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PROPERTIES OF CO-INTERSECTION GRAPH OF
SUBMODULES OF A MODULE

LOTF ALI MAHDAVI1, YAHYA TALEBI2

Abstract. Let R be a ring with identity and M be a unitary left R-
module. The co-intersection graph of proper submodules of M , Ω(M) is
an undirected simple graph whose vertices are non-trivial submodule of
M in which two vertices N and K are joined by an edge, if and only if
N + K 6= M . In this paper, we study several properties of Ω(M). We
prove that, if Ω(M) is a path, then Ω(M) ∼= P2 or Ω(M) ∼= P3. We show
that, if Ω(M) is a forest, then each component of Ω(M) is complete or star
graph. We determine the conditions under which Ω(M) is weakly perfect.
Moreover, we introduce the universal vertices and the dominating sets of
Ω(M) and their relationship with the non-trivial small submodules of M .

Key words : co-intersection graph, forest, weakly perfect graph, universal
vertex, dominating set.
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1. Introduction

The graphs associated with the algebraic structures are attractive subjects
and research about these topics is extended by many mathematicians. One
of the most important graphs is the intersection graph of the algebraic struc-
tures. The idea of studying the intersection graph of algebraic structures, first
appeared in [9] by J. Bosak where defined the intersection graph of proper
subsemigroups of a semigroup in 1964. The graphs related to the group and
ring structures has been studied extensively by several authors, for example
see [2], [3], [4], [7], [9], [10], [13], [14], [16] and [19]. Recently various construc-
tions of graphs related to the module structure are found in [1], [5], [6], [15]
and [18]. Motivated by previous studies on the intersection graph of algebraic
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structures, we define the co-intersection graph of submodules of a module in
[15]. Now, our main goal is to study more about the connection between the
algebraic properties of a module M and the graph theoretic properties of the
graph Ω(M) which is associated with it.

Throughout this paper R is a ring with identity and M is a unitary left R-
module. By a non-trivial submodule of an R-module M , we mean a non-zero
proper left submodule of M . The co-intersection graph of an R-module M ,
denoted by Ω(M), is defined to be the undirected simple graph with the vertex
set V (Ω) whose vertices are in one to one correspondence with all non-trivial
submodules of M and two distinct vertices are adjacent if and only if the sum
of the corresponding submodules of M is not equal to M . A submodule N of
an R-module M is called small in M (we write N � M), if N + L 6= M for
every proper submodule L of M . A submodule K of non-zero R-module M is
said to be essential in M (we write K EM), if K ∩L 6= (0) for every non-zero
proper submodule L of M . If every non-zero submodule of M is essential, then
M is called a uniform module. A non-zero R-module M is called local, if it
has a unique maximal submodule that contains all other proper submodules.
A submodule X of an R-module M is called the complement of the submodule
Y of M , if M = X ⊕ Y . We say that an R-module M is complemented, if
every submodule of M has a complement in M . A non-zero R-module M is
called indecomposable, if it is not a direct sum of two non-zero submodules.
The ring of all endomorphisms of an R-module M is denoted by EndR(M).
The radical of an R-module M , denoted by Rad(M), is the intersection of all
maximal submodules of M . The socle of an R-module M , denoted by Soc(M),
is the sum of all simple submodules of M . For an R-module M , the length of
M , is denoted by lR(M).
Let Ω=(V (Ω), E(Ω)) be a graph with the vertex set V (Ω) and the edge set
E(Ω), where an edge is an unordered pair of distinct vertices of Ω. Graph Ω
is finite, if card(V (Ω)) < ∞, otherwise Ω is infinite. A graph Ω is empty, if
card(V (Ω)) = 0. A subgraph of a graph Ω is a graph Γ such that V (Γ) ⊆ V (Ω)
and E(Γ) ⊆ E(Ω). By order of Ω, we mean the number of vertices of Ω and
we denoted it by |Ω|. If x and y are two adjacent vertices of Ω, then we write
x−y. The degree of a vertex υ in a graph Ω, denoted by deg(υ), is the number
of edges incident with υ. The maximum and minimum degree of Ω are ∆(Ω)
and δ(Ω), respectively. A vertex u is called universal, if it is adjacent to all
other vertices. A vertex v is called isolated, if deg(v) = 0. A vertex w is called
end vertex, if deg(w) = 1. Let x and y be two distinct vertices of Ω. An
x, y-path is a path with starting vertex x and end vertex y. A path with n
vertices is denoted by Pn. A cycle in a graph is a path of length at least 3
through distinct vertices which begins and ends at the same vertex. We mean
of (x, y, z) is a 3-cycle. A graph is said to be null, if it has no edge. A graph
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is said to be connected, if there is a path between every pair of vertices of the
graph. A star graph is a tree consisting of one universal vertex. A complete
graph of order n is denoted by Kn. The complement graph of Ω, denoted by Ω.
By a clique in a graph Ω, we mean a complete subgraph of Ω and the number
of vertices in a largest clique of Ω, is called the clique number of Ω and is
denoted by ω(Ω). For a graph Ω, let χ(Ω), denote the chromatic number of
Ω, i.e., the minimum number of colors which can be assigned to the vertices of
Ω such that every two adjacent vertices have different colors. A weakly perfect
graph, is a graph Ω in which ω(Ω) = χ(Ω).

2. Forest and weakly perfect graphs Ω(M)

In this section, we determine some conditions on the module M for which
Ω(M) is empty, null, path, tree, forest and weakly perfect graph. We consider
the relationship between the maximum degree ∆ = ∆(Ω(M)) and the min-
imum degree δ = δ(Ω(M)) with the length of the module M and study the
clique number, the chromatic number of the weakly perfect graph Ω(M).

In the following proposition we determine the conditions under which the
graph Ω(M) is empty or it has at least an empty subgraph.

Proposition 1. Let R be a commutative ring and M be a non-zero R-module.
Then the following statements hold:
(1) If N is a maximal submodule of M , then Ω(M/N) is an empty graph.
(2) If M is semisimple, then M has a submodule N such that Ω(N) is an
empty graph.
(3) If M is complemented, then M has a submodule K such that Ω(K) is an
empty graph.
(4) If M is Artinian, then M has a submodule L such that Ω(L) is an empty
graph.

Proof. (1) It is clear.
(2) Suppose that M is a semisimple R-module. Then M has a non-zero ele-
ment x which Rx is a non-zero cyclic submodule of M . Since Rx is non-zero
and finitely generated, it contains a maximal submodule N? and since M is
semisimple, Rx is also so. Thus by Theorem 9.6(e) of [8, p. 117], there exists
a submodule N of Rx such that Rx = N

⊕
N?. However, since N ∼= Rx/N?

and N? is maximal, N is simple and Ω(N) is an empty graph.
(3) In order to establish this part, assume that M is a complemented R-
module and 0 6= x ∈ M . We consider Rx as a submodule of M . Since M is
complemented, Rx is also so and since Rx is cyclic, there exists a left ideal I
of R such that Rx ∼= R/I as a R-module. As R has identity, then by Zorn,s
Lemma, there exists a left maximal ideal I? such that I ⊆ I? and consequently
R/I has the maximal submodule I?/I. Since Rx ∼= R/I, Rx has a maximal



Properties of Co-intersection Graph of Submodules of a Module 19

submodule K? and since Rx is complemented, there exists a submodule K
such that Rx = K

⊕
K?. However, as K ∼= Rx/K? and K? is maximal, then

K is simple and Ω(K) is an empty graph.
(4) Let M be an Artinian R-module. If M is simple, we set L = M and Ω(L) is
an empty graph. Otherwise, there exists a submodule M1 such that M1 ⊂ M .
If M1 is a simple, we set L = M1, otherwise, there exists a submodule M2 of
M1 such that M2 ⊂ M1 ⊂ M . Consequently there exists an infinite strictly
decreasing sequence M ⊃ M1 ⊃ M2 ⊃ . . . and since M is an Artinian R-
module, this chain should be stationary. Hence there exists a positive integer
n such that Mn is simple. We set L = Mn and Ω(L) is an empty graph. �

The following theorem is fundamental for the connectivity of the graph
Ω(M).

Theorem 2. ([15, Theorem 2.1]) Let M be an R-module. Then the graph
Ω(M) is not connected if and only if M is a direct sum of two simple R-
modules.

Now, we have some corollaries which are immediate consequences of Theo-
rem 2.

Corollary 3. Let M be an R-module which is not simple. Then Ω(M) is
connected if and only if either M is not semisimple or M = ⊕i=n

i=1Mi, where
n ≥ 3 and Mi is a simple R-module.

Corollary 4. Let M be an R-module and |Ω(M)| ≥ 2. If Ω(M) has at least
an edge, then Ω(M) is a connected graph.

Corollary 5. Let M be an R-module and |Ω(M)| ≥ 2. Then Ω(M) is a null
graph if and only if lR(M) ≤ 2.

Now, we consider the conditions of the module M such that Ω(M) is a tree
or path and obtain some submodules of M with at most one degrees.

Proposition 6. Let M be an R-module and N a maximal submodule of M .
If the graph Ω(M) has no 3-cycle, then N is either an isolated vertex or an
end vertex of Ω(M).

Proof. Let N be a maximal submodule of M and deg(N) ≥ 2. Then there
exist at least two distinct non-trivial submodules K and L such that both
are adjacent to the vertex N of the graph Ω(M). Hence N + K 6= M and
N + L 6= M . Since N ⊆ N + K 6= M and N ⊆ N + L 6= M , the maximality
of N implies that N + K = N = N + L. Then K ⊆ N and L ⊆ N , thus
K + L ⊆ N 6= M and this implies that K and L are two adjacent vertices of
Ω(M). Thus there is a 3-cycle of the form (N,K,L) in Ω(M), a contradiction.
Therefore, deg(N) = 0 or deg(N) = 1 and consequently N is either an isolated
vertex or an end vertex of Ω(M). �
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Theorem 7. Let M be an R-module. Then Ω(M) ∼= P2 if and only if M have
only two distinct non-trivial submodules which are one minimal and the other
one maximal.

Proof. Suppose that Ω(M) ∼= P2. Let X and Y be two vertices of Ω(M).
Clearly (0) 6= X +Y 6= M , thus X +Y is a vertex of Ω(M) and X +Y = X or
X + Y = Y . If X + Y = X, then Y ⊆ X and this implies that Y is a minimal
submodule and X is a maximal submodule of M . Similarly, if X + Y = Y ,
we conclude that X is a minimal submodule and Y is a maximal submodule
of M . The converse is straightforward. �

Example 1. Let p be a prime number. Consider Zp3 as a Z-module. There are
only two non-trivial submodules pZp3 and p2Zp3 such that pZp3 +p2Zp3 6= Zp3.
Thus Ω(Zp3) ∼= P2.

Lemma 8. Let M be an R-module and V be an end vertex of the graph Ω(M).
Then V is a maximal submodule or a minimal submodule of M .

Proof. Suppose that V is an end vertex of Ω(M). Then there exist only a
vertex W of Ω(M) such that W is adjacent to V . Thus (0) 6= V + W 6= M .
Since V + W + V = V + W 6= M and W + V + W = V + W 6= M and since
deg(V ) = 1, V + W = V or V + W = W . Thus V ⊆ W or W ⊆ V . Now, if
V ⊆ W , then we show that V is a minimal submodule of M . Suppose that
there exists a non-trivial submodule X of M such that (0) ⊂ X ⊂ V , then
X+V = V 6= M and X is adjacent to V and thus deg(V ) ≥ 2, a contradiction.
However, if V ⊆ W , we show that V is a maximal submodule of M . Assume
that there exists a non-trivial submodule U of M such that V ⊂ U ⊂ M , then
V + U = U 6= M and U is adjacent to V and again, a contradiction. �

Lemma 9. Let M be an R-module and the graph Ω(M) be a path as sequence
M1,M2, . . . ,Mn. If M1 is a minimal submodule of M , then Ω(M) ∼= P2.

Proof. Suppose that the graph Ω(M) is a path as sequence M1,M2, . . . ,Mn

and M1 is a minimal submodule of M . Since (0) 6= M1 +M2 6= M , M1 +M2 =
M1 or two vertices M1 + M2 and M1 are adjacent. If M1 + M2 = M1, then
M2 ⊆ M1 and the minimality of M1 implies that M1 = M2, a contradiction.
Hence, M1 + M2 and M1 are adjacent. Consequently M1 + M2 = M2, thus
M1 ⊆ M2. Now let us get n ≥ 3. If M2 + M3 = M2, then M3 ⊆ M2 and
since M1 ⊆ M2, M1 + M3 ⊆ M2 6= M and thus M1 and M3 are adjacent, a
contradiction. Otherwise M2+M3 = M1 or M2+M3 = M3. If M2+M3 = M1,
then M3 ⊆ M1 and M1 + M3 = M1 6= M , a contradiction. If M2 + M3 = M3,
then M2 ⊆ M3 and since M1 ⊆ M2, M1 ⊆ M3, then M1 + M3 = M3 6= M , a
contradiction. Therefore, Ω(M) ∼= P2. �

Theorem 10. Let M be an R-module and Ω(M) be a path. Then Ω(M) ∼= P2

or Ω(M) ∼= P3. Moreover, if Ω(M) ∼= P3 and lR(M) < ∞, then M have only
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three submodules M1,M2 and M3 such that lR(M) = lR(M1)+lR(M3)−lR(M2)
and Ω(M/M1) ∼= Ω(M3/M2).

Proof. Suppose that the graph Ω(M) is a path as sequence M1,M2, . . . ,Mn.
By Lemma 8, the submodule M1 is minimal or maximal. Let M1 be a maximal
submodule of M . Since M1 and M2 are two adjacent vertices and M1 ⊆
M1 + M2 6= M , the maximality of M1 implies that M1 + M2 = M1 and thus
M2 ⊆ M1. Let n > 2, then M2 + M3 6= M2. As M2 + M3 = M2 implies
M3 ⊆ M2 and since M2 ⊆ M1, then M3 ⊆ M1 and M3 + M1 = M1 6= M .
Hence, M1 and M3 are two adjacent vertices of Ω(M) which is a contradiction.
However, two vertices M2 + M3 and M2 are adjacent, so M2 + M3 = M1 or
M2 + M3 = M3. If M2 + M3 = M1, then M1 = M2 + M3 = M2 + M3 + M3 =
M1 + M3. Hence, M1 and M3 are adjacent and again a contradiction. So
M2 + M3 = M3 and thus M2 ⊆ M3. Thus, this is true for n=3. Let n > 3,
then M4 + M3 6= M3. As M4 + M3 = M3, implies that M4 ⊆ M3 and since
M2 ⊆ M3, M4 + M2 ⊆ M3. Hence, M2 and M4 are two adjacent vertices
of Ω(M) which is a contradiction. Since two vertices M4 + M3 and M3 are
adjacent, M4+M3 = M2 or M4+M3 = M4. If M4+M3 = M2, then M4 ⊆ M2

and M4 + M2 = M2 6= M . Hence, M2 and M4 are adjacent, a contradiction.
However, if M4 + M3 = M4, then M3 ⊆ M4 and since M2 ⊆ M3, M2 ⊆ M4

and M2 + M4 = M4 6= M . Hence, M2 and M4 are adjacent, a contradiction.
Finally, we have M2 ⊆ M1 and M2 ⊆ M3. Therefore, M2 ⊆ M1 ∩M3 ⊆ M1

and this fact that M1 and M3 are not adjacent, we claim that M2 = M1∩M3.
To see this, let M2 6= M1 ∩ M3. Since M1 ∩ M3 + M2 = M1 ∩ M3 6= M
and M1 ∩M3 + M1 = M1 6= M , the vertex M1 ∩M3 is adjacent to vertices
M1 and M2. Then M1 = M1 ∩ M3 or M2 = M1 ∩ M3. If M1 = M1 ∩ M3,
then M1 ⊆ M3 and so M1 and M3 are adjacent, a contradiction. Hence,
M2 = M1 ∩M3 and thus lR(M) = lR(M1 + M3) = lR(M1) + lR(M3)− lR(M2)
and since M/M1

∼= M3/M2, Ω(M/M1) ∼= Ω(M3/M2). Also, if M1 is a minimal
submodule of M , then the result is an immediate consequence of Lemma 9. �

In Theorem 3.3 of [15], it was proved that for an R-module M with |Ω(M)| ≥
2, Ω(M) is a star graph if and only if it is a tree. Now we have the following
corollary.

Corollary 11. Let M be an R-module and Ω(M) be a forest. Then each
component of Ω(M) is either K1 or a star graph.

Proof. Suppose that Ω(M) is a forest. We know that each component of Ω(M)
is a tree. If |Ω(M)| = 1, then Ω(M) ∼= K1. But, if |Ω(M)| ≥ 2, then by above
argument Ω(M) is a star graph, and the proof is complete. �

Now, we consider the conditions of the module M such that Ω(M) is a forest
or weakly perfect graph. First, we give some examples of the co-intersection
graph of submodules of the non-semisimple and semisimple modules.
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Example 2. Let p and q be two distinct prime numbers. We know that Zpq2

as a Z-module is not semisimple and Ω(Zpq2) is connected and weakly perfect
graph but it is not a forest. (See Figure 1)

Figure 1. Ω(Zpq2)

Example 3. Let p, q and r be three distinct prime numbers. The Z-modules
Zpq =< p > ⊕ < q > and Zpqr =< pq > ⊕ < pr > ⊕ < qr > are semisimple.
Clearly, Ω(Zpq) ∼= K2 and ω(Ω(Zpq)) = χ(Ω(Zpq)) = 1. Hence, Ω(Zpq) is
both forest and weakly perfect graph. Also, ω(Ω(Zpqr)) = χ(Ω(Zpqr)) = 3.
Therefore, Ω(Zpqr) is a weakly perfect graph but not a forest. (See Figure 2)

Figure 2. Ω(Zpqr)

Proposition 12. Let M be an R-module. If |Ω(M)| ≥ 2 and Ω(M) is not
connected, then Ω(M) is both forest and weakly perfect graph.

Proof. Suppose that |Ω(M)| ≥ 2 and Ω(M) is not connected, then by [15,
Corollary 2.4], Ω(M) is a null graph. Thus it has no cycle and we have
ω(Ω(M)) = χ(Ω(M) = 1. Hence, Ω(M) is both forest and weakly perfect
graph. �

Example 4. We consider the co-intersection graph of submodules of the Z-
module Zp ⊕ Zp such that p is a prime number. The order of all elements
of Zp ⊕ Zp is 1 or p and since the only element of the order 1 is identity,
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then the number of elements of order p is |Zp ⊕ Zp| − 1 = p2 − 1. Also each
non-identity element in Zp ⊕ Zp generates a submodule of order p, with p− 1
non-identity elements. So p2−1 counts each of the non-identity elements p−1
times. Therefore, Zp ⊕ Zp as a Z-module has exactly (p2 − 1)/(p− 1) = p + 1
non-trivial maximal and minimal submodules of order p which all are isolated
vertices of this graph. Consequently, Ω(Zp ⊕ Zp) ∼= Kp+1 is both forest and
weakly perfect graph.

Theorem 13. Let M be an R-module with the graph Ω = Ω(M). If ∆ =
∆(Ω) < ∞ and δ = δ(Ω) ≥ 1, then the following statements hold:
(1) lR(M) ≤ ∆ + 1.
(2) If M is except direct sum of two simple R-modules, then lR(M) < ∞,
ω(Ω) < ∞ and χ(Ω) < ∞.
(3) Every non-trivial submodule of M has finitely many submodules.
(4) Every non-trivial submodule of M is containing a minimal submodule and
contained in a maximal submodule.

Proof. (1) In order to establish this part, suppose that M1 ⊂ M2 ⊂ M3 ⊂ . . . ,
is an infinite strictly increasing sequence of non-trivial submodules of M . Since
δ ≥ 1, there exists a submodule X of M such that M∆+1 + X 6= M . Hence
Mi + X 6= M , for 1 ≤ i ≤ ∆ + 1 and thus deg(X) ≥ ∆ + 1, which is
a contradiction. Now, we assume that N1 ⊃ N2 ⊃ N3 ⊃ . . . , is an infinite
strictly decreasing sequence of non-trivial submodules of M . Since δ ≥ 1, there
exists a submodule Y of M such that Y + N1 6= M , then Y + Ni 6= M , for
each i ≥ 1, and thus deg(Y ) = ∞, a contradiction. Therefore, lR(M) ≤ ∆+1.
(2) Clearly, lR(M) ≤ ω(Ω) + 1. Since M is except direct sum of two simple
R-modules, by Theorem 2, Ω is a connected graph. Hence, by Theorem 10.3
Part 1 of [11, p. 289], ω(Ω) ≤ χ(Ω) ≤ ∆ + 1 and since ∆ < ∞, we have
lR(M) < ∞, ω(Ω) < ∞ and χ(Ω) < ∞.
(3) Let N be a non-trivial submodule of M . Since δ ≥ 1, there exists a
submodule K of M such that N + K 6= M . Then for every submodule X of
N , X + K 6= M and since ∆ < ∞, the number of submodules of N is finite.
(4) Since ∆ = ∆(Ω) < ∞, by Part 1, lR(M) < ∞. Then M is Noetherian
and Artinian R-module. Let N be a non-trivial submodule of M . As M is
Noetherian, it possesses a maximal submodule N∗ such that N ⊆ N∗ and
as M is Artinian, it possesses a minimal submodule N∗ such that N∗ ⊆ N .
Hence, N∗ ⊆ N ⊆ N∗. Thus every non-trivial submodule of M is containing
a minimal submodule and contained in a maximal submodule. �

Theorem 14. Let M be an R-module and |Ω(M)| > 2. If M is Noetherian
which contains a unique maximal submodule or it is hollow, then Ω(M) is a
weakly perfect graph but not a forest.

Proof. Suppose that M is a Noetherian R-module such that it contains a
unique maximal submodule or M is a hollow R-module. Then by [15, Theorem
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2.9] and [15, Theorem 2.11], Ω(M) is a complete graph. Since |Ω(M)| > 2,
Ω(M) is not a forest. However, we know that all complete graphs are their
own maximal cliques and ω(Ω(M)) ≤ χ(Ω(M)). Hence, if ω(Ω(M)) = ∞,
there is nothing to prove. However, if assume that Ω(M) ∼= Kn, where n ∈ N,
then ω(Ω(M)) = χ(Ω(M)) = n, and this completes the proof. �

We now recall that an R-module M is said to be A-projective if for every
epimorphism g : A → B and homomorphism f : M → B, there exists a
homomorphism h : M → A such that gh = f . A module P is projective if
P is A-projective for every R-module A. If P is P -projective, then P is also
called self-projective.

Corollary 15. Let M be an R-module and |Ω(M)| > 2. Then Ω(M) is weakly
perfect graph but not forest, if one of the following statements holds:
(1) If M is an indecomposable R-module such that every pair of non-trivial
submodules of M , have zero intersection.
(2) If M is a local R-module.
(3) If M is a self-projective R-module and EndR(M) is a local ring.

Proof. It is an immediate consequences of [15, Corollary 2.16] and Theorem
14. �

Example 5. For every prime number p and n ∈ N with n ≥ 4, since Zpn and
Zp∞ as Z-modules are hollow, by Theorem 14, two graphs Ω(Zpn) and Ω(Zp∞)
are weakly perfect but they are not forests.

Proposition 16. Let M be an Artinian R-module such that it contains a
unique minimal submodule and ∆ = ∆(Ω(M)) < ∞. Then M is Noetherian.

Proof. Assume that M is an Artinian R-module such that it contains a unique
minimal submodule. Then by [15, Theorem 2.10], Ω(M) is a connected graph.
So δ = δ(Ω(M)) ≥ 1 and since ∆ = ∆(Ω(M)) < ∞, by Theorem 13 Part 1,
lR(M) < ∞. Hence, M is Noetherian. �

3. Universal vertices and dominating sets of Ω(M)

Let M be an R-module. In this section, we study the universal vertices
and the dominating sets of Ω(M) and also obtain their relationship with the
non-trivial small submodules of M .

Lemma 17. Let M be an R-module and N a non-trivial submodule of M .
Then N � M if and only if N is a universal vertex of the graph Ω(M).

Proof. Obvious. �
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Example 6. Let p and q be two distinct prime numbers. We know that < pq >
is the only non-trivial small submodule of the Z-module Zpq2 and by Lemma
17, it is the only universal vertex of Ω(Zpq2). (See Example 2 and Fig. 1).

Proposition 18. Let M , N , K and L are R-modules. Then the following
conditions hold:
(1) If f : M → N and g : N → L are two epimorphisms, then gof(X) is a
universal vertex of the graph Ω(M) if and only if for each two universal ver-
tices X and Y of Ω(M) and Ω(N) respectively, we have f(X) and g(Y ) are
two universal vertices of the graphs Ω(M) and Ω(N), respectively.
(2) If K ⊂ L ⊂ M , then L is a universal vertex of the graph Ω(M) if and only
if L/K is a universal vertex of the graph Ω(M/K).
(3) If V1, V2, . . . , Vn are universal vertices of the graph Ω(M), then V =∑i=n

i=1 Vi is a universal vertex of Ω(M).
(4) For every homomorphism ϕ : M → N , if K is a universal vertex of the
graph Ω(M), then ϕ(K) is a universal vertex of the graph Ω(N).
(5) If K ⊂ L ⊂ M and L is a direct summand of M , then K is a universal
vertex of the graph Ω(M) if and only if K is a universal vertex of the subgraph
Ω(L).

Proof. By Lemma 17 and 19.3 of [17, p. 159]. �

Proposition 19. Let M be an R-module. If ∆ = ∆(Ω) < ∞ and δ = δ(Ω) ≥
1, then M is semisimple or the graph Ω(M) has at least a universal vertex.

Proof. Since by Theorem 13 Part 1, lR(M) < ∞, then M is Artinian and
it possesses a simple submodule. Moreover, every non-zero submodule of M
contains a simple submodule. Now, consider Soc(M). If Soc(M) = M , then
M is semisimple, otherwise Soc(M) is a vertex of Ω(M). Now, for every non-
trivial submodule N of M , if Soc(M) + N = M , then deg(Soc(M)) = 0, a
contradiction. Therefore, Soc(M) + N 6= M and so Soc(M) � M . Hence, by
Lemma 17, Soc(M) is a universal vertex of Ω(M). �

Let Λ be a non-empty set (class) of R-modules. An R-module M is said to be
finitely cogenerated by Λ, or finitely Λ-cogenerated, if there is a monomorphism
M → Πi≤kλi =

⊕
i≤k λi with finitely many λi ∈ Λ and k ∈ N.

Proposition 20. Let M be an R-module and Rad(M) 6= (0). Then the graph
Ω(M) has a universal vertex, if one of the following conditions holds:
(1) The module M is finitely generated.
(2) The module M is finitely cogenerated or uniform and Soc(M) 6= (0).
(3) The module M is finitely cogenerated such that Rad(M/K) = (0) for any
non-zero submodule K of M .
(4) Every non-trivial submodule of M is contained in a maximal submodule.
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Proof. (1) Since M is finitely generated, Rad(M) � M and since Rad(M) 6=
(0), the result yields by Lemma 17.
(2) Suppose that M is a finitely cogenerated R-module, then by 21.3 Part
1 of [17, p. 175], Soc(M) is finitely generated and essential in M . Hence,
Soc(M)∩ Rad(M) 6= (0), thus by [8, Corollary 9.9], Soc(Rad(M)) 6= (0). But
by 2.8 Part 9 of [12, p. 13], Soc(Rad(M)) � M . Consequently, by Lemma
17, Soc(Rad(M)) is a universal vertex of Ω(M). Also, if M is a uniform R-
module, then Rad(M) E M and Soc(M) E M . Hence, by above argument the
result yields again.
(3) Assume that M is a finitely cogenerated R-module. Then by Corollary
10.5 Part 2 of [8, p. 125], M has a minimal submodule. Moreover, for any
non-zero submodule K of M , we have (Rad(M)+K)/K ⊆ Rad(M/K) and as
Rad(M/K) = (0), then (Rad(M) + K)/K = (0). Hence, Rad(M)) ⊆ K and
Soc(Rad(M)) ⊆ Soc(K) ⊆ K. Thus, for any non-zero submodule K of M ,
Soc(Rad(M)) ⊆ K. Therefore, Soc(Rad(M)) is a unique minimal submodule
of M . However, by Part 2, Soc(Rad(M)) is a universal vertex of Ω(M).
Consequently, M has a unique minimal submodule which is a universal vertex
of the graph Ω(M).
(4) In order to establish this part, we consider Rad(M). Clearly, Rad(M) 6=
M , then it is a vertex of the graph Ω(M). Since every non-trivial submodule
of M is contained in a maximal submodule, by [8, Proposition 9.18], Rad(M)
is the unique largest small submodule of M . Hence, by Lemma 17, Rad(M)
is a universal vertex of Ω(M). �

We recall that the dominating set (DS) of the graph Ω, is a subset D of
vertex set V (Ω) such that every vertex in Ω\D is adjacent to at least one vertex
in D. A DS is called minimal dominating set, denoted by mDS, if for any
subset S of DS with S 6= DS, S is not a DS. The domination number of Ω,
written |DS(Ω)|, is the smallest of the cardinalities of the minimal dominating
sets of Ω. In this paper, a subset S of the vertex set of the graph Ω(M) is
a dominating set (DS) if and only if for any non-trivial submodule X of M
there is a Y in S such that X + Y 6= M .

Lemma 21. Let M be an R-module and |Ω(M)| ≥ 2, then the following
statements hold:
(1) If S is a subset of vertex set of the graph Ω(M) which contains at least a
universal vertex , then S is a DS in Ω(M).
(2) If Ω(M) has at least a universal vertex, then for each universal vertex U
of Ω(M), the set {U} is a mDS and |DS(Ω(M)| = 1.

Proof. Obvious. �

Example 7. Consider Q as Z-module and Zpq2 as Zpq2- module such that p
and q are two distinct prime numbers. As Z � Q and < pq >� Zpq2, then by
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Lemma 21, we have:
(1) The set {< pq >} is a mDS and |DSΩ(Zpq2)| = 1.
(2) The set {Z} is a mDS and |DSΩ(Q)| = 1.

Corollary 22. Let M be an R-module and Rad(M) 6= (0). Then the following
conditions hold:
(1) If M is finitely generated, then the set {Rad(M)} is a mDS.
(2) If M is finitely cogenerated or uniform and Soc(M) 6= (0), then the set
{Soc(Rad(M))} is a mDS.
(3) If M is finitely cogenerated such that Rad(M/K) = (0) for any non-
zero submodule K of M , then the mDS of the graph Ω(M) contains a unique
minimal submodule of M .
(4) If every non-trivial submodule of M is contained in a maximal submodule,
then the graph Ω(M) has a mDS.

Proof. By Proposition 20.
�

Theorem 23. Let M be an R-module with non-trivial submodule Rad(M)
and |Ω(M)| ≥ 2. If M is hollow, then the following statements hold:
(1) Every subset of the vertex set of the graph Ω(M) is a DS in Ω(M).
(2) |DS(Ω(M)| = 1.
(3) If Ω(M) is a finite graph, then the number of the DS is equal to 2|Ω(M)|−2.
(4) If Ω(M) is an infinite graph, then the number of the DS is infinite.

Proof. (1) Suppose that M is a hollow R-module. Then by [15, Proposition
2.11], Ω(M) is a complete graph. Hence, every subset of the vertex set of the
graph Ω(M) is a DS in Ω(M).
(2) Since M is a hollow R-module, then every non-trivial submodules of M is
small. Hence, by Lemmas 17 and 21, |DS(Ω(M)| = 1.
(3) Let |Ω(M)| = n, where 2 ≤ n < +∞. As Ω(M) is a complete graph with
n vertices, then the number of non-empty proper subsets of the vertex set
V (Ω(M)), which are DS, is equal to

∑n−1
r=1 C(n, r) = 2n − 2, where C(n, r)

is an r-combination of V (Ω(M)) with n elements, for a non-negative integer
r ≤ n.
(4) It is obvious by Part 3. �

Example 8. For every prime number p and n ∈ N with n ≥ 2, we have:
(1) |DS(Ω(Zp∞))| = |DS(Ω(Zpn)| = 1.
(2) The number of the DS of the graph Ω(Zpn) is 2n−1 − 2.
(3) The number of the DS of the graph Ω(Zp∞) is infinite.

Corollary 24. Let M be an R-module. Then every subset of the vertex set of
the graph Ω(M) is a DS in Ω(M) and |DS(Ω(M))| = 1, if one of the following
statements holds:
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(1) The module M is Noetherian and contains a unique maximal submodule.
(2) The module M is an indecomposable R-module such that every pair of
non-trivial submodules of M have zero intersection.
(3) The module M is local.
(4) The module M is self-projective and EndR(M) is a local ring.

Proof. The Part 1 follows from [15, Theorem 2.9] and Lemmas 17 and 21.
Also, the Parts 2, 3 and 4 are immediate consequences of [15, Corollary 2.16]
and Theorem 23. �

References

[1] A. Abbasi, H. Roshan-Shekalgourabi and D. Hassanzadeh-Lelekaami: Associated Graphs
of Modules Over Commutative Rings, Iranian Journal of Mathematical Sciences and
Informatics, 10(1) (2015), 45-58.

[2] S. Akbari, M. Habibi, A. Majidinya and R. Manaviyat: A note on comaximal graph of
non-commutative rings, Algebr. Represent. Theory, 16(2) (2013), 303-307.

[3] S. Akbari, M. Habibi, A. Majidinya and R. Manaviyat: On the inclusion ideal graph of
a ring, Comm. Algebra, 43(7) (2015) 1-9.

[4] S. Akbari, R. Nikandish and M.J. Nikmehr: Some results on the intersection graphs of
ideals of rings, J. Algebra Appl. 12(4) (2013), (13 pages).

[5] S. Akbari, A. Tavallaee and S. Khalashi Ghezelahmad: On the complement of the inter-
section graph of submodules of a module module, J. Algebra Appl. 14 (2015), 1550116
(11 pages).

[6] S. Akbari, A. Tavallaee and S. Khalashi Ghezelahmad: Intersection graph of submodule
of a module, J. Algebra Appl. 11(1) (2012), 1250019 (8 pages).

[7] A. Amini, B. Amini and M.H. Shirdareh Haghighi: On a graph of ideals, Acta Math.
Hungar. 134(3) (2012) 369-384.

[8] F.W. Anderson and K.R. Fuller: Rings and Categories of Modules, Springer-Verlag,
New York, 1992.

[9] J. Bosak: The graphs of semigroups, in Theory of Graphs and Application, Academic
Press, New York, 1964, pp. 119-125.

[10] I. Chakrabarty, S. Gosh, T.K. Mukherjee and M.K. Sen: Intersection graphs of ideals
of rings, Discrete Math. 309 (2009), 5381-5392.

[11] G. Chartrand and O.R. Oellermann: Applied and Algorithmic Graph Theory, McGraw-
Hill, Inc., New York, 1993.

[12] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer: Lifting Modules Supplements and
Projectivity in Module Theory, Frontiers in Mathematics, Birkauser Verlag, 2006.

[13] B. Csakany and G. Pollak: The graph of subgroups of a finite group, Czech Math. J. 19
(1969) 241-247.

[14] S.H. Jafari and N. Jafari Rad: Domination in the intersection graphs of ring and mod-
ules, Ital. J. pure Appl. Math. 28 (2011), 17-20.

[15] L.A. Mahdavi and Y. Talebi: Co-intersection graph of submodules of a module, J. Al-
gebra Discrete Math. 21(1) (2016), 128-143.



Properties of Co-intersection Graph of Submodules of a Module 29

[16] A.A. Talebi: A kind of intersection graphs on ideals of rings, Journal of Mathematics
and statistics, 8(1) (2012), 82-84.

[17] R. Wisbauer: Foundations of Module and Ring Theory, Gordon and Breach, Reading,
1991.

[18] E. Yaraneri: Intersection graph of a module, J. Algebra Appl. 12(5) (2013), (30 pages).
[19] B. Zelinka: Intersection graphs of finite abelian groups, Czech Math. J. 25(2) (1975),

171-174.


