must contain 2n − 1 vertices of Kn,m.
So that its length is 2n− 2. Thus D(u,C) = 2n− 1 if u ∈ V2. ¤

Corollary 2. Let u be a vertex and C a clique in a complete bipartite graph
Kn,n such that u /∈ C, then D(u,C) = 2n− 2.

Since every tree has unique u−C path between a vertex u and a clique C,
we have the following observation.

Observation 3. If G is a tree, then d(u,C) = D(u, C) for every vertex u and
a clique C in G. The converse is not true. For the graph G obtained from a
complete bipartite graph K2,n(n ≥ 2) by joining the vertices of degree n by an
edge. In such a graph every clique C is isomorphic to K3 and for every vertex
u in G with u /∈ C , d(u,C) = D(u,C) = 1 and for every vertex u in G with
u ∈ C , d(u,C) = D(u,C) = 0, but G is not tree.

3. Vertex-To-Clique Detour Central Concepts

Definition 2. The vertex-to-clique detour eccentricity eD1(u) of a vertex u
in a connected graph G is defined as eD1(u) = max {D(u,C) : C ∈ ζ}, where
ζ is the set of all cliques in G. A clique C for which eD1(u) = D(u,C) is
called a vertex-to-clique detour eccentric clique of u. The vertex-to-clique de-
tour radius of G is defined as, R1 = radD1(G) = min {eD1(v) : v ∈ V } and
the vertex-to-clique detour diameter of G is defined as, D1 = diamD1(G) =
max {eD1(v) : v ∈ V }. A vertex v in G is called a vertex-to-clique detour cen-
tral vertex if eD1(v) = R1 and the vertex-to-clique detour center of G is de-
fined as, CD1(G) = CenD1(G) = 〈{v ∈ V : eD1(v) = R1}〉. A vertex v in G
is called a vertex-to-clique detour peripheral vertex if eD1(v) = D1 and the
vertex-to-clique detour periphery of G is defined as, PD1(G) = PerD1(G) =
〈{v ∈ V : eD1(v) = D1}〉. If every vertex of G is a vertex-to-clique detour cen-
tral vertex, then G is called a vertex-to-clique detour self centered graph. If G is
a vertex-to-clique detour self-centered graph, then G is its own vertex-to-clique
detour periphery.
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Example 2. For the connected graph G given in Fig. 3.1, the set of all
cliques in G are given by, ζ = {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10} where
C1 = {v1, v2, v3}, C2 = {v3, v4}, C3 = {v4, v5}, C4 = {v5, v6}, C5 = {v6, v7},
C6 = {v7, v8}, C7 = {v8, v10}, C8 = {v9, v10}, C9 = {v4, v9}, and C10 =
{v10, v11, v12,v13, v14}.

v3

v1

v2

v4

v5 v6 v7

v8

v10v9

v13v14

v12

v11

Fig. 3.1: G

The eccentricity e(v), vertex-to-clique eccentricity e1(v), detour eccentricity
eD(v), vertex-to-clique detour eccentricity eD1(v) of all the vertices of G are
given in Table 1.

v v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

e(v) 5 5 4 3 4 4 5 5 3 4 5 5 5 5
e1(v) 5 5 4 3 3 3 4 4 3 3 4 4 4 4
eD(v) 12 12 10 9 9 8 9 10 10 8 12 12 12 12
eD1(v) 8 8 6 5 7 6 5 6 7 6 10 10 10 10

Table 1

The vertex-to-clique detour eccentric clique of all the vertices of G are given
in Table 2. The radius r = 3, the diameter d = 5, the vertex-to-clique ra-
dius r1 = 3, the vertex-to-clique diameter d1 = 5, the detour radius R =
8, the detour diameter D = 12, the vertex-to-clique detour radius R1 = 5
and the vertex-to-clique detour diameter D1 = 10. Also the center C(G) =
〈{v4, v9}〉, the periphery P (G) = 〈{v1, v2, v7, v8, v11, v12, v13, v14}〉, the vertex-
to-clique center C1(G) = 〈{v4, v5, v6, v9, v10}〉, the vertex-to-clique periphery
P1(G) = 〈{v1, v2}〉, the detour center CD(G) = 〈{v6, v10}〉, the detour pe-
riphery PD(G) = 〈{v1, v2, v11, v12, v13, v14}〉, the vertex-to-clique detour cen-
ter CD1(G) = 〈{v4, v7}〉 and the vertex-to-clique detour periphery PD1(G) =
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〈{v11, v12, v13, v14}〉. In a connected graph G, C(G), C1(G), CD(G), CD1(G)
and P (G), P1(G), PD(G), PD1(G) need not be same. For the the graph G given
in Fig 3.1, C(G), C1(G), CD(G), CD1(G) and P (G), P1(G), PD(G), PD1(G)
are distinct. Also no cut vertex in a connected graph G is a vertex-to-clique
detour peripheral vertex of G.

Vertex v Vertex-to-Clique Detour Eccentric Clique C
v1, v2, v3, v4 C4, C8, C10

v7 C1, C4, C7, C10

v8 C10

v5, v6, v9, v10, v11, v12, v13, v14 C1

Table 2

The vertex-to-clique detour radius R1, the vertex-to-clique detour diameter
D1 of some standard graphs are given in Table 3.

Graph G Kn Pn Cn(n ≥ 4) Wn(n ≥ 5) Kn,m(m ≥ n)
R1 0

⌊
n−2

2

⌋
n− 2 0 2(n− 1)

D1 0 n− 2 n− 2 n− 3

{
2(n− 1), if n = m

2n− 1 if n > m

Table 3

Remark 1. In a connected graph G, CD1(G) and PD1(G) need not be con-
nected. For the graph G given in Fig 3.2, CD1(G) = 〈{v2, v4}〉 and PD1(G) =
〈{v1, v3, v5}〉 are disconnected.

v1

v2v5

v3v4

Fig. 3.2: G

Example 3. The complete graph Kn, the cycle Cn and the complete bipartite
graph Kn,n are vertex-to-clique detour self centered graphs.

Remark 2. A self-centered graph need not be a vertex-to-clique detour self
centered graph. For the graph G given in Fig 3.3, C(G) = 〈V (G)〉 and
CD1(G) = 〈{v11}〉.



52 I. Keerthi Asir, S. Athisayanathan

v9
v6

v8 v7

v11

v2 v3

v4

v5
v12

v1

v10

Fig. 3.3: G

Remark 3. A detour self-centered graph need not be a vertex-to-clique detour
self centered graph. For the wheel Wn = K1 + Cn−1(n ≥ 4), CD(Wn) =
〈V (Wn)〉 and CD1(Wn) = 〈V (K1)〉.
Remark 4. A vertex-to-clique self-centered graph need not be a vertex-to-
clique detour self centered graph. For the graph G given in Fig 3.4, C1(G) =
〈V (G)〉 and CD1(G) = 〈{v2, v3, v7}〉.

v1

v2

v3

v4v5

v6

v7

v8

Fig. 3.4: G

Santhakumaran et. al. [6] showed that for any graph G, either C(G) ⊆
C1(G) or C1(G) ⊆ C(G). The following example shows that the similar result
is not true for the detour center and the vertex-to-clique detour center.

Example 4. For the graph G given in Fig 3.5, CD1(G) = 〈{v3}〉 and CD(G) =
〈{v4}〉.
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v1 v2 v3 v4
v6

v5

v7

Fig. 3.5: G

Santhakumaran et. al. [6] showed that for any graph G, either P (G) ⊆
P1(G) or P1(G) ⊆ P (G). The similar result is true for the detour periphery
and the vertex-to-clique detour periphery in G. Now we have the following
observation.

Observation 4. For any graph G, either PD(G) ⊆ PD1(G) or PD1(G) ⊆
PD(G).

Since the vertex-to-clique eccentricity is the maximum vertex-to-clique dis-
tance and the vertex-to-clique detour eccentricity is the maximum vertex-to-
clique detour distance, the following observation is a consequence of Observa-
tion 1.

Observation 5. For any vertex v in a non-trivial connected graph G of order
n, 0 ≤ e1(v) ≤ eD1(v) ≤ n − 2. The bounds are sharp. If G is a complete
graph of order n, then e1(v) = eD1(v) = 0 for every vertex v in G and if G
is a path P : u = u1, u2, ..., un−1, un of order n, then e1(u) = eD1(u) = n− 2.
Also we note that if G is a tree, then e1(v) = eD1(v) for every vertex v in G
and if G is an even cycle, then e1(v) < eD1(v) for every vertex v in G.

Since the vertex-to-clique radius (diameter) is the minimum (maximum)
vertex-to-clique eccentricity and the vertex-to-clique detour radius (diameter)
is the minimum (maximum) vertex-to-clique detour eccentricity, the following
observation is a consequence of Observation 5.

Observation 6. Let G be a connected graph. Then
(i) 0 ≤ r1 ≤ R1 ≤ n− 2.
(ii) 0 ≤ d1 ≤ D1 ≤ n− 2.

We observe that for every vertex v in a graph G, either e(v) ≤ eD1(v) or
e(v) > eD1(v) and eD1(v) 6= eD(v), but eD1(v) ≤ eD(v)− 1. Now we have the
following observation.

Observation 7. Let G be a connected graph. Then
(i) e1(v) ≤ eD1(v) ≤ eD(v)− 1 for every vertex v in G.
(ii) r1 ≤ R1 ≤ R− 1.
(iii) d1 ≤ D1 ≤ D − 1.

Chartrand et. al. [2] showed that in a connected graph, the radius and
diameter are related by r ≤ d ≤ 2r and the detour radius and detour diameter
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are related by R ≤ D ≤ 2R. Also Santhakumaran et. al. [6] showed that the
vertex-to-clique radius and vertex-to-clique diameter are related by r1 ≤ d1 ≤
2r1 +1. The following example shows that the upper inequality does not hold
for the vertex-to-clique detour distance.

Example 5. For the cycle Cn(n ≥ 4), D1 < 2R1 and D1 < 2R1 + 1, the path
P2n, D1 = 2R1 and the wheel Wn(n ≥ 5), D1 > 2R1 and D1 > 2R1 + 1.

Ostrand [5] showed that every two positive integers a and b with a ≤ b ≤ 2a
are realizable as the radius and diameter respectively of some connected graph
and Chartrand et. al. [1] showed that every two positive integers a and b with
a ≤ b ≤ 2a are realizable as the detour radius and detour diameter respectively
of some connected graph. Also Santhakumaran et. al. [6] showed that every
two positive integers a and b with a ≤ b ≤ 2a + 1 are realizable as the vertex-
to-clique radius and vertex-to-clique diameter respectively of some connected
graph. Now we have a realization theorem for the vertex-to-clique detour
radius and the vertex-to-clique detour diameter of some connected graph.

Theorem 3. For each pair a, b of positive integers with 2 ≤ a ≤ b, there exists
a connected graph G with R1 = a and D1 = b.

Proof. Case 1. a = b. Let G = Ca+2 : u1, u2, ..., ua+2, u1 be a cycle of order
a + 2. Then eD1(ui) = a for 1 ≤ i ≤ a + 2. Thus R1 = a and D1 = b as a = b.
Case 2. 2 ≤ a < b ≤ 2a. Let Ca+2 : u1, u2, . . . , ua+2,u1 be a cycle of order
a+2 and Pb−a+1 : v1, v2, . . . , vb−a+1 be a path of order b−a+1. We construct
the graph G of order b + 2 as shown in the Fig 3.6 by identifying the vertex
u1 of Ca+2 with v1 of Pb−a+1.

ua+2
ua+1

u2

v1

u1

u3

v2 v3 vb−a vb−a+1

Fig. 3.6: G

It is easy to verify that
eD1(ui) = a for i = 1

eD1(ui) =

{
b− i + 2, if 2 ≤ i ≤ ⌈

a+2
2

⌉

b− a + i− 2, if
⌈

a+2
2

⌉
< i ≤ a + 2
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eD1(vi) = a + i− 1 for 1 ≤ i ≤ b− a + 1
In particular eD1(ui) = eD1(vi) = a for i = 1

eD1(ui) = b for i = 2, a + 2
eD1(vi) = b for i = b− a + 1

It is easy to verify that there is no vertex x in G with eD1(x) < a and there is
no vertex y in G with eD1(y) > b. Thus R1 = a and D1 = b as a < b.
Case 3. 2 ≤ a < b > 2a. Let P : v1, v2, . . . , v2a+1 be a path P2a+1 of order
2a + 1. Let Q : u1, u2, . . . , ub−2a+1 be a path Pb−2a+1 of order b− 2a + 1. We
construct the graph G of order b + 2 as shown in the Fig 3.7 by joining each
vertex in Q with v1 in P .

v1 v2 v3 va va+1 v2a v2a+1

u1

u2

u3

ub−2a

ub−2a+1

Fig. 3.7: G

It is easy to verify that

eD1(ui) =

{
b− i + 1, if 1 ≤ i ≤ ⌈

b−2a+1
2

⌉

b− a + i, if
⌈

b−2a+1
2

⌉
< i ≤ b− 2a + 1

eD1(vi) =

{
2a− i, if 1 ≤ i ≤ a

i− 1, if a + 1 ≤ i < 2a + 1
eD1(ui) = b for i = 1, b− 2a + 1
eD1(vi) = a for i = a, a + 1

It is easy to verify that there is no vertex x in G with eD1(x) < a and there is
no vertex y in G with eD1(y) > b. Thus R1 = a and D1 = b as b > 2a. ¤

Now we have a realization theorem for the vertex-to-clique radius, vertex-
to-clique detour radius and the detour radius of some connected graph.

Theorem 4. For any three positive integers a, b, c with 2 ≤ a ≤ b < c, there
exists a connected graph G such that r1 = a, R1 = b and R = c.

Proof. Let K = Kb−a+2 be the complete graph of order b−a+2 with V (K) =
{z1, z2, . . . , zb−a+2}. Let P1 : x1, x2, . . . , xa+1 and P2 : y1, y2, . . . , ya+1 be two



56 I. Keerthi Asir, S. Athisayanathan

copies of the path Pa+1 of order a + 1. Let P3 : s1, s2, . . . , sc−b and P4 :
t1, t2, . . . , tc−b be two copies of the path Pc−b of order c− b. We construct the
graph G of order 2c− b + a as follows: (i) identify the vertices x1 in P1 with
z1 in K, also identify the vertices y1 in P2 with zb−a+2 in K, (ii) identify the
vertices s1 in P3 with xa+1 in P1 and t1 in P4 with ya+1 in P2, (iii) join every
vertex in P3 other than s1 with xa in P1 and join every vertex in P4 other
than t1 with ya in P2. The resulting graph G is shown in Fig. 3.8.

Kb−a+2

y1zb−a+2
y2 y3 y4 ya ya+1

t2t3t4tc−b

Fig. 3.8: G

z1
x1

x2 x3 x4 xa xa+1

s2s3s4sc−b

It is easy to verify that
e1(zi) = a for 1 ≤ i ≤ b− a + 2
eD1(zi) = b for 1 ≤ i ≤ b− a + 2
eD(zi) = c for 1 ≤ i ≤ b− a + 2
e1(xi) = a + i− 1 for 1 ≤ i ≤ a
eD1(xi) = b + i− 1 for 1 ≤ i ≤ a
eD(xi) = c + i− 1 for 1 ≤ i ≤ a
e1(si) = 2a for 1 ≤ i ≤ c− b
e1(ti) = 2a for 1 ≤ i ≤ c− b

eD1(si) =

{
c + a− i, if 1 ≤ i ≤ ⌈

c−b
2

⌉

b + a + i− 1, if
⌈

c−b
2

⌉
< i ≤ c− b

eD1(ti) =

{
c + a− i, if 1 ≤ i ≤ ⌈

c−b
2

⌉

b + a + i− 1, if
⌈

c−b
2

⌉
< i ≤ c− b
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eD(si) =

{
2c + a− b− i, if 1 ≤ i ≤ ⌈

c−b
2

⌉

c + a + i− 1, if
⌈

c−b
2

⌉
< i ≤ c− b

eD(ti) =

{
2c + a− b− i, if 1 ≤ i ≤ ⌈

c−b
2

⌉

c + a + i− 1, if
⌈

c−b
2

⌉
< i ≤ c− b

It is easy to verify that there is no vertex x in G with e1(x) < a, eD1(x) < b
and eD(x) < c. Thus r1 = a, R1 = b and R = c as a ≤ b < c. ¤

Now we have a realization theorem for the vertex-to-clique diameter, vertex-
to-clique detour diameter and the detour diameter of some connected graph.

Theorem 5. For any three positive integers a, b, c with 2 ≤ a ≤ b < c and
a + c ≤ 2b, there exists a connected graph G such that d1 = a, D1 = b and
D = c.

Proof. Let K = Kb−a+2 be the complete graph of order b−a+2 with V (K) =
{w1, w2, . . . , wb−a+2}. Let P : u1, u2, . . . , ua+1 be a path Pa+1 of order a + 1.
Also let Q : v1, v2, . . . , vc−b be a path of order c − b. We construct the graph
G of order c + 1 as follows: (i) identify the vertices u1 in P with w1 in K and
also identify the vertices ua+1 in P with v1 in Q. (ii) join each vertex in Q
other than v1 with ua in P . The resulting graph G is shown in Fig. 3.9.

w1

u1 u2 u3 u4 ua ua+1

v2v3v4vc−b

Kb−a+2

wb−a+2

Fig. 3.9: G

It is easy to verify that

e1(wi) =

{
a− 1, if i = 1
a, if 2 ≤ i ≤ b− a + 2

eD1(wi) =

{
b− 1, if i = 1
b, if 2 ≤ i ≤ b− a + 2

eD(wi) =

{
c− 1, if i = 1
c, if 2 ≤ i ≤ b− a + 2
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e1(ui) =

{
a− i, if 1 ≤ i ≤ ⌊

a+1
2

⌋

i− 1, if
⌊

a+1
2

⌋
< i ≤ a + 1

eD1(ui) =

{
a− i, if 1 ≤ i ≤ ⌊

a+1
2

⌋

i− 1, if
⌊

a+1
2

⌋
< i ≤ a + 1

eD(ui) =





b− a + i, if 1 ≤ i ≤ a, b− a + i ≥ c− b + a− i

a + c− b− i, if 1 ≤ i ≤ a, b− a + i ≤ c− b + a− i

c, if i = a + 1
e1(vi) = a for 1 ≤ i ≤ c− b

eD1(vi) =

{
c− b + a− i, if 1 ≤ i ≤ ⌊

c−b
2

⌋

a + i− 1, if
⌊

c−b
2

⌋
< i ≤ c− b

eD(vi) =

{
c + 1− i, if 1 ≤ i ≤ ⌊

c−b
2

⌋

b + i, if
⌊

c−b
2

⌋
< i ≤ c− b

It is easy to verify that there is no vertex x in G with e1(x) > a, eD1(x) > b
and eD(x) > c. Thus d1 = a, D1 = b and D = c as a ≤ b < c. ¤

Problem 1. For any three positive integers a, b, c with 2 ≤ a ≤ b < c and
a+ c > 2b, does there exist a connected graph G for which d1 = a, D1 = b and
D = c?.

Harary and Norman [4] showed that the center of every connected graph
G lies in a single block of G and Chartrand et. al. [1] showed that the
detour center of every connected graph G lies in a single block of G. Also
Santhakumaran et.al. [6] showed that the vertex-to-clique center of every
connected graph G lies in a single block of G. Now we have the following
theorem for the vertex-to-clique detour center of a graph.

Theorem 6. The vertex-to-clique detour center of every connected graph G
lies in a single block of G.

Proof. Suppose that the vertex-to-clique detour center of a connected graph
G lies in more than one block. Then G contains a cut vertex v such that G−v
has two components G1 and G2, each of which contains a vertex-to-clique
detour central vertices of G. Let C be a vertex-to-clique detour eccentric
clique of v and let P be a vertex-to-clique longest path in G. At least one
of G1 and G2 contains no vertices of P , say G2 contains no vertex of P . Let
w be a vertex-to-clique detour central vertex in G that belongs to G2 and
let Q be a w − v longest path in G. Since v is a cut vertex, P followed
by Q produces a w − C longest path, whose length is greater than that of
P . Hence eD1(w) ≥ D(w, v) + D(v, C) = D(w, v) + eD1(v) > eD1(v). Thus
eD1(w) > eD1(v). So w is not a vertex-to-clique detour central vertex in G,
which is contradiction. Hence CD1(G) lies within a block of G. ¤
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Corollary 7. The vertex-to-clique detour center of every tree is isomorphic
to either K1 or K2.
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