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NARUMI-KATAYAMA AND MODIFIED

NARUMI-KATAYAMA INDICES OF GRAPHS

MEHDI REZAEI1, MUHAMMAD SH. SARDAR2

SOHAIL ZAFAR3, MOHAMMAD R. FARAHANI∗4

Abstract. Let G be a simple connected molecular graph in chemical
graph theory, then its vertices correspond to the atoms and the edges to
the bonds. Chemical graph theory is an important branch of graph the-
ory, such that there exits many topological indices in it. Also, computing
topological indices of molecular graphs is an important branch of chemical
graph theory. Topological indices are numerical parameters of a molecular
graph G which characterize its topology. In the present study we compute
and report several results of the Narumi-Katayama and modified Narumi-
Katayama indices for some widely used chemical molecular structures.
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1. Introduction

A molecular graph G = (V (G), E(G)) with vertex set V (G) and edge set
E(G) is a graph whose vertices denote atoms and edges denote bonds between
the atoms of any underlying chemical structure. The degree of a vertex v,
denoted by dv, is the number of edges that are incident to it.
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The Zagreb indices were first introduced by Gutman in [25], they are im-
portant molecular descriptors and have been closely correlated with many
chemical properties (see [28]) and defined as:

M1(G) =
∑

u∈V (G)

d2
u and

M2(G) =
∑

uv∈E(G)

dudv.

In 2012, Ghorbani and Azimi (see [24]) proposed the multiple versions of
Zagreb indices of a graph G. These new indices are first multiplicative Zagreb
index PM1(G), second multiplicative Zagreb index PM2(G) and defined as:

PM1(G) =
∏

uv∈E(G)

(du + dv),

PM2(G) =
∏

uv∈E(G)

(dudv).

In [26] authors studied some properties of Narumi-Katayama index which is
defined as follows (see [27]):

NK(G) =
∏

u∈V (G)

du.

The modified Narumi-Katayama index is defined by Ghorbani et al. as follows:

NK∗(G) =
∏

u∈V (G)

dduu .

Clearly, second multiplicative Zagreb index and the modified Narumi-Katayama
index are the same.

In order to calculate the number of edges of an arbitrary graph, the following
lemma is significant for us.

Lemma 1. Let G be a graph. Then∑
u∈V (G)

du = 2|E(G)|.

This is also known as handshaking Lemma. Several articles contributed to
determining the topological indices of special molecular graphs (See Yan et al.
[1] and [2], Gao and Shi [3] and [4], Gao and Wang [5], [6] and [7], Xi and Gao
[8], Gao et al. [9], Gao et al., [10] and [11], Gao and Farahani [12], Farahani
and Gao [13], and Farahani [14], [15], [16], [17], [18], [19], [20], [21], [22] and
[23] for more details). In this paper, we compute the Narumi-Katayama and
modified Narumi-Katayama indices for some widely used chemical molecular
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structures.

2. Narumi-Katayama and modified Narumi-Katayama indices of
some graphs

Theorem 2. Let G be a k-regular graph of n vertices, then

(1) NK(G) = kn;
(2) NK∗(G) = (k)nk.

Proof. Since G is a k-regular graph, then each vertex of G has degree k and
by Lemma 1 we have kn

2 edges. Consequently we get NK(G) = kn and

NK∗(G) = (k)nk. �

Let Kn denote the complete graph on n vertices and Cn denote the cycle
on n vertices.

Theorem 3. We have

(1) NK(Kn) = (n− 1)n;

(2) NK∗(Kn) = (n− 1)n(n−1);
(3) NK(Cn) = 2n;
(4) NK∗(Cn) = 22n.

Proof. This proof can be obtained by using Theorem 2. �

Theorem 4. Consider the wheel graph Wn and path Pn, then

(1) NK(Wn) = n3n;
(2) NK∗(Wn) = nn33n;
(3) NK(Pn) = 2n−2;

(4) NK∗(Pn) = 22(n−2).

Proof. A wheel graph is a graph formed by connecting a single vertex to all
vertices of a cycle. In wheel graph Wn, the total number of vertices are n+ 1,
out of which n vertices of degree 3 and 1 vertex of degree n and by Lemma 1
we have 2n edges (see Fig. 1). Furthermore, we obtain |E6| = |E∗9 | = n and
|E3+n| = |E∗3n| = n. Consequently we get NK(Wn) = n3n and NK∗(Wn) =
nn33n. In path graph Pn, the total number of vertices are n, out of which
n− 2 vertices of degree 2 and 2 vertices of degree 1 and by Lemma 1 we have
n − 1 edges |E3| = |E∗2 | = 2 and |E4| = |E∗4 | = n − 3. Consequently we get

NK(Pn) = 2n−2 and NK∗(Pn) = 22(n−2). �

Theorem 5. Let Tn be a graph of triangular benzenoid, then

(1) NK(Tn) = 23n+33n
2+n−2;

(2) NK∗(Tn) = 26n+633n2+3n−6.
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Figure 1. The wheel graph W7

Proof. This graph has n2+4n+1 vertices, out of which 3n+3 vertices of degree

2 and n2 + n− 2 vertices of degree 3 and by Lemma 1 we have 3(n2+3n)
2 edges

(see Fig. 2). Furthermore, we obtain |E4| = |E∗4 | = 6, |E6| = |E∗9 | = 6(n− 1),

and |E5| = |E∗6 | = 3n(n−1)
2 . Consequently we get NK(Tn) = 23n+33n

2+n−2

and NK∗(Tn) = 26n+633n2+3n−6. �

3. Narumi-Katayama and modified Narumi-Katayama indices of
bridge graph

Let {Gi}di=1 be a set of finite pairwise disjoint graphs with vi ∈ V (Gi). The
bridge (molecular) graph B(G1, G2, · · · , Gd) = B(G1, G2, · · · , Gd; v1, v2, · · · , vd)
of {Gi}di=1 with respect to the vertices {vi}di=1 is yielded from the graphs
G1, G2, · · · , Gd in which the vertices vi and vi+1 are connected by an edge
for i = 1, 2, · · · , d − 1. The main result of this section is determining the
formulas of some degree based indices for the infinite family of nano struc-
tures of bridge graph with G1, G2, · · · , Gd (see Fig.3). We set Gd(H, v) =
B(H,H, · · · , H; v, v, · · · , v) for special situations of bridge graphs. In the fol-
lowing context of this section, we discuss the bridge graphs in which the main
parts of graphs are path, cycle and complete graph, respectively.

Theorem 6. Let Gd(Pn, v) be a bridge graph, then

(1) NK(Gd(Pn, v)) = 2(n−2)d+23d−2;
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Figure 2. The triangular benzenoid Tn.

Figure 3. The bridge graph Tn.

(2) NK∗(Gd(Pn, v)) = 22((n−2)d+2)33(d−2).

Proof. This graph has nd vertices, out of which d vertices of degree 1, (n −
2)d + 2 vertices of degree 2 and d − 2 vertices of degree 3 and by Lemma 1
we have nd − 1 edges (see Fig. 4). Furthermore, we obtain |E5| = |E∗6 | =
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Figure 4. The nano structures bridge graph Gd(Pn; v1).

d, |E6| = |E∗9 | = d − 3, |E4| = |E∗4 | = d(n − 3) + 2, |E3| = |E∗2 | = d.

Consequently we get NK(Gd(Pn, v)) = 2(n−2)d+23d−2 and NK∗(Gd(Pn, v)) =

22((n−2)d+2)33(d−2). �

Theorem 7. Let Gd(Cn, v) be a bridge graph, then

(1) NK(Gd(Cn, v)) = 2(n−1)d4d−29;

(2) NK∗(Gd(Cn, v)) = 32(3)22(n−1)d44(d−2).

Figure 5. The nano structures bridge graph Gd(C6; v).

Proof. This graph has dn vertices, out of which (n − 1)d vertices of degree
2, 2 vertices of degree 3 and d − 2 vertices of degree 4 and by Lemma 1 we
have dn + d − 1 edges (see Fig. 5). Furthermore, we obtain |E5| = |E∗6 | = 4,
|E6| = |E∗8 | = 2d − 4, |E4| = |E∗4 | = d(n − 2), |E8| = |E∗16| = d − 3 and

|E7| = |E∗12| = 2. Consequently we get NK(Gd(Cn, v)) = 2(n−1)d4d−29 and

NK∗(Gd(Cn, v)) = 32(3)22(n−1)d44(d−2). �

Theorem 8. Let Gd(Kn, v) be a bridge graph, then

(1) NK(Gd(Kn, v)) = n2.(n + 1)d−2(n− 1)(n−1)d;

(2) NK∗(Gd(Kn, v)) = n2n.(n + 1)(d−2)(n+1)(n− 1)(n−1)2d.

Proof. This graph has dn vertices, out of which 2 vertices of degree n, d − 2
vertices of degree n + 1 and (n− 1)d vertices of degree n− 1 and by Lemma
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Figure 6. The nano structures bridge graph Gd(K3; v).

1 we have dn(n−1)
2 + d − 1 edges (see Fig. 6). Furthermore, we obtain

|E2n+1| = |E∗n2+n| = 2, |E2(n+1)| = |E∗(n+1)2 | = d − 3, |E2n| = |E∗n2−1| =

(d − 2)(n − 1), |E2n−1| = |E∗n2−n| = 2n − 2 and |E2(n−1)| = |E∗(n−1)2 | =

[ (n−1)(n−2)
2 ]d. Consequently we get NK(Gd(Kn, v)) = n2.(n + 1)d−2(n −

1)(n−1)d and NK∗(Gd(Kn, v)) = n2n.(n + 1)(d−2)(n+1)(n− 1)(n−1)2d. �
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