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HARDY-TYPE INEQUALITIES INVOLVING GENERALIZED
FRACTIONAL INTEGRALS VIA SUPERQUADRATIC

FUNCTIONS
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Abstract. The aim of this article is to give Hardy-type inequalities in-
volving linear differential operator, Widder’s derivative and generalized
fractional integral using superquadratic functions.

Key words : Inequality, Superquadratic function, Kernel, Green’s function,
Linear differential operator, Widder’s derivative, Integral operator.
AMS SUBJECT : 26D15, 26D10, 26A33.

1. Introduction

In 1920, G. H. Hardy stated and proved (see [6]) the integral inequality
∞∫

0


1

x

∞∫

0

f(t)dt




p

dx ≤
(

p

p− 1

)p
∞∫

0

fp(x)dx, (1)

where p > 1 and f is a non-negative function such that
∫∞
0 fp(x)dx < ∞.

This is original form of Hardy’s integral inequality, which later on has been
extensively studied.

In last few decades, Hardy’s inequality engrossed the interest of many math-
ematicians and they discover important and useful Hardy-type inequalities for
convex functions as well as for superquadratic functions. Iqbal, Čižmešija,
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Krulić, Pečarić and Persson ([2], [3], [5], [7]) also give an inconceivable contri-
bution in theory of inequalities. The extended form of (1) currently known as
Hardy-type inequality




b∫

a

u(x)


1

x

x∫

a

f(t)dt




q

dx




1
q

≤ Cp,q




b∫

a

v(x)fp(x)dx
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p

,

where f is non-negative function, u, v are given weight functions and the pa-
rameters a, b, p and q are such that −∞ ≤ a < b ≤ ∞, 1 ≤ p ≤ ∞ and
0 < q ≤ ∞.

In this paper, our particular interest is to give the applications of Hardy-type
inequalities for linear differential operator, Widder’s derivative and more gen-
eralized fractional integral operators involving superquadratic functions. The
concept of superquadratic functions was first given by Abramovich, Jameson
and Sinnamon in [1].

Definition 1. [1, Definition 2.1] A function ϕ : [0,∞) → R is superquadratic
provided that for all x ≥ 0 there exists a constant Cx ∈ R such that

ϕ(t)− ϕ(x)− ϕ(|t− x|) ≥ Cx(t− x),

for all t ∈ R. We say that ϕ is subquadratic if −ϕ is superquadratic.

Definition 2. [2, Definition 2] A function f : [0,∞) → R is superadditive
provided that for all x, t ≥ 0, inequality

f(x + t) ≥ f(x) + f(t)

holds true. If the reverse inequality holds, then f is said to be subadditive.

Let (Σ1,Ω1, µ1) and (Σ2,Ω2, µ2) be measure spaces with positive σ-finite
measures. Let U(f, k) denote the class of functions g : Ω1 → R with the
representation

g(x) =
∫

Ω2

k(x, t)f(t)dµ2(t),

and Ak be an integral operator defined by

Akf(x) :=
1

K(x)

∫

Ω2

k(x, t)f(t)dµ2(t), (2)

where k : Ω1 × Ω2 → R is measurable and non-negative kernel, f : Ω2 → R is
measurable function and

0 < K(x) :=
∫

Ω2

k(x, t)dµ2(t), x ∈ Ω1. (3)
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The upcoming result is given in [2].

Theorem 1. Let (Σ1,Ω1, µ1) and (Σ2, Ω2, µ2) be measure spaces with positive
σ-finite measures, u be a weight function and k(x, t) ≥ 0. Assume that x 7→
k(x,t)
K(x) u(x) is integrable on Ω1 for each fixed t ∈ Ω2. Define v on Ω2 by

v(t) :=
∫

Ω1

k(x, t)
K(x)

u(x)dµ1(x) < ∞. (4)

Suppose I = [0, c), c ≤ ∞ and ϕ : I → R is a superquadratic function, then
the inequality∫

Ω1

ϕ(Akf(x))u(x)dµ1(x) +
∫

Ω2

∫

Ω1

ϕ (|f(t)−Akf(x)|) u(x)k(x, t)
K(x)

dµ1(x) dµ2(t)

≤
∫

Ω2

ϕ(f(t))v(t)dµ2(t) (5)

holds for all non-negative measurable functions f : Ω2 → R, such that Imf ⊆
I, where Ak and K are defined by (2) and (3). If ϕ is subquadratic, then the
inequality sign in (5) is reversed.

Let us define a linear functional as a difference between right-hand side and
left-hand side of the inequality (5) as:

A(ϕ) =
∫

Ω2

ϕ(f(t))v(t)dµ2(t)−
∫

Ω1

ϕ(Akf(x))u(x)dµ1(x)

−
∫

Ω2

∫

Ω1

ϕ (|f(t)−Akf(x)|) u(x)k(x, t)
K(x)

dµ1(x) dµ2(t). (6)

It is clear that if ϕ is superquadratic, then A(ϕ) ≥ 0.

Next Lagrange’s type mean value theorems are given in [5].

Theorem 2. Let ϕ : [0,∞) → R, ϕ(0) = 0 and let the assumptions of Theorem
1 be satisfied. Assume that A is a strictly positive functional. If ϕ′(x)

x ∈
C1(0,∞), then there exists ξ ∈ (0,∞) such that following equality holds:

A(ϕ) =
1
3

ξϕ′′(ξ)− ϕ′(ξ)
ξ2




∫

Ω2

f3(t) v(t)dµ2(t)−
∫

Ω1

(Akf(x))3 u(x)dµ1(x)

−
∫

Ω2

∫

Ω1

|f(t)−Akf(x)|3 u(x)k(x, t)
K(x)

dµ1(x)dµ2(t)


 ,
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where Akf(x) and v(t) are defined by (2) and (4) respectively.

Theorem 3. Let ϕ,ψ : [0,∞) → R, ϕ(0) = ψ(0) = 0 and let the assumptions
of Theorem 1 be satisfied. If ϕ′(x)

x , ψ′(x)
x ∈ C1(0,∞), then for a strictly positive

functional A there exists ξ ∈ (0,∞) such that

A(ϕ)
A(ψ)

=
ξϕ′′(ξ)− ϕ′(ξ)
ξψ′′(ξ)− ψ′(ξ)

,

provided that denominators are not equal to zero.

Lemma 4. Consider the function ϕp for p > 0 defined by

ϕp(x) =

{ xp

p(p−2) , p 6= 2,

x2

2 log x, p = 2.
(7)

Then with the convention 0 log 0 = 0, ϕp is superquadratic.

For linear functional A defined by (6) we have A(ϕp) ≥ 0 for all p > 0.

Definition 3. [8, page 373] A function ϕ : (a, b) → R is exponentially convex
if it is continuous and

n∑

i,j=1

titjϕ(ζi + ζj) ≥ 0

holds for every n ∈ N and for all sequences tn and ζn of all real numbers, such
that ζi + ζj ∈ (a, b), 1 ≤ i, j ≤ n.

The next result contains properties of the mapping p 7→ A(ϕp).

Theorem 5. [5] For A as in (6) and ϕp as in (7) we have the followings:

(i) the mapping p 7→ A(ϕp) is continuous for p > 0,

(ii) for every n ∈ N and pi ∈ R+, pij = pi+pj

2 , i, j = 1, 2, 3 · · · , n, the
matrix [A(ϕpij )]

n
i,j=1 is positive semi-definite, that is

det[A(ϕpij )]
n
i,j=1 ≥ 0,

(iii) the mapping p 7→ A(ϕp) is exponentially convex,

(iv) the mapping p 7→ A(ϕp) is log−convex,

(v) for pi ∈ R, i = 1, 2, 3, p1 < p2 < p3,

[A(ϕp2)]
p3−p1 ≤ [A(ϕp1)]

p3−p2 [A(ϕp3)]
p2−p1 .
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The paper is organized in the following way: after this Introduction, in Sec-
tion 2, we prove new Hardy inequalities involving linear differential operator
and for Widder’s derivative using superquadratic functions. Section 3 consists
of applications of Hardy-type inequalities for generalized fractional integrals.
As special case we obtain the results for the Saigo, the Riemann-Liouville
and the Erdélyi-Kober fractional integral operators. Finally, we give an inte-
gral operator involving generalized Mittage-Leffler function in its kernel as an
application of results given in Section 1.

2. Hardy-type inequalities for linear differential operator and
Widder’s derivatives

Let [a, b] ⊂ R, ai(x), i = 0, 1, ..., n−1 (n ∈ N), h(x) be continuous functions
on [a, b]. Let

L = Dn + an−1(x)Dn−1 + ... + a0(x), x ∈ (a, b),

be a fixed linear differential operator on Cn[a, b]. Let y1(x), y2(x), · · · , yn(x)
be a set of linearly independent solution to Ly = 0 and the associated Green’s
function for L is

H(x, t) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(t) · · · yn(t)
y′1(t) · · · y′n(t)
· · ·
· · ·
· · ·

y
(n−2)
1 (t) · y

(n−2)
n (t)

y1(x) · · · yn(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(t) · · · yn(t)
y′1(t) · · · y′n(t)
· · ·
· · ·
· · ·

y
(n−2)
1 (t) · y

(n−2)
n (t)

y
(n−1)
1 (t) · · · y

(n−1)
n (t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which is continuous function on [a, b]2, then

y(x) =

x∫

a

H(x, t)h(t)dt, for all x ∈ [a, b],

is the unique solution to the initial value problem

Ly = h, y(i)(a) = 0, i = 0, 1, ..., n− 1.

Our first result is given in upcoming theorem.
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Theorem 6. Let u be a weight function on (a, b), H(x, t) be a non-negative
measurable Green function associated to linear differential operator L. Suppose
H̃(x) > 0 for all x ∈ (a, b), the function x 7→ u(x)H(x,t)

eH(x)
is integrable on (a, b)

and for each fixed t ∈ (a, b), v̄ is defined as:

v̄(t) :=

b∫

t

u(x)
H(x, t)

H̃(x)
dx < ∞. (8)

Suppose I = [0, c), c ≤ ∞, ϕ : I → R. If ϕ is a superquadratic function on an
interval I then the inequality

b∫

a

ϕ


 1

H̃(x)

x∫

a

H(x, t)h(t)dt


 u(x)dx

+

b∫

a

x∫

a

ϕ




∣∣∣∣∣∣
h(t)− 1

H̃(x)

x∫

a

H(x, t)h(t)dt

∣∣∣∣∣∣


 u(x)H(x, t)

H̃(x)
dx dt

≤
b∫

a

ϕ(h(t))v̄(t)dt (9)

holds for all measurable functions h : (a, b) → R, such that h(t) ∈ I for all
fixed t ∈ (a, b), where H̃(x) defined as:

0 < H̃(x) :=

x∫

a

H(x, t)dt. (10)

Proof. Applying Theorem 1 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt
and k(x, t) = H(x, t), we get inequality (9). ¤

Let us define the linear functional given in (6) for linear differential operator
which is in fact positive difference of (9) i.e.

A¦(ϕ) =

b∫

a

ϕ(h(t))v̄(t)dt−
b∫

a

ϕ


 1

H̃(x)

x∫

a

H(x, t)h(t)dt


u(x)dx

−
b∫

a

x∫

a

ϕ




∣∣∣∣∣∣
h(t)− 1

H̃(x)

x∫

a

H(x, t)h(t)dt

∣∣∣∣∣∣


 u(x)H(x, t)

H̃(x)
dx dt (11)

The upcoming results represents mean value theorems of Lagrange-type for
linear differential operator.
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Theorem 7. Let ϕ : [0,∞) → R, ϕ(0) = 0 and let the assumptions of Theorem
6 be satisfied. Assume that A¦ is a strictly positive functional. If ϕ′(x)

x ∈
C1(0,∞), then there exists ξ ∈ (0,∞) such that following equality

A¦(ϕ) =
1
3

ξϕ′′(ξ)− ϕ′(ξ)
ξ2




b∫

a

h3(t) v̄(t)dt−
b∫

a


 1

H̃(x)

x∫

a

H(x, t)h(t)dt




3

u(x)dx

−
b∫

a

x∫

a

∣∣∣∣∣∣
h(t)− 1

H̃(x)

x∫

a

H(x, t)h(t)dt

∣∣∣∣∣∣

3

u(x)H(x, t)

H̃(x)
dxdt


 (12)

holds for all measureable functions h : (a, b) → R, where v̄(t) and H̃(x) are
defined by (8) and (10) respectively.

Proof. Applying Theorem 2 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt,

k(x, t) = H(x, t) and K(x) = H̃(x), we get equality (12). ¤
Theorem 8. Let ϕ,ψ : [0,∞) → R, ϕ(0) = ψ(0) = 0 and let the assumptions
of Theorem 7 be satisfied. Assume that A¦ is strictly positive functional. If
ϕ′(x)

x , ψ′(x)
x ∈ C1(0,∞) then there exists ξ ∈ (0,∞) such that

A¦(ϕ)
A¦(ψ)

=
ξϕ′′(ξ)− ϕ′(ξ)
ξψ′′(ξ)− ψ′(ξ)

, (13)

where the linear functional A¦(ϕ) is defined by (11). It is provided that denom-
inators are not equal to zero.

Proof. Applying Theorem 3 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt
and k(x, t) = H(x, t), we get equation (13). ¤
Theorem 9. Let p > 2, ϕp, v̄ and A¦ be given in (7), (8) and (11) respec-
tively. Moreover

A¦(ϕp) =
1

p(p− 2)




b∫

a

hp(t)v̄(t) dt−
b∫

a


 1

H̃(x)

x∫

a

H(x, t)h(t)dt




p

u(x) dx

−
b∫

a

x∫

a

∣∣∣∣∣∣
h(t)− 1

H̃(x)

x∫

a

H(x, t)h(t)dt

∣∣∣∣∣∣

p

u(x)H(x, t)

H̃(x)
dx dt


 ,

then the map p → A¦(ϕp) have the following properties:
(i) the mapping p 7→ A¦(ϕp) is continuous for p > 0,

(ii) for every n ∈ N and pi ∈ R+, pij = pi+pj

2 , i, j = 1, 2, 3 · · · , n, the
matrix [A¦(ϕpij )]

n
i,j=1 is positive semi-definite, i.e.,

det[A¦(ϕpij )]
n
i,j=1 ≥ 0,
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(iii) the mapping p 7→ A¦(ϕp) is exponentially convex,

(iv) the mapping p 7→ A¦(ϕp) is log-convex,

(v) for pi ∈ R, i = 1, 2, 3, p1 < p2 < p3,

[A¦(ϕp2)]
p3−p1 ≤ [A¦(ϕp1)]

p3−p2 [A¦(ϕp3)]
p2−p1 .

Proof. Applying Theorem 5 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt
and k(x, t) = H(x, t), we get results (i)− (v). ¤

Now we give the Hardy-type inequalities for Widder’s derivative. First it is
necessary to introduce some basic notations and facts about Widder’s deriva-
tive (see[13]). Let f, u0, u1, . . . , un ∈ Cn+1[a, b], n ≥ 0, and the Wronskians

Wi(x) := W [u0(x), u1(x), . . . , ui(x)] =

∣∣∣∣∣∣∣∣∣∣∣∣

u0(x) · · · ui(x)
u′0(x) · · · u′i(x)
· · ·
· · ·
· · ·

u
(i)
0 (x) · · · u

(i)
i (x)

∣∣∣∣∣∣∣∣∣∣∣∣

,

i = 0, 1, . . . , n. Here W0(x) = u0(x). Assume Wi(x) > 0 over [a, b]. For i ≥ 0,
the differential operator of order i (Widder’s derivative):

Lif(x) :=
W [u0(x), u1(x), . . . , ui−1(x), f(x)]

Wi−1(x)
,

i = 1, . . . , n + 1;L0f(x) = f(x) for all x ∈ [a, b]. Consider also

gi(x, t) :=
1

Wi(t)

∣∣∣∣∣∣∣∣∣∣∣∣

u0(t) · · · ui(t)
u
′
0(t) · · · u

′
i(t)

· · ·
· · ·

u
(i−1)
0 (t) · · · u

(i−1)
i (t)

u0(x) · · · ui(x)

∣∣∣∣∣∣∣∣∣∣∣∣

,

i = 1, 2, ..., n; g0(x, t) := u0(x)
u0(t) for all x, t ∈ [a, b].

Example 1. [13]. Sets of the form {u0, u1, u2, . . . , un} are {1, x, x2, . . . , xn},
{1, sinx,− cosx,− sin 2x, cos 2x, . . . , (−1)n−1 sinnx, (−1)n cosnx}, etc. fulfill
the above theory.

We also mention the generalized Widder-Taylor’s formula, see [13].
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Theorem 10. Let the functions f, u0, u1, . . . , un ∈ Cn+1[a, b], and let the
Wronskians W0(x),W1(x), . . . , Wn(x) > 0 on [a, b], x ∈ [a, b]. Then for t ∈
[a, b] we have

f(x) = f(t)
u0(x)
u0(t)

+ L1f(t)g1(x, t) + ... + Lnf(t)gn(x, t) + Rn(x),

where

Rn(x) :=

x∫

s

gn(x, s)Ln+1f(s)ds.

For example (see [13]) one could take u0(x) = c > 0. If ui(x) = xi, i =
0, 1, . . . , n, defined on [a,b], then

Lif(t) = f (i)(t) and gi(x, t) =
(x− t)i

i!
, t ∈ [a, b].

Corollary 11. By additionally assuming for fixed a that Lif(a) = 0, i =
0, 1, ..., n, we get that

f(x) :=

x∫

a

gn(x, t)Ln+1f(t)dt for all x ∈ [a, b].

Theorem 12. Let u be a weight function on (a, b) and gn(x, t) be a non-
negative measurable kernel. Suppose g̃n(x) > 0 for all x ∈ (a, b) the function
x 7→ u(x)gn(x,t)

egn(x) is integrable on (a, b) for each fixed t ∈ (a, b), w is defined on
(a, b) by

w(t) :=

b∫

t

u(x)
gn(x, t)
g̃n(x)

dx < ∞. (14)

Suppose I = [0, c), c ≤ ∞, ϕ : I → R. If ϕ is a superquadratic function on an
interval I then the inequality

b∫

a

ϕ


 1

g̃n(x)

x∫

a

gn(x, t)Ln+1f(t)dt


u(x)dx

+

b∫

a

x∫

a

ϕ




∣∣∣∣∣∣
Ln+1f(t)− 1

g̃n(x)

x∫

a

gn(x, t)Ln+1f(t)dt

∣∣∣∣∣∣


 u(x)gn(x, t)

g̃n(x)
dx dt

≤
b∫

a

ϕ(Ln+1f(t))w(t)dt (15)
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holds for all measurable functions Ln+1f : (a, b) → R, such that Ln+1f(t) ∈ I
for all fixed t ∈ (a, b) and g̃n(x) is defined as

0 < g̃n(x) :=

x∫

a

gn(x, t)dt. (16)

Proof. Applying Theorem 1 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt
and k(x, t) = gn(x, t), we get inequality (15). ¤

Now let us define the linear functional defined by (6) for Widder’s derivative
i.e.

A∗(ϕ) =

b∫

a

ϕ(Ln+1f(t))w(t)dt−
b∫

a

ϕ


 1

g̃n(x)

x∫

a

gn(x, t)Ln+1f(t)dt


u(x)dx

−
b∫

a

x∫

a

ϕ




∣∣∣∣∣∣
Ln+1f(t)− 1

g̃n(x)

x∫

a

gn(x, t)Ln+1f(t)dt

∣∣∣∣∣∣


 u(x)gn(x, t)

g̃n(x)
dx dt.(17)

Next mean value theorems for Widder’s derivative are given in upcoming
theorems.

Theorem 13. Let ϕ : [0,∞) → R, ϕ(0) = 0 and let the assumptions of
the Theorem 12 be satisfied. Assume that A∗ is a strictly positive functional
defined by (17). If ϕ′(x)

x ∈ C1(0,∞), then there exists ξ ∈ (0,∞) such that
following equation

A∗(ϕ) =
1
3

ξϕ′′(ξ)− ϕ′(ξ)
ξ2




b∫

a

(Ln+1f(t))3w(t)dt

−
b∫

a


 1

g̃n(x)

x∫

a

gn(x, t)Ln+1f(t)dt




3

u(x)dx

−
b∫

a

x∫

a

∣∣∣∣∣∣
Ln+1f(t)− 1

g̃n(x)

x∫

a

gn(x, t)h(t)dt

∣∣∣∣∣∣

3

u(x)gn(x, t)
g̃n(x)

dx dt


 (18)

holds for all measureable functions Ln+1f : (a, b) → R , where w(t) and g̃n(x)
are defined by (14) and (16) respectively.

Proof. Applying Theorem 2 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt,
k(x, t) = gn(x, t) and K(x) = g̃n(x), we get equality (18). ¤

Theorem 14. Let ϕ,ψ : [0,∞) → R, ϕ(0) = ψ(0) = 0 and let the assumptions
of Theorem 13 be satisfied. If ϕ′(x)

x , ψ′(x)
x ∈ C1(0,∞) then there exists ξ ∈
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(0,∞) such that

A∗(ϕ)
A∗(ψ)

=
ξϕ′′(ξ)− ϕ′(ξ)
ξψ′′(ξ)− ψ′(ξ)

, (19)

where the linear functional A∗(ϕ) is defined by (17) provided that ξψ′′(ξ) −
ψ′(ξ) 6= 0.

Proof. Applying Theorem 3 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt
and k(x, t) = gn(x, t), we get equation (19). ¤

Next result contains the properties of the mapping p → A∗(ϕp).

Theorem 15. Let p > 2, ϕp, w(t) and A∗ be given by (7), (14) and (17)
respectively. If

A∗(ϕp) =
1

p(p− 2)




b∫

a

(Ln+1f(t))p w(t) dt−
b∫

a


 1

g̃n(x)

x∫

a

gn(x, t)Ln+1f(t)dt




p

u(x) dx

−
b∫

a

x∫

a

∣∣∣∣∣∣
Ln+1f(t)− 1

g̃n(x)

x∫

a

gn(x, t)Ln+1f(t)dt

∣∣∣∣∣∣

p

u(x)gn(x, t)
g̃n(x)

dx dt




then the following properties holds:
(i) the mapping p 7→ A∗(ϕp) is continuous for p > 0,

(ii) for every n ∈ N and pi ∈ R+, pij = pi+pj

2 , i, j = 1, 2, 3 · · · , n, the
matrix [A∗(ϕpij )]

n
i,j=1 is positive semi-definite, that is

det[A∗(ϕpij )]
n
i,j=1 ≥ 0,

(iii) the mapping p 7→ A∗(ϕp) is exponentially convex,

(iv) the mapping p 7→ A∗(ϕp) is log−convex,

(v) for pi ∈ R, i = 1, 2, 3, p1 < p2 < p3,

[A∗(ϕp2)]
p3−p1 ≤ [A∗(ϕp1)]

p3−p2 [A∗(ϕp3)]
p2−p1 .

Proof. Applying Theorem 5 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt
and k(x, t) = gn(x, t), we get results (i)− (v). ¤

3. Hardy-type inequalities for generalized fractional integral
operators

In this section we first give the definition of generalized fractional integral
operator involving Gauss hypergeometric function in its kernel defined by Luis
Curiel et al. in [4].
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Definition 4. [4] Let α > 0, µ > −1, β, η ∈ R. Then the generalized fractional
integral Iα,β,η,µ

a,x of order α, for a real-valued continuous function f is defined
by:

Iα,β,η,µ
a,x f(x)

=
x−α−β−2µ

Γ(α)

x∫

a

tµ(x−t)α−1
2F1

(
α + β + µ,−η; α; 1− t

x

)
f(t)dt, x ∈ [a, b],

(20)

where the function 2F1(. , . , ; .) appearing in kernel for operator (20) is the
Gaussian hypergeometric function defined by

2F1(a, b; c; t) =
∞∑

n=0

(a)n(b)n

(c)nn!
tn,

and (a)n is the Pochhammer symbol: (a)n = a(a + 1)...(a + n− 1), (a)0 = 1.

The operator (20) includes the Saigo, the Riemann-Liouville and the Erdélyi-
Kober fractional integral operators i.e.,

Iα,β,η
a,x f(x) = Iα,β,η,0

a,x f(x)

=
x−α−β

Γ(α)

x∫

a

(x− t)α−1
2F1

(
α + β,−η; α; 1− t

x

)
f(t)dt, x ∈ [a, b].

Rαf(x) = Iα,−α,η
a,x f(x) =

1
Γ(α)

x∫

a

(x− t)α−1f(t)dt, x ∈ [a, b].

and

Iα,ηf(x) = Iα,0,η
a,x f(x) =

x−α−η

Γ(α)

x∫

a

(x− t)α−1tηf(t)dt, x ∈ [a, b].

First we give our general result for generalized fractional integral of order α,
then as special cases we establish the inequalities for the Saigo, the Riemann-
Liouville and the Erdélyi-Kober fractional integral operators.

Theorem 16. Let α > 0, µ > −1, β, η ∈ R, Iα,β,η,µ
a,x denotes the generalized

fractional integral of order α and u be a weight function defined on (a, b).
Moreover for each fixed t ∈ (a, b) define v̂ by

v̂(t) =
1

Γ(α)

b∫

t

u(x)
x−α−β−2µ

2F1

(
α + β + µ,−η, α; 1− t

x

)
tµ(x− t)α−1

K̂(x)
dx < ∞.
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If I = [0, c), c ≤ ∞ and ϕ : I → R is a superquadratic function, then the
inequality

b∫

a

ϕ

(
Iα,β,η,µ
a,x f(x)

K̂(x)

)
u(x)dx +

b∫

a

x∫

a

ϕ

(∣∣∣∣∣f(t)− Iα,β,η,µ
a,x f(x)

K̂(x)

∣∣∣∣∣

)
u(x)k(x, t)

K̂(x)
dx dt

≤
b∫

a

ϕ(f(t))v̂(t)dt(21)

holds for all non-negative measurable functions f : (a, b) → R, such that
Imf ⊆ I, where

K̂(x) =

x∫

a

x−α−β−2µ

Γ(α) 2F1

(
α + β + µ,−η, α; 1− t

x

)
tµ(x− t)α−1dt. (22)

If ϕ is subquadratic, then the inequality sign in (21) is reversed.

Proof. Applying Theorem 1 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt

k(x, t) =

{
x−α−β−2µ

Γ(α) 2F1

(
α + β + µ,−η, α; 1− t

x

)
tµ(x− t)α−1, a ≤ t ≤ x;

0, x < t ≤ b.
(23)

and

Akf(x) =
Iα,β,η,µ
a,x f(x)

K̂(x)
,

so inequality (21) follows. ¤
Now let us define the linear functional defined by (6) for generalized frac-

tional integral i.e.

Ã(ϕ) =

b∫

a

ϕ(f(t))v̂(t)dt−
b∫

a

ϕ

(
Iα,β,η,µ
a,x f(x)

K̂(x)

)
u(x)dx

−
b∫

a

x∫

a

ϕ

(∣∣∣∣∣f(t)− Iα,β,η,µ
a,x f(x)

K̂(x)

∣∣∣∣∣

)
u(x)k(x, t)

K̂(x)
dx dt. (24)

Theorem 17. Let ϕ : [0,∞) → R, ϕ(0) = 0 and let the assumptions of
Theorem 16 be satisfied. Assume that Ã is a strictly positive functional. If
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ϕ′(x)
x ∈ C1(0,∞), then there exists ξ ∈ (0,∞) such that following equality

Ã(ϕ) =
1
3

ξϕ′′(ξ)− ϕ′(ξ)
ξ2




b∫

a

f3(t) v̂(t)dt−
b∫

a

(
Iα,β,η,µ
a,x f(x)

K̂(x)

)3

u(x)dx

−
b∫

a

x∫

a

∣∣∣∣∣f(t)− Iα,β,η,µ
a,x f(x)

K̂(x)

∣∣∣∣∣
3

u(x)k(x, t)
K̂(x)

dxdt


 (25)

holds for all measurable functions f : (a, b) → R, where K̂(x) is defined by
(22).

Proof. Applying Theorem 2 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt
and k(x, t) given in (23), we obtain equality (25). ¤

Theorem 18. Let ϕ,ψ : [0,∞) → R, ϕ(0) = ψ(0) = 0 and let the assumptions
of Theorem 16 be satisfied. Assume that Ã is strictly positive functional. If
ϕ′(x)

x , ψ′(x)
x ∈ C1(0,∞) then there exists ξ ∈ (0,∞) such that

Ã(ϕ)
Ã(ψ)

=
ξϕ′′(ξ)− ϕ′(ξ)
ξψ′′(ξ)− ψ′(ξ)

, (26)

where the linear functional Ã(ϕ) is defined as (24). It is provided that ξψ′′(ξ)−
ψ′(ξ) 6= 0.

Proof. Applying Theorem 3 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt,
we get equality (26). ¤
Theorem 19. Let p > 2, α > 0, µ > −1, β, η ∈ R, Iα,β,η,µ

a,x denotes the gener-
alized fractional integral of order α and v̂ by (16). If

Ã(ϕp) =
1

p(p− 2)




b∫

a

fp(t)v̂(t) dt−
b∫

a

(
Iα,β,η,µ
a,x f(x)

K̂(x)

)p

u(x) dx

−
b∫

a

x∫

a

∣∣∣∣∣f(t)− Iα,β,η,µ
a,x f(x)

K̂(x)

∣∣∣∣∣
p

u(x)k(x, t)
K̂(x)

dx dt


 ,

then the properties of the mapping p 7→ Ã(ϕp) are given as follows:
(i) the mapping p 7→ Ã(ϕp) is continuous for p > 0,

(ii) for every n ∈ N and pi ∈ R+, pij = pi+pj

2 , i, j = 1, 2, 3 · · · , n, the
matrix [Ã(ϕpij )]

n
i,j=1 is positive semi-definite, that is

det[Ã(ϕpij )]
n
i,j=1 ≥ 0,
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(iii) the mapping p 7→ Ã(ϕp) is exponentially convex,

(iv) the mapping p 7→ Ã(ϕp) is log-convex,

(v) for pi ∈ R, i = 1, 2, 3, p1 < p2 < p3,

[Ã(ϕp2)]
p3−p1 ≤ [Ã(ϕp1)]

p3−p2 [Ã(ϕp3)]
p2−p1 .

Proof. Applying Theorem 5 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt
and k(x, t) given in (23), then we get results (i)− (v). ¤
Remark 1. If we take µ = 0 in the inequality (21), equations (24), (25) and
in properties (i) − (v) from Theorem 19, then we get results for the Saigo
fractional integral.

Remark 2. If along µ = 0 we take β = −α in the inequality (21), equations
(24), (25) and in properties (i)− (v) from Theorem 19, then we get results for
the Riemann-Liouvill’s fractional integral.

Remark 3. If we take β = 0 and µ = 0 in the inequality (21), equations
(24), (25) and in properties (i)− (v) from Theorem 19, then we get results for
the Erdélyi-Kober fractional integral operator.

Now our purpose is to give the Hardy type inequalities for the fractional
integral operator involving generalized Mittag-Leffler function appearing in
the kernel (see [11]).

Definition 5. [11] Let α, β, γ, δ ∈ C;min{R(α),R(β), R(γ),R(δ)} > 0; p, q >
0 and q < Rα + p. Then the integral operator defined by

εγ,δ,q
α,β,p,ω,a+g(x) =

x∫

a

(x− t)β−1Eγ,δ,q
α,β,p(ω(x− t)α)g(t)dt, (27)

which contains the generalized Mittage-Leffler function

Eγ,δ,q
α,β,p(z) =

∞∑

n=0

(γ)qn

Γ(αn + β)
zn

(δ)pn
, (28)

in its kernel is investigated and its boundedness is proved under certain con-
ditions. Equation (28) represents all the previous generalizations of Mittage-
Leffler function by setting

• δ = p = q = 1, we get Eγ
α,β(z) =

∞∑
n=0

(γ)n

Γ(αn+β)
zn

n! classify by Prabhakar

[9].

• p = q = 1, it reduces to Eγ,δ
α,β(z) =

∞∑
n=0

(γ)n

Γ(αn+β)
zn

(δ)n
defined by Salim in

[10].
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• δ = p = 1, it represents Eγ,q
α,β(z) =

∞∑
n=0

(γ)qn

Γ(αn+β)
zn

n! which was introduced

by H. M. Srivastava and Z. Tomovski in [12].
• γ = δ = p = q = 1, it reduces to Wiman’s function [14], moreover if

β = 1, Mittage-Leffler function Eα(z) will be the result.

Theorem 20. Let α, β, γ, δ ∈ C, and Eγ,δ,q
α,β,p(z) denotes the generalized Mittage-

Leffler function. Moreover let u be a weight function defined on (a, b) and for
each fixed t ∈ (a, b) define ṽ by

ṽ(t) :=

b∫

t

u(x)
(x− t)β−1Eγ,δ,q

α,β,p(ω(x− t)α)

K̃(x)
dx. (29)

If I = [0, c), c ≤ ∞ and ϕ : I → R is a superquadratic function, then the
inequality

b∫

a

ϕ

(
εγ,δ,q
α,β,p,ω,a+g(x)

K̃(x)

)
u(x)dx +

b∫

a

x∫

a

ϕ

(∣∣∣∣∣g(t)−
εγ,δ,q
α,β,p,ω,a+g(x)

K̃(x)

∣∣∣∣∣

)

×
u(x)(x− t)β−1Eγ,δ,q

α,β,p(ω(x− t)α)

K̃(x)
dxdt ≤

b∫

a

ϕ(g(t))ṽ(t)dt (30)

holds for all non-negative measurable functions g : (a, b) → R, such that Img ⊆
I, where K̃ is defined as:

K̃(x) =

x∫

a

(x− t)β−1Eγ,δ,q
α,β,p(ω(x− t)α)dt, (31)

and ṽ as in (29).
If ϕ is subquadratic, then the inequality sign in (30) is reversed.

Proof. Applying Theorem 1 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt,

k̃(x, t) =
{

(x− t)β−1Eγ,δ,q
α,β,p(ω(x− t)α), a ≤ t ≤ x ;

0, x < t ≤ b ,
(32)

so inequality (30) follows. ¤
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Now let us define the linear functional defined by (6) for fractional integral
operator with generalized Mittag-Leffler function appearing in the kernel.

Â(ϕ) =

b∫

a

ϕ(g(t))ṽ(t)dt−
b∫

a

ϕ

(
εγ,δ,q
α,β,p,ω,a+g(x)

K̃(x)

)
u(x)dx

−
b∫

a

x∫

a

ϕ

(∣∣∣∣∣g(t)−
εγ,δ,q
α,β,p,ω,a+g(x)

K̃(x)

∣∣∣∣∣

)
u(x)(x− t)β−1Eγ,δ,q

α,β,p(ω(x− t)α)

K̃(x)
dx dt.(33)

Next, results represents mean value theorems for the generalized fractional
integral given in (27).

Theorem 21. Let ϕ : [0,∞) → R, ϕ(0) = 0 and let the assumptions of
Theorem 20 be satisfied. Assume that Â is a strictly positive functional. If
ϕ′(x)

x ∈ C1(0,∞), then there exists ξ ∈ (0,∞) such that following equality

Â(ϕ) =
1
3

ξϕ′′(ξ)− ϕ′(ξ)
ξ2




b∫

a

g3(t) ṽ(t)dt−
b∫

a

(
εγ,δ,q
α,β,p,ω,a+g(x)

K̃(x)

)3

u(x)dx

−
b∫

a

x∫

a

∣∣∣∣∣g(t)−
εγ,δ,q
α,β,p,ω,a+g(x)

K̃(x)

∣∣∣∣∣

3
u(x)(x− t)β−1Eγ,δ,q

α,β,p(ω(x− t)α)

K̃(x)
dxdt


(34)

holds for all measureable functions g : (a, b) → R, where K̃(x) is given by (31).

Proof. Applying Theorem 2 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) =
dt, K̃(x) and k̃(x, t) given in (31) and (32) respectively, we obtain equality
(34). ¤

Theorem 22. Let ϕ,ψ : [0,∞) → R, ϕ(0) = ψ(0) = 0 and let the assumptions
of Theorem 21 be satisfied. Assume that Â is strictly positive functional. If
ϕ′(x)

x , ψ′(x)
x ∈ C1(0,∞) then there exists ξ ∈ (0,∞) such that

Â(ϕ)

Â(ψ)
=

ξϕ′′(ξ)− ϕ′(ξ)
ξψ′′(ξ)− ψ′(ξ)

, (35)

where the linear functional Â(ϕ) is defined by (33).
It is provided that ξψ′′(ξ)− ψ′(ξ) 6= 0.

Proof. Applying Theorem 3 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt,
we get equality (35). ¤

Theorem 23. Let p > 2, α, β, γ, δ ∈ C, and Eγ,δ,q
α,β,p(z) denotes the generalized

Mittage-Leffler function. Then the linear functional (6) for generalized integral
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operator (27) is given as:

Â(ϕp) =
1

p(p− 1)




b∫

a

gp(t)ṽ(t) dt−
b∫

a

(
εγ,δ,q
α,β,p,ω,a+g(x)

K̃(x)

)p

u(x) dx

−
b∫

a

x∫

a

∣∣∣∣∣g(t)−
εγ,δ,q
α,β,p,ω,a+g(x)

K̃(x)

∣∣∣∣∣

p
u(x)(x− t)β−1Eγ,δ,q

α,β,p(ω(x− t)α)

K̃(x)
dx dt


 ,

where ϕp is given by (7) then the mapping p 7→ Â(ϕp) admits the following
properties:

(i) the mapping p 7→ Â(ϕp) is continuous for p > 0,

(ii) for every n ∈ N and pi ∈ R+, pij = pi+pj

2 , i, j = 1, 2, 3 · · · , n, the
matrix [Â(ϕpij )]

n
i,j=1 is positive semi-definite, that is

det[Â(ϕpij )]
n
i,j=1 ≥ 0,

(iii) the mapping p 7→ Â(ϕp) is exponentially convex,

(iv) the mapping p 7→ Â(ϕp) is log-convex,

(v) for pi ∈ R, i = 1, 2, 3, p1 < p2 < p3,

[Â(ϕp2)]
p3−p1 ≤ [Â(ϕp1)]

p3−p2 [Â(ϕp3)]
p2−p1 .

Proof. Applying Theorem 5 with Ω1 = Ω2 = (a, b), dµ1(x) = dx, dµ2(t) = dt

and k̃(x, t) given in (32), we get results (i)− (v). ¤

Remark 4. If we substitute p = q = 1 in the inequality (30) equations (33),
(34) and in properties (i) − (v) from Theorem 23, then we get results for the
Mittage-Leffler function defined by Salim in [10].

Remark 5. If we take δ = p = 1 in the inequality (30) equations (33),
(34) and in properties (i) − (v) from Theorem 23, then we get results for the
Mittage-Leffler function introduced by Tomovoski et al. in [12].

Remark 6. If we take δ = p = q = 1 in the inequality (30) equations (33),
(34) and in properties (i) − (v) from Theorem 23, then we get results for the
Mittage-Leffler function represented in [9] by Parabhakar.

Remark 7. If we take γ = δ = p = q = 1 in the inequality (30) equations
(33), (34) and in properties (i)− (v) from Theorem 23, then we get results for
the Wiman’s function [14].
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[4] L. Curiel and L. Galué, A generalization of the integral operators involving the Gauss
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