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A NOVEL APPROACH TO APPROXIMATE UNSTEADY
SQUEEZING FLOW THROUGH POROUS MEDIUM

MUBASHIR QAYYUM"*, HAMID KHAN!, M.T. RAHIM'

ABSTRACT. In this article, a new alteration of the Homotopy Perturba-
tion Method (HPM) is proposed to approximate the solution of unsteady
axisymmetric flow of Newtonian fluid. The flow is squeezed between two
circular plates and passes through a porous medium channel. The alter-
ation extends the Homotopy Perturbation with a Laplace transform, which
is referred to as the Laplace Transform Homotopy Perturbation Method
(LTHPM) in this manuscript. A single fourth order non-linear ordinary
differential equation is obtained using similarity transformations. The re-
sulting boundary value problem is then solved through LTHPM, HPM and
fourth order Implicit Runge Kutta Method (IRK4). Convergence of the
proposed scheme is checked by finding absolute residual errors of various
order solutions. Also, the validity is confirmed by comparing numerical
and analytical (LTHPM) solutions. The comparison of obtained residual
errors shows that LTHPM is an effective scheme that can be applied to
various initial and boundary value problems in science and engineering.

Key words : Squeezing Flow, Porous Media, Laplace Transform Homotopy
Perturbation Method.
AMS SUBJECT : Primary 34K10, 34K28, 76S99.

1. INTRODUCTION

A porous medium; identified as a material that contains fluid-filled pores, is
always characterized by properties such as porosity and permeability. Porosity
defines the quantity of fluid that can be held by the material, whereas perme-
ability is the amount of fluid that can pass through it. The analysis of porous
medium has become an interesting topic of research since the introduction
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of modified Darcy’s Law [1]. Various applications where this analysis can be
applied can be found in ground water hydrology, chemical reactors, irrigation,
drainage, seepage, and recovery of crude oil from pores of reservoir rocks [2-7].
These applications can specifically be classified to engineering fields such as
petroleum, reservoir, and chemical engineering.

Squeezing flows can be induced by applying normal stresses or vertical ve-
locities by means of a moving boundary. It has been the focus of the research
community primarily due to its wide use in hydro-dynamical tools and ma-
chines. Applications of squeezing flows can be found in chemical engineering,
mechanical engineering, industrial engineering, bio-mechanics, and the food
industry. Some specific examples are that of polymer processing, or modeling
of lubrication systems.

The initial work on squeezing flows has been carried out by Stefan [8] where
he proposed an ad hoc asymptotic solution of Newtonian fluids. Thorp pro-
posed an explicit solution of the squeezing flow while considering inertial
terms [9]. Kuzma [10] studied the consequences of fluid inertia in squeeze
film between circular plates. Gupta et al. [11] showed that the solution given
in [9] is unable to satisfy boundary conditions. A squeeze film between two
plane annuli considering fluid inertia effects was later studied by Elkouh [12].
Verma [13] and Singh et al. [14] worked towards the numerical solutions of
the squeezing flows between parallel plates. Leider and Bird [15] conducted
the theoretical analysis for squeezing flow of power-law fluid between parallel
plates. Similarly, squeeze film lubrication of a short porous journal bearing
with couple stress fluids has been done by Naduvinamani et al. [16]. For
steady axisymmetric squeezing flows in a porous medium channel, analysis is
presented by Islam et al. [17]. Hamza investigated squeeze films while con-
sidering magneto-hydro-dynamic (MHD) effects [18]. Domairry et al. [19]
provided analytic solution for squeezing flow considering suction and injection
effects, while porosity and squeezing effects have been investigated by Qayyum
et al. [20] for unsteady squeezing flow of visco-elastic Jeffery fluids between
parallel disks. Apart from this body of work, other articles concerning dif-
ferent theoretical and experimental studies of squeezing flows are presented
in [21-27].

Real world phenomena are typically modeled using non-linear differential
equations. From the body of literature, a variety of perturbation techniques
that can analytically solve non-linear boundary value problems can be found.
A limitation of these techniques is the assumption of small or large parameters.
In this regard, He [28-31] proposed a new method based on the combination of
traditional perturbation methods with homotopy. This technique then came
about to be known as the Homotopy Perturbation Method (HPM), which
eventually was applied to a number of papers discussing non-linear boundary
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value problems [28-31]. In addition, HPM has also been applied to vari-
ous non-linear differential equations [32-37]. In fluid dynamics, Siddiqui et
al. [32,33] applied this technique for solving non-linear boundary value prob-
lems arising in Newtonian and non-Newtonian fluids. Khan et al. [38] compare
HPM with various analytical and numerical techniques while solving higher
order nonlinear ordinary differential equations. In addition, some researchers
proposed different alterations in classical HPM to improve the solution pro-
cess. For instance, Herisanu and Marinca [34] proposed optimal HPM for non
conservative dynamical system of a rotating electrical machine. Moreover, an
extended HPM for nonlinear differential equations was introduced and applied
by Wang et al. [35]. Gulshan et al. [36] proposed a modified homotopy pertur-
bation method coupled with the Fourier transform for nonlinear and singular
Lane-Embed equation.

In this context, the aim of this article is to put forward a new alteration of
HPM, wherein the combination of the traditional HPM with a Laplace trans-
form is proposed for satisfying all boundary conditions. This proposed method
is referred to as the Laplace Transform Homotopy Perturbation Method
(LTHPM) in the rest of the manuscript. The proposed approach is applied to
approximate the solution of an unsteady squeezing flow between two circular
plates through a porous medium. The movement of the circular plates in the
problem is considered to be symmetric about the axial line, while the fluid
is considered to be Newtonian, incompressible and viscous. A comparison of
LTHPM is then made with HPM and IRK4 by means of residual errors for
verifying its efficiency and reliability. In the remaining part of the manuscript,
section 2 includes mathematical formulation of the problem. Sections 3 and 4
present the basic idea of LTHPM and its application. Section 5 comprises the
results and discussion. Finally, conclusion is presented in section 6.

2. MATHEMATICAL FORMULATION

The basic governing equations of motion [39] are;

V-U=0 (1)
p[%[tj—l—(U~V)U]:pf+V-T+f (2)

where
T = —pl+ pA (3)
A =VU + (VU)* (4)

and U is the velocity vector, p is the pressure, f is the body force, T is the
Cauchy stress tensor, A is the Rivlin-Ericksen tensor and 7 is the coefficient of
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viscosity, and T is the Darcy’s resistance. According to Breugem equation [40],
I can be written as:

i
r——%U (5)

where k is the permeability constant.

In this manuscript, an unsteady axisymmetric squeezing flow of incompress-
ible Newtonian fluid passing through porous medium channel is considered.
The fluid with density p, viscosity 77, and kinematic viscosity v is squeezed
between two circular plates having speed €(t). It is assumed that at any time
t, the distance between the two circular plates is 2H(t). Also, it is assumed
that r — axis is the central axis of the channel while z — axis is normal to it.
The plates move symmetrically with respect to the central axis z = 0 while the
flow is axisymmetric about » = 0. The longitudinal and normal velocity com-
ponents in radial and axial directions are u,(r, z,t) and u,(r, z,t) respectively.
The geometrical representation of the problem is given in Fig. 1.

FIGURE 1. Geometry of the problem

An unsteady two-dimensional flow through porous medium can now be
formulated. It can be assumed that:

U = [uy(r,2,t),0,uy(r, 2, )] (6)
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and the vorticity function Q(r, z,t) and generalized pressure ]3(7“, z,t) can be
introduced as:

ou, Ou,
Q(T’ Z? t) = 8T - 82 (7)
ﬁ(r,z,t) = g [ug + uz} +p (8)

Equations (1) and (2) can be reduced to

ou,  up  Ouy

or * r 0z 0 )
OP du, 00 u,
— —u,) ) =— — 1
8r+p<6t u ) ”(az+k> (10)
OP ou, 10 Uy
52+p< 5 —i—urﬂ) _n<r8r(TQ)_k> (11)
The boundary conditions on w,(r, z,t) and u,(r, z,t) are
up(r, z,t) =0,  uy(r,z,t) = €(t) at z=H
t)=0 t)=0 t 0 (12)
&ur(r,z, ) =0, uy(r,zt)= at z =

where €(t) = %2 is the velocity of the plates. The boundary conditions (12)
are due to no-slip at the upper plate when z = H and symmetry at z = 0.
Considering the dimensionless parameter as:

z

= 1
o 70 (13)
Equations (7), (9), (10) and (11) are then converted to
ou, 1 Ou,
Q(T,Z,t) - (97" - ﬁ ao_ (14)
ou, U, 1 Ou, B
8T+7+ﬁ80_0 (15)
opP A, 109  u,
o o (5 —w0) = (55 + %) (16)
1 0P ou, 10 U,
el Q) =n(-L o - 1
H80+p<8t+u ) "<rar(’") k) (17)
The boundary conditions on u,and u, are given as:
ur =0, uy(r,z,t) =€(t) at o =1
18
8UT:0, uy(ryz,t) =0 ato=0 (18)

Jo
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Elimination of generalized pressure between (16) and (17) results in:

o o) u, 002 wu 1 1
— fUup— + —— — Q| = 20- (5 +-)0 1
Plac ™ ar THas v } n[v (r2+k:> ] (19)

where V? is the Laplacian operator.

Defining velocity components as [11]

t
= — 2’";((2) F'(0), u:=e(t)F(o) (20)
It cas be seen that (15) is identically satisfied and (19) becomes:
d'F &#F  _d°F d*F d*F
—+R - F 2 — - M =0 21
ot " (o ) o3 T Va0 Qd02 do? (21)
where I 72 g =
€ €
== Q== M= 29
v’ @ ve dt and k (22)

Here R, Q and M are functions of £ but we consider R, () and M constants for
similarity solution. Since € = %, Integrating the first equation of (22) results
in:

H(t) = (at +b)2 (23)
where a and b are constants. When a > 0 and b > 0, it is implied that the
plates move away from each other symmetrically with respect to ¢ . When
a <0, b>0and H(t) > 0, the plates approach each other. From (22) and
(23) it follows that () = —R. Then (21) becomes

d‘F BF  _d’F d?F

—F+R - F)—43—|-M— =

do? Rl ) do? + do? do?
After using (18) and (20), the following boundary conditions in case of no-slip
at the upper plate can be established:

F(0) =0, F'(0) =0
F(1)=1, F'(1)=0

0 (24)

(25)

3. Basic IDEA or LTHPM

The basic idea can be presented by applying LTHPM to the following dif-
ferential equation:

Llv(z)] + Nlv(z)] = f(x) =0 (26)
where x represents an independent variable, L, N are linear, nonlinear oper-
ators respectively, v(z) is an unknown function and f(x) is a known function.

According to LTHPM, homotopy can be constructed as V(z, p) : Rx|[0,1] —
R such that it satisfies:

(1 =p) [LIV (2, p)] = f(2)] + p[LIV (z,p)] + N[V (z,p)] — f(x)] =0 (27)
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where z € R, p € [0, 1] is an embedding parameter, and V(x, p) is an unknown
function. Ckearly, when p = 0 and p = 1, it holds that V(z,0) = Vp(z) and
V(x,1) = V(x) respectively.

Thus, as p varies from 0 to 1, the solution V(x,p) approaches from Vy(z) to
To obtain an approximate solution, expanding V' (z,p) using Taylor series
about p gives:

Viz,p) = Vo(x) + 3 Vi (28)
k=1

Substituting (28) in (27) and equating the coefficents of like powers of p, the
following different order problems can be obtained:
The zero-th order problem is:

LVo(x)] = f(x) =0 (29)
Application of Laplace Transform on both side of (29) gives:
L[LVo(x)] = L[f(x)] =0
Using the differential property of Laplace Transform results in:

L)) = - [ Vo(a) + "2V (@) + .. + V3~ (0) + L(F(@))]

Sn
Application of inverse Laplace Transform on both sides gives:

in (s"flvo(a) + 5" 2V (a) + ... + VI Ha) + E[f(x)])] (30)

S

Vo) = £ |
The general, k" order problem is:
L[Vi(z)] = Ng—1 [Vo, Vi, oo, Vi1 =0, k=1,2,3, ... (31)
Application of Laplace Transform on both side of (31) gives:
LIL(Vi(z)) — Np—1 (Vo, Vi, ..., V1) =0

Using the differential property of Laplace Transform results in:

L[Vi(z)] =

=

1| s W) + s" 2V, (@) + ... + Vi a)
+L [Nip—1(Vo, Vi, ooy Vim1)]
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Application of inverse Laplace Transform on both sides gives:

Vile) = £-1 L5 DV(@) + 52V (@) + .+ VTV (@)
+L [Ng-1(Vo, Vi, -eey Vie—1)]}

Let the initial approximation be of the form Vi (a) = ay, Vk/ () =aq, ..., Vk"_l(a) =
an—1. Then, the approximate solution may be obtained as:

U=Vo+Vi+Vat.. (33)

Substituting (33) in (26), the expression for residual is:

R(x) = LIU(z)] + N[U(x)] - f(x) (34)

If R =0, then U will be the exact solution but usually this does not happen
in non linear problems.

4. APPLICATION OF LTHPM

Using (24) and (25), various order problems are as follows:

Zeroth order problem:

0" (o) =0,
(35)
v0(0) =0, vy(0) = A, v (0) =0, vy'(0) = B

For the solution of the zeroth order problem, the Laplace Transform is applied
on both sides of (35), giving:

"

Llo0()] = 5 [*00(0) + 5205(0) + 50 (0) + v} (0)]

Application of the inverse Laplace Transform on both sides gives:

"

£ (o] = £ |35 (S0(0) + £1i(0) + 15 0) 407 0))

B 3
vo(o) = Ao + Ta
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First order problem:

vy‘l}) (0) — Muv( (o) + 3Ruv( (0) + Rovy’ (¢) — Rug (o) vy’ (o) =0,

(36)
v1(0) =0, v1(0) =0, v1(0) =0, vy’ (0)=0
Solution of the first order problem is:
1 B?Ro”
= — (BM —4BR+ ABR) o®
v1(0) 20( R+ ABR) o + 040
Second order problem:
véw) (o) — Mv! (¢) +3Rv{ (¢) — Ry (o) vy’ (o) + Rovy’ (o)
—Rug (U) Ui” (U) =0, (37)

v2(0) =0, vh (0) =0, vy (0) =0, vy’ (0) =0

Solution of the second order problem is:

1
vo(0) = =510 (BM? —10BMR + 4ABMR + 24BR? — 18ABR?) 0"
B3R20.11
—— (3B2MR — 13B2R?2 + 4AB?R?) 0% + —————
+50730 + )7° + TTo8800

Third order problem:

o™ (o) = Mv () + 3Rv!] (¢) — Rva (o) vl!' (0) — Ruy (0) v} (o)
+Rovy' (o) — Rug (o) vy’ (o) = 0, (38)

U3(O) =0, Ui,’) (0) =0, Ui,’)/(o) =0, Ug’)” (0) =0

Solution of the third order problem is:

1 BM? — 18BM?R + 9ABM?2R + 104BR?
v3 (o) = 269530 —100ABM R? + 23A2BM R? — 192BR? | ¢*
+264ABR3 — 114A%2BR3 + 15A3BR3

L1 69B2M2R — T00B2M R? + 286 AB2MR2 \ |,
39916800 \ +1720B2R3 — 1340AB2R3 + 241A42B2R3 | ¢

1

BQM 2_2 B3 3 2AB3 3 13
+731135104OO(609 R?* —2750B°R® + 923AB°R® ) o

1051 B*R3515
217945728000
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A similar approach can be used to find v4 (¢) and vs (o).

Considering the fifth order solution:
5

(o)=Y vj(o) (39)

J=0

Using the boundary conditions v (1) =1 and v’ (1) = 0, the unknowns A and
B for fixed values of R and M in (38) can be found. In particular, when R =1
and M = 2, then A = 1.5168 and B = —3.19019. The fifth order solution is
therefore:

¥ (o) = 1.642380 — 0.78906803 + 0.1465790° + 4.89615 x 10~ 30"
—4.95186 x 107 30? — 6.49614 x 1020t 4+ 2.52107 x 10~ 4013
—1.05994 x 1075¢1% — 1.33999 x 102017 + 1.58831 x 10~ 6519
+8.15214 x 10~ 702! + 4.88136 x 10 8023

(40)
The residual error of the problem is:
d*o d3o d*v
E = — —0) — - M) — 41
Res Error o + R (0 —0) 753 + (3R ) 752 (41)

5. RESULTS AND DISCUSSION

In this paper, an unsteady axisymmetric squeezing flow of incompressible
Newtonian fluid passing through porous medium is considered. The resulting
boundary value problem is solved by LTHPM and the results are compared
with HPM and IRK4 solutions.

In the current problem, two parameters Reynolds number R and constant
containing permeability M are involved. Firstly, the problem is solved for
various values of R using LTHPM, HPM and IRK4, and presented in tables
1-3. Analyses of these tables indicate that results from LTHPM are consistent
and more accurate for various values of R as compared to HPM and TRK4.
Consistency is determined by comparison of average absolute residual errors
at different values of R. It can also be noted that although IRK4 results are
also comsistent, the accuracy is very less when compared with LTHPM and
HPM. The problem is then solved for various values of M using LTHPM, HPM
and IRK4 and presented in tables 4, 5, and 6. These tables also indicate that
results obtained from LTHPM are consistent and more accurate for various
values of M, as compared to the HPM and IRK4. It is also observed that an
increase in R does not affect the consistency and accuracy of LTTHPM solution.
In contrast, the accuracy in case of HPM and IRK4 is significantly reduced.
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FI1GURE 2. Convergence of LTHPM solution

FiGURE 3. Comparison of LTHPM and IRK4 solutions

Moreover, an increase in M does not affect the accuracy and consistency of
LTHPM and IRK4 solutions but on the other hand it enhances the accuracy
in case of HPM. It can also be observed that for various values of R and
M, TRK4 results in the domain [0, 1] show more accuracy near the center.
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FIGURE 4. LTHPM residual error of fifth order solution for
R=1and M =2

F1GURE 5. HPM residual error of fifth order solution for R =1
and M =2

The convergence of proposed scheme is confirmed by finding various order
solutions along with absolute residual errors in Table 7. In this table, it can be
clearly observed that the LTTHPM solution considerably improves as the order
of approximation is increased for fixed values of R and M. Finally, the validity
of the proposed scheme is checked by comparing the analytical (LTHPM) and
numerical (IRK4) solutions, and presented in Table 8. Analysis of this table
shows that an increase in R, decreases the similarity between LTHPM and
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FIGURE 6. IRK4 residual error for R=1and M =2

Ficgure 7. Comparison of residual errors obtained using
LTHPM, HPM and IRK4 for fixed R and M

IRK4 solutions when M is considered to be fixed. On the other hand, for
a fixed value of R, an increase in M increases the similarity in the solutions
of LTHPM and IRK4. All the tables signify the efficiency of the proposed
scheme.

Convergence of LTHPM solution is given in Fig. 2. This plot represents
the average absolute residuals against different order approximations and it is
clearly seen that LTHPM solution is convergent.
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R=1 R=15 R=2
o | Solution Error Solution Error Solution Error
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1] 0.156127 0. 0.160847 |2 x 10716 | 0.166566 | 1 x 10715
0.2 0.30846 |9 x 1071 | 0.31732 |3 x 10713 | 0.328044 | 5 x 10712
0.3 ] 0.453286 | 2 x 10712 | 0.465187 |5 x 10711 | 0.479568 | 6 x 10~10
0.4 | 0.587056 |2 x 10~1° | 0.600508 | 3 x 1079 | 0.616723 | 3 x 1078
0.5 | 0.706467 | 7x 1072 | 0.719778 | 1 x 107 | 0.735767 | 1 x 10~
0.6 | 0.808545 | 1 x 10~7 | 0.820069 | 2 x 107 | 0.833844 | 2 x 10°°
0.7 | 0.890728 | 2 x 1076 | 0.899163 | 3 x 107° | 0.909182 | 3 x 1074
0.8 0.95094 | 2x107° | 0.955671 | 3x 10~% | 0.961244 | 3 x 1073
0.9 0.987665 | 1 x10™* | 0.98912 | 3 x 1073 | 0.990816 | 2 x 102
1.0 1.0 9x107* 1.0 1x1072 1.0 1x10°1!
TABLE 1. Fifth order LTHPM solutions along with absolute
residual errors for various R when M = 0.3
R=1 R=15 R=2

o | Solution Error Solution | Error | Solution | Error
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1] 0.156127 | 6 x 10~7 | 0.160842 | 4 x 1075 | 0.166529 | 6 x 10~*
0.2 0.308459 | 2 x 1075 | 0.31731 |2x10~%]| 0.327972 | 9 x 10~*
0.3 ] 0.453285 | 7x 107° | 0.465173 | 1 x 1073 | 0.479471 | 6 x 1073
0.4 | 0.587055 | 1 x 107* | 0.600492 |2 x 1073 | 0.616612 | 1 x 102
0.5 | 0.706466 | 2 x 10~* | 0.719763 | 3 x 1073 | 0.735656 | 2 x 1072
0.6 | 0.808544 | 3.x 10™% | 0.820055 |4 x 1073 | 0.833748 | 2 x 1072
0.7 ] 0.890727 | 2 x 10~* | 0.899153 |3 x 1073 | 0.909113 | 2 x 1072
0.8] 0.95094 | 8 x 107° | 0.955665 | 1 x 1073 | 0.961206 | 8 x 1073
0.9 | 0.987665 | 1 x 10~* | 0.989118 | 2 x 1073 | 0.990805 | 1 x 1072
1.0 1. 3x107* 1. 4x1073 1. 2 x 1072

Validity of LTHPM solution is demonstrated in Fig. 3, where LTHPM and
IRK4 solutions are compared for fixed values of R and M. Here, it can be

TABLE 2. Fifth order HPM solutions along with absolute resid-
ual errors for various R when M = 0.3

observed that LTHPM solution is in good agreement with IRK4 solution.

Fig. 4 and Fig. 5 represent the residual errors of the fifth order solutions
obtained by LTHPM and HPM respectively for R = 1 and M = 2. Fig. 6
demonstrates the residual error in case of IRK4. In addition, comparison of

residual errors of LTHPM, HPM and IRK4 is presented in Fig. 7.
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R=1

R=15

R=2

Solution

Error

Solution

Error

Solution

Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.
0.156127
0.30846
0.453286
0.587056
0.706466
0.808545
0.890728
0.95094
0.987665
1.

4 %1073
2 x 1074
5x 107°
1x 1075
4x1076
7% 1077
4x10°6
1x107°
5% 107°
2 x 1074
4 %1073

0.
0.160847
0.317319
0.465186
0.600508
0.719778
0.820068
0.899162
0.95567
0.98912
1.

7x 1073
7 x 1074
1x107*
5% 107°
1x107°
1x 106
1x107°
4x107°
1x107*
5x 1074
7x 1073

0.
0.166565
0.328041
0.479564
0.616719
0.735762
0.833839
0.909178
0.961242

0.9908015

1.

9x 1073
1x 1073
4x1074
1x 1074
3x107°
9x 1076
8 x 1076
3x107°
1x107*
3x 1074

9x 1073

TABLE 3. IRK4 solutions along with absolute residual errors
for various R when M = 0.3

105

o | Solution Error Solution Error Solution Error
0.0 0. 0. 0. 0. 0. 0.

0.1 0.155489 | 1 x 10716 | 0.153958 0. 0.151148 | 5 x 1017
0.2 0.307263 | 1 x 107 | 0.30439 |[1x 107 | 0.29911 |2x10~14
0.3 ] 0.451679 | 2 x 10712 | 0.447819 | 1 x 10712 | 0.440715 | 2 x 1012
0.4 0.585241 | 1 x 10710 | 0.580877 |4 x 10711 | 0.572825 | 4 x 10~ 11
0.5 | 0.704672 | 4 x 10~2 | 0.700351 |8 x 10719 | 0.692354 | 3 x 1010
0.6 | 0.806992 | 8 x 1078 | 0.803248 | 1 x 1078 | 0.79629 | 2 x 10~?
0.7 | 0.889592 | 1x 1076 | 0.886845 | 2 x 10~7 | 0.88172 | 8 x 10~
0.8 ] 0.950303 | 1 x107° | 0.948758 | 2 x 1076 | 0.94586 | 2 x 1078
0.9 | 0.987469 | 9 x 107 | 0.986992 | 1 x 10™° | 0.986092 | 5 x 10~?
1.0 1. 6x 1074 1. 1x104 1. 7x 1077

TABLE 4. Fifth order LTHPM solutions along with absolute
residual errors for various M when R =1

6. CONCLUSION

In this article, a similarity solution for an unsteady axisymmetric squeezing
flow of incompressible Newtonian fluid through porous medium is presented
using a novel alteration of the Homotopy Perturbation Method. The alteration
is introduced in this paper as the Homotopy Perturbation Laplace Method
(LTHPM). The analysis of the residual errors of the solution confirms the
effectiveness of the proposed scheme. The convergence of the proposed scheme
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M =0.5

M=1

M =2

Solution

Error

Solution

Error

Solution

Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.
0.155489
0.307262
0.451678

0.58524
0.704672
0.806992
0.889591
0.950303
0.987469

1.

0.
3x 106
6 x 106
4x107°
9x107°
1x 10
1x 10
1x 104
6 x 107°
8 x 107°
2x 1074

0.
0.153958
0.304389
0.447819
0.580877
0.700351
0.803248
0.886845
0.948758
0.986992

1.

0.
3x 1076
2 % 1076
4x10°6
1x107°
3x107°
5% 107°
4x107°
2x107°
1x107°
5% 107°

0.
0.151148
0.29911
0.440715
0.572825
0.692354
0.79629
0.88172
0.94586
0.986092
1.

0.
9x 108
1x10°7
2x 1077
1x1077
2x 108
4%x1077
7x 1077
6 x 1077
1x1077
5x 1077

TABLE 5. Fifth order HPM solutions along with absolute resid-
ual errors for various M when R =1

M =0.5

M=1

M =2

Solution

Error

Solution

Error

Solution

Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.
0.155489
0.307263
0.451679
0.585241
0.704672
0.806992
0.889592
0.950303
0.987469

1.

3x 1073
2x 1074
5x 1075
1x107°
4 %1076
6 x 108
4 %1076
1x107°
5x107°
2x107*
4% 1073

0.
0.153958
0.30439
0.447819
0.580877
0.700351
0.803248
0.886845
0.948758
0.986992
1.

2x%x 1073
1x1074
3x107°
1x107°
3x 1076
1x1077
3 x 1076
1x107°
4%x107°
1x10*
3x 1073

0.
0.151148
0.29911
0.440715
0.572825
0.692354
0.79629
0.88172
0.94586
0.986092
1.

4x 10712
2x107°
7x 107
2 x 1076
5x 1077
1x10°7
1x 1076
3x 1076
1x107°
5% 107°
1x1073

is also verified using the residual errors of various order approximate solutions.
Validity of the proposed method is confirmed by solving the problem using
HPM and IRK4 and comparing the residual errors. This comparison confirms
that obtained analytic results using LTHPM are in good agreement with the
IRK4 numerical scheme. From the above facts it is concluded that LTHPM
can be efficiently used in various areas of science and engineering as it promises

TABLE 6. IRK4 solutions along with absolute residual errors
for various M when R =1

a higher degree of accuracy.
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First Order Third Order Fifth Order

o | Solution | Error | Solution Error Solution Error
0.0 0. 0. 0. 0. 0. 0.
0.1] 0.151157 |1 x10* | 0.153959 | 4 x 10711 | 0.151148 | 5 x 10~
0.2 0.299127 |1 x 1073 | 0.30439 | 6 x 1072 | 0.29911 |2x 10~
0.3 | 0.44074 |3 x 1073 | 0.44782 | 1 x 1077 | 0.440715 | 2 x 10712
0.4 0.572857 | 5 x 1073 | 0.580878 | 1 x 107% | 0.572825 | 4 x 10~}
0.5 ] 0.692391 | 6 x 1073 | 0.700353 | 1 x 107° | 0.692354 | 3 x 1010
0.6 | 0.796328 |1 x 10=% | 0.803249 | 7x 107> | 0.79629 | 2 x 1079
0.7 ] 0.881754 | 2 x 1072 | 0.886847 | 4 x 10~* | 0.88172 | 8 x 1079
0.8 | 0.945885 | 7 x 1072 | 0.948759 | 1 x 1073 | 0.94586 | 2 x 1078
0.9 | 0.986102 | 1 x 10~ | 0.986993 | 7 x 1073 | 0.986092 | 5 x 10~
1.0 1. 3x 107t 1. 2 x 1072 1. 7x 1077

TABLE 7. Different order solutions along with absolute residual

errors of LTHPM for fixed R and M

M = 0.3(Fixed) R = 1(Fixed)

o R=1 R=15 R=2 | M=05] M=1 2
0.0 0. 0. 0. 0. 0. 0.
01]6x1072 | 1x1077 | 1x107% | 3x1079 | 7x10719|3x 10712
02 1x1078 | 2x1077 | 2x1076 | 7x1079 | 1 x107° | 6 x 10712
03] 1x107% | 3x1077 | 3x1076 | 1x1078 | 2x1079 |9x 10712
04]2x107% | 4%x1077 | 4x1076 | 1x10% | 2x107°2 |1x 10~
051 2x1078 | 4x1077 [4%x1076 | 1x1078 | 2x1079 |1x 1011
06| 2x108 | 4x1077 | 4%x1076 | 1x1078 | 2x107Y | 1x 1011
07 1x108 | 4x1077 | 3x1076 | 1x1078 | 2x107? |9 x 1012
08| 1x108 | 2x1077 | 2x1076 | 8x107Y | 1x107? |5 x 10712
09 6x102 | 1x1077 | 1x1076 | 3x107Y | 7x10719| 1 x 10712
1.0[8x10717 |5 x10715 | 2x10716 | 7x10716 |1 x10716 | 2x10"17

TABLE 8. Comparison of LTHPM and IRK4 solution for vari-
ous R and M
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