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Abstract. The concept of picture hesitant fuzzy set (PHFS) is a general-
ization of picture fuzzy set (PFS) and hesitant fuzzy set (HFS). Such kind
of idea can be very helpful in problems where opinions are of more than
two types i.e. yes, no, abstinence and refusal. The goal of this manuscript
is to introduce the concept of similarity measures for PHFSs as a general-
ization of the similarity measures for PFS. We studied the basic concepts
of PFSs, HFSs and PHFSs. We proposed some similarity measures for
PHFSs such as cosine similarity measure, set-theoretic similarity measure
and grey similarity measure for PHFSs. Some weighted similarity mea-
sures are also proposed where weight of the attributes is considered. Then
these similarity measures for PHFSs are applied to a building material
recognition problem. Finally, a comparative study of similarity measures
of PHFSs is established with similarity measures of PFSs, HFSs, IFSs and
IHFSs and the advantages of new work are studied.
AMS SUBJECT : Primary 62H30, 68T37, 68T15.

1. Introduction

The theory of fuzzy set (FS) introduced by Zadeh [1] is a great achievement
and has some applications in various �elds involving impression and uncer-
tainty. A FS is based on a membership function which have grade of member-
ship for each element of the universal set X on the interval [0,1]. Atanassov
[2, 3] extended the notion of FS to IFS by adding non-membership grade
along with the membership grade and is therefore characterized by the degree
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of membership grade and the degree of non-membership grade for each element
on the universal set X. An IFS reduces to FS by taking the non-membership
value equal to zero. The concept of IFS was further generalized to introduce
interval-valued intuitionistic fuzzy set (IvIFS) by Atanassov and Gargov [4].
For some other recent study on FSs and IFSs, one may refer to Atanassov [5],
Asiain et al. [6], Kumar and Garg [7, 8], Mahmood et al. [9] and Li [10].
In 2013, Cuong introduced PFS [11] and described some basic operation

and properties of PFSs. A PFS is the direct extension of FS and IFS having a
neutral membership grade along with membership grade and non-membership
grade. Moreover, the PFS also described the degree of refusal of each element
on the universal set X by subtracting the sum of membership grade, non-
membership grade and neutral value from 1. A PFS is reduced to IFS by
considering the neutral value equal to zero and further reduced to FS by
taking non-membership and neutral value equal to zero. Basically, PFS is a
diverse concept as compared to FS and IFS and it can be applied in various
�elds. The human opinions involving more answers of types: yes, no, abstain
and refusal can be modeled by PFS conveniently than FS or IFS. The vote
casting is a good example that can be modeled using PFS only. Some other
recent work on PFS can be founded in [12, 13, 14, 15].
In 2009, Torra [16] introduced the concept of HFS. HFS is a direct gener-

alization of FS. The HFS is characterized in terms of a function that give us
some �nite set of values of [0,1] interval. Some other extension of HFS have
been developed by some researchers, including interval-valued hesitant fuzzy
set (IvHFS) by Chen and Cai [17], interval-valued intuitionistic hesitant fuzzy
set (IvIHFS) has been proposed by Zhang [18], bipolar-valued HFS proposed
by Ullah et al [19] and further developed by Mahmood et al [20, 21]. For some
other quality work on HFS one may refer to [22, 23, 24]. Recently, in 2018
the concept of PHFS is introduced by Wang et al [25] and its application in
multi- attribute decision making (MADM) are examined. In a PHFS, we have
the environment of PFSs as well as HFSs therefore provides us more suitable
environment to handle complex problems.
Similarity measures of FSs are important topic in fuzzy mathematics and

have gained some serious attention from researchers due to its successful ap-
plications in real life. Some similarity measures of FSs have been proposed
by Pappis and Karacapilidis [26], Chen [27] and by Lehmann [28] . In 2002,
Dengfeng and Chuntian [29] introduced the concept of similarity measures of
IFSs and applied them to pattern recognition problems. The similarity mea-
sures introduced in [30] for IFSs have some limitations. Therefore in 2005,
Liu [31] introduced some new similarity measures for IFSs. Liu�s similarity
measures [31] identi�es that Dengfeng and Chuntian�s [29] methods have the
same limitation as Chen�s [27]. For some other quality work on recently de-
veloped similarity measures on FSs and IFSs, one may refer to Mishra et al.
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[32], Hwang et al. [33], Garg and Kumar [34], Wei and Wei [35], Ye [36], Xu
and Cai [37], Mahmood et al. [38] etc. Recently , Wei [39] introduced the
concept of cosine similarity measures for PFSs and studied their applications
in strategic decision making while the concept of grey and set-theoretic simi-
larity measures have been proposed by Wei in [40]. Some dice and generalized
dice similarity measures have been discussed by Joshi and Kumar [41] and Wei
and Gao respectively [42]. Zhang et al [43] introduced the cosine similarity
measures for HFSs while Sun et al. [44] developed the grey similarity measures
for HFSs and applied them in pattern recognition problems. Basically, simi-
larity measures are very useful in real life problems such as decision making,
machine learning, pattern recognitions, medical diagnosis etc. for some other
recently developed similarity measures and their applications, one is referred
to Ullah et al [45], Palmeira et al. [46] and Zhang et al. [47] etc.
As described earlier, a PHFS is an advanced form of PFS as well as HFS

and can cope with complex information having hesitancy. The aim of this
article is to analyze several similarity measures developed by Ye [36], Xu and
Cai [37], Wei [39, 40] and Ullah et al [45] and developed the concepts of cosine,
grey and set-theoretic similarity measures for PHFSs. The generalizations of
new similarity measures over the pre-existing concepts is proved.
This paper is organized as in section �rst the history of existing concepts

is discussed in detail. In section two, we discussed some basic de�nitions of
IFSs, PFSs, HFSs and PHFSs. In section three, some similarity measures and
some weighted measures for PHFSs are proposed based on the concept of the
similarity measures of IFSs and PFSs. In section four, the similarity measures
for PHFSs are applied to building material recognition problem and results are
studied. Section �ve and six are based on a comparative study of proposed
work and its advantages respectively. In section seven we summarized the
article along with some future directions.

2. Preliminaries

In this section, we studied some basic de�nitions and notion related to IFSs,
PFSs, HFSs, PHFSs. In our study by X we mean the universal set and �; �
and � denote the grade of membership, grade of neutral and grade of non-
membership on [0; 1] interval.

2.1. De�nition [2]. An IFS A onX is of the shape A = fhx; �A (x) ; �A (x)i jx
2 Xg provided that 0 � �A (x)+�A (x) � 1: Further, (�; �) is an intuitionistic
fuzzy number (IFN).

2.2. De�nition [11]. An PFSA onX is of the shapeA = f< x; �A (x) ; �A (x) ;
�A (x) > jx 2 Xg provided that 0 � �A (x) + �A (x) + �A (x) � 1: Moreover,
�A (x) = 1� (�A (x) + �A (x) + �A (x)) is the degree of hesitancy of x 2 X in
A: Further, (�; �; �) is a picture fuzzy number (PFN).
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2.3. De�nition [16]. HFS H on X is of the shape H = fhx; h (x)i j8x 2 Xg
where h : X ! [0; 1] is a �nite set of values. Moreover, h (x) is called hesitant
fuzzy number (HFN).

2.4. De�nition [25]. A PHFSA onX is of the shapeA = f< x; �A (x) ; �A (x)
; �A (x) > jx 2 Xg provided that 0 � Sup(�A (xi))+Sup(�A (xi))+Sup(�A (xi))
� 1: Further, �A (xi) = 1 � (Sup (�A (xi)) + Sup (�A (xi)) + Sup (�A (xi))) is
the degree of refusal of xi 2 X in A and (�; �; �) is a picture hesitant fuzzy
number (PHFN).

2.5. De�nition [25]. For two PHFNsA = (�A; �A; �A) andB = (�B; �B; �B),
we have

1 : A [B =
��

x;max (�A (x) ; �B (x)) ;min (�A (x) ; �B (x)) ;
min (�A (x) ; �B (x))

�
jx 2 X

�
2 : A \B =

��
x;min (�A (x) ; �B (x)) ;min (�A (x) ; �B (x)) ;

max (�A (x) ; �B (x))

�
jx 2 X

�
3 : AC = fh�A (x) ; �A (x) ; �A (x)i jx 2 Xg

2.6. De�nition [36]. For two IFNs A = (�A; �A) and B = (�B; �B) on X, a
cosine similarity measure is da�ned as:

C1IFS (A;B) =
1

n

nX
i=1

�A (xi)�B (xi) + �A (xi) �B (xi)q
�2A (xi) + �

2
A (xi)

q
�2B (xi) + �

2
B (xi)

(1)

2.7. De�nition [37]. For two IFNs A = (�A; �A) and B = (�B; �B) on X, a
set-theroetic similarity measure is da�ned as:

C2IFS (A;B) =
1

n

nX
i=1

�A (xi)�B (xi) + �A (xi) �B (xi)

max
�
�2A (xi) + �

2
A (xi) ; �

2
B (xi) + �

2
B (xi)

� (2)

2.8. De�nition [37]. For two IFNs A = (�A; �A) and B = (�B; �B) on X,
the grey similarity measure is da�ned as:

C3IFS (A;B) =
1

3n

nX
i=1

�
��min +��max
��i +��max

+
��min +��max
��i +��max

�
(3)

Where ��i = j�A (xi)��B (xi) j;��min = minfj�A (xi)��B (xi) jg;��max =
maxfj�A (xi)� �B (xi) jg;��i = j�A (xi)� �B (xi) j; ��min = minfj�A (xi)�
�B (xi) jg;��max = max fj�A (xi)� �B (xi)jg :
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2.9. De�nition [40]. For two PFNs A = (�A; �A; �A) and B = (�B; �B; �B)
on X, a cosine similarity measure is da�ned as:

C1PFS (A;B)

=
1

n

nX
i=1

�A (xi)�B (xi) + �A (xi) �B (xi) + �A (xi) �B (xi)q
�2A (xi) + �

2
A (xi) + �

2
A (xi)

q
�2B (xi) + �

2
B (xi) + �

2
B (xi)

(4)

2.10. De�ition [40]. For two PFNs A = (�A; �A; �A) and B = (�B; �B; �B)
on X, a set-theoretic similarity measure is da�ned as:

C2PFS (A;B)

=
1

n

nX
i=1

�A (xi)�B (xi) + �A (xi) �B (xi) + �A (xi) �B (xi)

max
�
�2A (xi) + �

2
A (xi) + �

2
A (xi) ; �

2
B (xi) + �

2
B (xi) + �

2
B (xi)

�(5)
2.11. De�nition [40]. For two IFNs A = (�A; �A; �A) and B = (�B; �B; �B)
on X, the grey similarity measure is da�ned as:

C3PFS (A;B)

=
1

3n

nX
i=1

�
��min +��max
��i +��max

+
��min +��max
��i +��max

+
��min +��max
��i +��max

�
(6)

Where ��i = j�A (xi)��B (xi) j;��min = minfj�A (xi)��B (xi) jg; ��max =
maxfj�A (xi) � �B (xi) jg;��i = j�A (xi) � �B (xi) j;��min = minfj�A (xi) �
�B (xi) jg; ��max = maxfj�A (xi)��B (xi) jg;��i = j�A (xi)��B (xi) j; ��min
= minfj�A (xi)� �B (xi) jg;��max = maxfj�A (xi)� �B (xi) jg:

2.12. De�nition [43]. For a HFS on X. S (h (xi)) = 1
lh(xi)

X

2h(xi)


 is called

the score function of h (xi), where lh (xi) is the length of the h (xi) :
Now we de�ne the inclusion of two PHFSs.

2.13. De�ntion [25]. Let A and B be the PHFSs. Then A � B i¤
a: S (�A (x)) � S (�B (x)) =) �A (x) � �B (x)
b: S (�A (x)) � S (�B (x)) =) �A (x) � �B (x)
c: S (�A (x)) � S (�B (x)) =) �A (x) � �B (x)

3. Similarity Measures

The aim of this section is to develop some similarity measures for PHFSs
as generalization of similarity measures of IFSs and PFSs. With the help of
some remarks we developed the similarity measures for intuitionistic hesitant
fuzzy set (IHFS) also we de�ned concepts are demonstrated by examples. In
our next study we denote the set of all PHFNs on X by PHFS(X). By l�A we
mean the length of �A and similar. Further �

�; �� and �� denote the length and
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de�ned as: �� = max (l�A; l�B) ; �
� = max (l�A; l�B) and �

� = max (l�A; l�B)
respectively.

3.1. Cosine Similarity Measure. The work developed in this section is a
generalization of the work of IFS [36, 37] and PFS [40].

3.1.1. De�nition. For A;B 2 PHFS (X), we de�ne the cosine similarity mea-
sure as:

C1PHFS (A;B) =
1

n

nX
i=1

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
��

��X
j=1

�jA (xi)�
j
B (xi)

+ 1
��

��X
k=1

�kA (xi) �
k
B (xi) +

1
��

��X
m=1

�mA (xi) �
m
B (xi)vuuuuuuuuuuuuuuuuuuut

1
��

��X
j=1

�
�jA (xi)

�2
+ 1
��

��X
k=1

�
�kA (xi)

�2
+ 1
��

��X
m=1

(�mA (xi))
2

:

vuuuuuuuuuuuuuuuuuuut

1
��

��X
j=1

�
�jB (xi)

�2
+ 1
��

��X
k=1

�
�kB (xi)

�2
+ 1
��

��X
m=1

(�mB (xi))
2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
(7)

The cosine similarity measure for PHFSs A;B and C satisfy following condi-
tions:
1 : 0 � C1PHFS (A;B) � 1
2 : C1PHFS (A;B) = C

1
PHFS (B;A)

3 : C1PHFS (A;B) = 1 i¤ A = B
4 : A � B � C; then C1PHFS (A;C) � C1PHFS (A;B) and C1PHFS (A;C) �

C1PHFS (B;C) :

Proof. The proof of �rst three parts is obvious. For condition no. (4), let
A;B and C 2 PHFS(X): We know that if
a : S (�A (x)) � S (�B (x)) � S (�C (x)) =) �A (x) � �B (x) � �C (x)
b : S (�A (x)) � S (�B (x)) � S (�C (x)) =) �A (x) � �B (x) � �C (x)
c : S (�A (x)) � S (�B (x)) � S (�C (x)) =) �A (x) � �B (x) � �C (x) for

each x 2 X:
=) A � B � C:Hence C1PHFS (A;C) � C1PHFS (A;B) and C1PHFS (A;C) �

C1PHFS (B;C) �
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3.1.2. De�ntion. For A;B 2 PHFS (X), we de�ne the weighted cosine simi-
larity measure as:

W 1
PHFS (A;B) =

nX
i=1

wi

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
��

��X
j=1

�jA (xi)�
j
B (xi)

+ 1
��

��X
k=1

�kA (xi) �
k
B (xi) +

1
��

��X
m=1

�mA (xi) �
m
B (xi)vuuuuuuuuuuuuuuuuuuut

1
��

��X
j=1

�
�jA (xi)

�2
+ 1
��

��X
k=1

�
�kA (xi)

�2
+ 1
��

��X
m=1

(�mA (xi))
2

:

vuuuuuuuuuuuuuuuuuuut

1
��

��X
j=1

�
�jB (xi)

�2
+ 1
��

��X
k=1

�
�kB (xi)

�2
+ 1
��

��X
m=1

(�mB (xi))
2

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
(8)

WhereW = (w1; w2; w3; :::; wn)
T is the weighted vector of xi (i = 1; 2; 3; :::; n)

T ;

with
nX
i=1

wi = 1: In particular, if we takeW =
�
1
n ;

1
n ; :::;

1
n

�
: Then the weighted

cosine similarity reduces to cosine similarity measure. The weighted cosine
similarity measure for PHFSs A;B and C satisfy following conditions:
1 : 0 �W 1

PHFS (A;B) � 1
2 :W 1

PHFS (A;B) =W
1
PHFS (B;A)

3 :W 1
PHFS (A;B) = 1 i¤ A = B; if i = 1; 2; 3; :::; n:

Proof. Proof is straight forward �
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3.1.3. Remark. The de�ntion 3.1.1 reduces to cosine similarity measure of
IHFS, if we assume that �A = �B = f0g and we write it as:

C1IHFS (A;B) =
1

n

nX
i=1

0BBBBBBBBBBBBBBBBBBBBBBBB@

1
��

��X
j=1

�jA (xi)�
j
B (xi) +

1
��

��X
m=1

�mA (xi) �
m
B (xi)vuuuuuuuuuut

1
��

��X
j=1

�
�jA (xi)

�2
+ 1
��

��X
m=1

(�mA (xi))
2

:

vuuuuuuuuuut
1
��

��X
j=1

�
�jB (xi)

�2
+ 1
��

��X
m=1

(�mB (xi))
2

1CCCCCCCCCCCCCCCCCCCCCCCCA
(9)

3.1.4. Example. Let A;B 2 PHFS (X). A = f(x1; f0:2g; f0:1; 0:3g; f0:4g);
(x2; f0:0; 0:1g; f0:0; 0:2g; f0:2; 0:4g)g and B = f(x1; f0:1; 0:2g; f0:5g; f0:0; 0:1g)
; (x2; f0:3g; f0:1; 0:2gf0:0; 0:3g)g: Then by using Eq. (7), we get

C1PHFS (A;B) = 0:8885

3.2. Set-Theoretic Similarity Meassures. In this portion, we shall pro-
pose another kind of similarity measures and weighted similarity measures
which is the generalization of IFS and PFS [36, 37, 40].
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3.2.1. De�nition . For A;B 2 PHFS (X), we de�ne the set-theoretic similar-
ity measure as:

C2PHFS (A;B)

=
1

n

nX
i=1

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
��

��X
j=1

�jA (xi)�
j
B (xi)

+ 1
��

��X
k=1

�kA (xi) �
k
B (xi) +

1
��

��X
m=1

�mA (xi) �
m
B (xi)

max

8>>>>>>>>>>>><>>>>>>>>>>>>:

0BBBBBBB@
1
��

��X
j=1

�
�jA (xi)

�2
+ 1
��

��X
k=1

�
�kA (xi)

�2
+ 1

��

��X
m=1

(�mA (xi))
2

1CCCCCCCA ;0BBBBBBB@
1
��

��X
j=1

�
�jB (xi)

�2
+ 1
��

��X
k=1

�
�kB (xi)

�2
+ 1

��

��X
m=1

(�mB (xi))
2

1CCCCCCCA

9>>>>>>>>>>>>=>>>>>>>>>>>>;

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(10)

The set-theroetic similarity measure for PHFSs A;B and C satisfy following
results:
1 : 0 � C2PHFS (A;B) � 1
2 : C2PHFS (A;B) = C

2
PHFS (B;A)

3 : C2PHFS (A;B) = 1 i¤ A = B
4 : A � B � C; then C2PHFS (A;C) � C2PHFS (A;B) and C2PHFS (A;C) �

C2PHFS (B;C) :

Proof. Similar �
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3.2.2. De�ntion. For A;B 2 PHFS (X), we de�ne the weighted set-theoretic
similarity measure as:

W 2
PHFS (A;B)

=

nX
i=1

wi

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
��

��X
j=1

�jA (xi)�
j
B (xi)

+ 1
��

��X
k=1

�kA (xi) �
k
B (xi) +

1
��

��X
m=1

�mA (xi) �
m
B (xi)

max

8>>>>>>>>>>>><>>>>>>>>>>>>:

0BBBBBBB@
1
��

��X
j=1

�
�jA (xi)

�2
+ 1
��

��X
k=1

�
�kA (xi)

�2
+ 1

��

��X
m=1

(�mA (xi))
2

1CCCCCCCA ;0BBBBBBB@
1
��

��X
j=1

�
�jB (xi)

�2
+ 1
��

��X
k=1

�
�kB (xi)

�2
+ 1

��

��X
m=1

(�mB (xi))
2

1CCCCCCCA

9>>>>>>>>>>>>=>>>>>>>>>>>>;

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(11)

By taking wi = 1
n equation (11) reduces to equation (10). The weighted set-

theoretic similarity measure for PHFSs A;B and C satisfy following results:
1 : 0 �W 2

PHFS (A;B) � 1
2 :W 2

PHFS (A;B) =W
2
PHFS (B;A)

3 :W 2
PHFS (A;B) = 1 i¤ A = B; if i = 1; 2; 3; :::; n:

Proof. Proof is straight forward �
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3.2.3. Remark. The de�nition 3.2.1 reduces to the- set theoretic similarity
measure of IHFS, if we assume that �A = �B = f0g and we write it as:

C2IHFS (A;B)

=
1

n

nX
i=1

0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
��

��X
j=1

�jA (xi)�
j
B (xi) +

1
��

��X
m=1

�mA (xi) �
m
B (xi)

max

8>>>>>><>>>>>>:

0@ 1
��

��X
j=1

�
�jA (xi)

�2
+ 1

��

��X
m=1

(�mA (xi))
2

1A ;0@ 1
��

��X
j=1

�
�jB (xi)

�2
+ 1

��

��X
m=1

(�mB (xi))
2

1A

9>>>>>>=>>>>>>;

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA

(12)

3.2.4. Example. LetA;B 2 PHFS (X). A = f(x1; f0:1g; f0:1; 0:3g; f0:2; 0:4g)
; (x2; f0:2; 0:4g; f0:0g; f0:3; 0:5gg andB = f(x1; f0:0; 0:1g; f0:0; 0:3g; f0:5g); (x2
; f0:3g; f0:3; 0:4g; f0:1; 0:2g)g: Then by using Eq. (10), we get

C2PHFS (A;B) = 0:6083

3.3. Grey Similarity Measures. Following, we introduced the generaliza-
tion of IFS and PFS which proposed in References [36, 37, 40].

3.3.1. De�nition . For A;B 2 PHFS (X), we de�ne the grey similarity mea-
sure as:

C3PHFS (A;B)

=
1

3n

nX
i=1

�
��min +��max
��i +��max

+
��min +��max
��i +��max

+
��min +��max
��i +��max

�
(13)

Where ��i =
1
��

��X
j=1

j�A (xi)� �B (xi)j ;��min = min8<: 1
��

��X
j=1

j�A (xi)� �B (xi)j

9=; ;��max = max8<: 1
��

��X
j=1

j�A (xi)� �B (xi)j

9=; ;��i = 1
��

��X
k=1

j�A (xi)� �B (xi)j ;��min = min
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��

��X
k=1

j�A (xi)� �B (xi)j

9=; ;��max = max8<: 1
��

��X
k=1

j�A (xi)� �B (xi)j

9=; ;��i = 1
��

��X
m=1

j�A (xi)� �B (xi)j ;��min = min(
1
��

��X
m=1

j�A (xi)� �B (xi)j
)
;��max = max(

1
��

��X
m=1

j�A (xi)� �B (xi)j
)
:

Obviously, the grey similarity measures satisfy the following properties:
1 : 0 � C3PHFS (A;B) � 1
2 : C3PHFS (A;B) = C

3
PHFS (B;A)

3 : C3PHFS (A;B) = 1 i¤ A = B
4 : A � B � C; then C3PHFS (A;C) � C3PHFS (A;B) and C3PHFS (A;C) �

C3PHFS (B;C) :

Proof. Similar �

3.3.2. De�nition. For A;B 2 PHFS (X), we de�ne the weighted grey simi-
larity measure as:

W 3
PHFS (A;B)

=
1

3

nX
i=1

wi

�
��min +��max
��i +��max

+
��min +��max
��i +��max

+
��min +��max
��i +��max

�
(14)

Where ��i =
1
��

��X
j=1

j�A (xi)� �B (xi)j ;��min = min8<: 1
��

��X
j=1

j�A (xi)� �B (xi)j

9=; ;��max = max8<: 1
��

��X
j=1

j�A (xi)� �B (xi)j

9=; ;��i = 1
��

��X
k=1

j�A (xi)� �B (xi)j ;��min = min
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��

��X
k=1

j�A (xi)� �B (xi)j

9=; ;��max = max8<: 1
��

��X
k=1

j�A (xi)� �B (xi)j

9=; ;��i = 1
��

��X
m=1

j�A (xi)� �B (xi)j ;��min = min(
1
��

��X
m=1

j�A (xi)� �B (xi)j
)
;��max = max(

1
��

��X
m=1

j�A (xi)� �B (xi)j
)
:

By taking wi = 1
n the equation (14) reduces to equation (13). The weighted

set-theoretic similarity measure for PHFSs A;B and C satisfy following results:
1 : 0 �W 3

PHFS (A;B) � 1
2 :W 3

PHFS (A;B) =W
3
PHFS (B;A)

3 :W 3
PHFS (A;B) = 1 i¤ A = B; if i = 1; 2; 3; :::; n:

Proof. Proof is straight forward �

3.3.3. Remark. The de�nition 3.3.1 reduces to grey similarity measure of IHFS,
if we assume that �A = �B = f0g and we write it as:

C3IHFS (A;B) =
1

3n

nX
i=1

�
��min +��max
��i +��max

+
��min +��max
��i +��max

�
(15)

Where ��i =
1
��

��X
j=1

j�A (xi)� �B (xi)j ;��min = min8<: 1
��

��X
j=1

j�A (xi)� �B (xi)j

9=; ;��max = max8<: 1
��

��X
j=1

j�A (xi)� �B (xi)j

9=; ;��i = 1
��

��X
m=1

j�A (xi)� �B (xi)j ;��min = min(
1
��

��X
m=1

j�A (xi)� �B (xi)j
)
;��max = max
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1
��

��X
m=1

j�A (xi)� �B (xi)j
)
:

4. Applications

In this section, we apply the similarity measures developed in our manu-
script in a building material is adopt from [40]

4.1. Building Material Recognition. In this phenomenon, we determined
the class of an unknown building material using the approach of similarity
measures of PHFSs. In such process information about some known building
material is obtained from expects also on the known building material. Then
the similarity measure of all known building material calculated with that
of unknown material. The unknown building material is then placed into a
class of that material with whom the similarity index is greater. The detail
algorithm is described as:
Algorithm:
1. Obtain information about known and unknown building material in form

of PHFNs.
2. Compute similarity measure of each known material with unknown ma-

terial.
3. Rank the similarity measure of all known material with unknown mate-

rial.
4. Classify the unknown material based on ranking.

4.2. Example . Let Ai (1 � i � 4) denote four building material named as
brick, stone, muddy and steal. Let X = fx1; x2; x3; x4g be the space of at-
tribute have weight W = (0:27; 0:33; 0:11; 0:29)T : The information about the
unknown and known building material is provided that in table 1. We classi-
�ed that unknown material as follows.
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Step 1: Information of unknown and known building material.

x1 x2 x3 x4

A1

0@ f:0; :1g ;
f:0; :3g ;
f:0; :5g

1A 0@ f:1g ;
f:2; :4g ;
f:3g

1A 0@ f:2; :4g ;
f:0; :5g ;
f:0; :01g

1A 0@ f:2; :3g ;
f:0; :2g ;
f:0; :3g

1A
A2

0@ f:0; :2g ;
f:1g ;
f:0; :4g

1A 0@ f:0; :1g ;
f:3g ;
f:0g

1A 0@ f:0; :1g ;
f:2; :4g ;
f:0; :2g

1A 0@ f:2; :5g ;
f:0; :2g ;
f:0; :1g

1A
A3

0@ f:22g ;
f:23; :27g ;
f:0g

1A 0@ f:1g ;
f:2; :11g ;
f:3g

1A 0@ f:0; :5g ;
f:1; :3g ;
f:0; :2g

1A 0@ f:0; :17g ;
f:54; :63g ;
f:1; :2g

1A
A4

0@ f:42; :47g ;
f:0; :53g ;
f:0g

1A 0@ f:0; :15g ;
f:0; :71g ;
f:14g

1A 0@ f:1g ;
f:0; :3g ;
f:4; :5g

1A 0@ f:0; :1g ;
f:02; :6g ;
f:3; :35g

1A
A

0@ f:1; :2g ;
f:2; :3g ;
f:3; :4g

1A 0@ f:1; :2g ;
f:0; :1g ;
f:0; :4g

1A 0@ f:0; :2g ;
f:4g ;
f:3g

1A 0@ f1:00g ;
f0:00g ;
f0:00g

1A
Step 2: Comparison of similarity measures.

Similarity Measures (A;A1) (A;A2) (A;A3) (A;A4)
W 1
PHFS (A;Ai) 0:8423 0:8147 0:6418 0:3978

W 2
PHFS (A;Ai) 0:6178 0:5563 0:5022 0:2880

W 3
PHFS (A;Ai) 0:8739 0:9101 0:8728 0:7489

Step 3: This step involves the ranking of similarity measures.

Similarity Measures Ranking of (A;Ai)
W 1
PHFS (A;Ai) (A;A1) � (A;A2) � (A;A3) � (A;A4)

W 2
PHFS (A;Ai) (A;A1) � (A;A2) � (A;A3) � (A;A4)

W 3
PHFS (A;Ai) (A;A2) � (A;A1) � (A;A3) � (A;A4)

Step 4: Upon ranking we get that the similarity measures of (A;A1) is greater
among all other similarity measures using W 1 and W 2. But using W 3, we get
that A2 has a greater value of similarity measures. These results show that
the results of similarity measures using di¤erent approaches are di¤erent.

5. Comparative Study

The similarity measures introduce in this article are generalization of sim-
ilarity measures for PFSs, IHFSs and HFSs. The following remarks identify
that the similarity measures de�ned in Eq. (7) to (15) are generalization of
similarity measures for PFSs, IHFSs and HFSs.
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5.1. Remark. If we take all the PHFNs as singleton sets. Then equations
(7) and (8) reduce to similarity measures of PFSs. If membership and non-
membership grade are any two sets and neutral membership grade is empty
set. Then equations (7) and (8) reduce to similarity measures of IHFSs. If we
take membership grade as non-empty set while non-membership and neutral
grades as empty sets. Then equations (7) and (8) reduce to similarity measures
of HFSs. This show that similarity measures proposed in equations (7) and
(8) are generalizations of similarity measures of PFSs, IHFSs and HFSs.

5.2. Remark. If we take all the PHFNs as singleton sets. Then equations
(10) and (11) reduce to similarity measures of PFSs. If membership and non-
membership grade are any two sets and neutral membership grade is empty
set. Then equations (10) and (11) reduce to similarity measures of IHFSs.
If we take membership grade as non-empty set while non-membership and
neutral grades as empty sets. Then equations (10) and (11) reduce to similarity
measures of HFSs. This show that similarity measures proposed in equations
(10) and (11) are generalizations of similarity measures of PFSs, IHFSs and
HFSs.

5.3. Remark. If we take all the PHFNs as singleton sets. Then equations
(13) and (14) reduce to similarity measures of PFSs. If membership and non-
membership grade are any two sets and neutral membership grade is empty
set. Then equations (13) and (14) reduce to similarity measures of IHFSs.
If we take membership grade as non-empty set while non-membership and
neutral grades as empty sets. Then equations (13) and (14) reduce to similarity
measures of HFSs. This show that similarity measures proposed in equations
(13) and (14) are generalizations of similarity measures of PFSs, IHFSs and
HFSs.

6. Advantages

The advantage of proposed new work lies in a fact that these proposed
similarity measures can solve the problem lies in the environment of PHFSs,
IHFSs, IFSs as well as HFSs. On the other hand, the existing concepts could
not hold the data provided in the environment of PHFSs. If we look at Exam-
ple 4.2, the data is purely in the form of PHFNs which cannot be processed
by existing concepts.
Consider an example in the space of PFSs from [40]
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6.1. Example. The data about unknown materials is provided in Table 4.

A1 A2 A3 A4 A
x1 (:17; :53; :13) (:51; :24; :21) (:31; :39; :25) (1; 0; 0) (:91; :03; :05)
x2 (:1; :81; :05) (:62; :12; :07) (:60; :26; :11) (1; 0; 0) (:78; :12; :07)
x3 (:53; :33; :09) (1; 0; 0) (:91; :03; :02) (:85; :09; :05) (:90; :05; :02)
x4 (:89; :08; :03) (:13; :64; :21) (:07; :09; :07) (:74; :16; :10) (:68; :08; :21)
x5 (:42; :35; :18) (:03; :82; :13) (:04; :85; :10) (:02; :89; :05) (:05; :87; :06)
x6 (:08; :89; :02) (:73; :15; :08) (:68; :26; :06) (:08; :84; :06) (:13; :75; :09)
x7 (:33; :51; :12) (:52; :31; :16) (:15; :76; :07) (:16; :71; :05) (:15; :73; :08)

The data provided in Table 4 can be easily converted to the environment of
PHFSs given in Table 5 which is then solved using proposed new similarity
measures and the results are displayed in Table 6.

A1 A2 A3 A4 A

x1

0@ f:17g ;
f:53g ;
f:13g

1A 0@ f:51g ;
f:24g ;
f:21g

1A 0@ f:31g ;
f:39g ;
f:25g

1A 0@ f1g ;
f0g ;
f0g

1A 0@ f:91g ;
f:03g ;
f0:05g

1A
x2

0@ f:10g ;
f:81g ;
f:05g

1A 0@ f:62g ;
f:12g ;
f:07g

1A 0@ f:60g ;
f:26g ;
f:11g

1A 0@ f1g ;
f0g ;
f0g

1A 0@ f:78g ;
f:12g ;
f:07g

1A
x3

0@ f:53g ;
f:33g ;
f:09g

1A 0@ f1g ;
f0g ;
f0g

1A 0@ f:91g ;
f:03g ;
f:02g

1A 0@ f:85g ;
f:09g ;
f:05g

1A 0@ f:90g ;
f:05g ;
f:02g

1A
x4

0@ f:89g ;
f:08g ;
f:03g

1A 0@ f:13g ;
f:64g ;
f:21g

1A 0@ f:07g ;
f:09g ;
f:07g

1A 0@ f:74g ;
f:16g ;
f:10g

1A 0@ f:68g ;
f:08g ;
f:21g

1A
x5

0@ f:42g ;
f:35g ;
f:18g

1A 0@ f:03g ;
f:82g ;
f:13g

1A 0@ f:04g ;
f:85g ;
f:10g

1A 0@ f:02g ;
f:89g ;
f:05g

1A 0@ f:05g ;
f:87g ;
f:06g

1A
x6

0@ f:08g ;
f:89g ;
f:02g

1A 0@ f:73g ;
f:15g ;
f:08g

1A 0@ f:68g ;
f:26g ;
f:06g

1A 0@ f:08g ;
f:84g ;
f:06g

1A 0@ f:13g ;
f:75g ;
f:09g

1A
x7

0@ f:33g ;
f:51g ;
f:12g

1A 0@ f:52g ;
f:31g ;
f:16g

1A 0@ f:15g ;
f:76g ;
f:07g

1A 0@ f:16g ;
f:71g ;
f:05g

1A 0@ f:15g ;
f:73g ;
f:08g

1A
Similarity Measures (A;A1) (A;A2) (A;A3) (A;A4)
W 1
PHFS (A;Ai) 0:716 0:763 0:858 0:994

W 2
PHFS (A;Ai) 0:556 0:657 0:693 0:920

W 3
PHFS (A;Ai) 0:660 0:762 0:830 0:901
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Now using the operators, we can compute the similarity measures of known
building material with unknown material as follows from Table 5, which are
exactly same as in [40]
Similarly, if we have information in the form of IHFS, such information

could be converted into the environment of PHFS by considering the absti-
nence grade as empty. Then using proposed new similarity measures, such
information could be processed. All this proves our claim.

7. Conclusion

In this paper, the basic concepts of IFSs, PFSs, HFSs and PHFSs are an-
alyzed along with their similarity measures. It is observed that the existing
similarity measures cannot be applied to the problems of PHFSs. Therefore,
some similarity measures have been developed for PHFSs. These similarity
measures consisting grey similarity measures, set-theoretic similarity measures
as well as cosine similarity measures. The characteristics of these similarity
measures have been investigated and some results are proved. Some examples
are also solved in support of new work. To signify the proposed new work,
a problem based on building material recognition has been discussed. The
newly developed results are compared with existing results and the conditions
under which the new results reduce to existing results have been enlightened.
The advantages of proposed new work over the existing work have also been
studied. In future the proposed new results can be utilized in decision making
problem and can be extended to the environment of interval valued Picture
fuzzy set.
Acknowledgement: This work was supported by Higher Education Com-

mission (HEC) Pakistan under National Research Program for Universities
(NRPU), Grant. No: 5833/Federal/NRPU/R&D/HEC/2016.
Author Contribution: All authors contributed equally.
Con�icts of Interest: The authors declare no con�ict of interest.

References

[1] Zadeh, L.A., Fuzzy sets. Information and control, 1965. 8(3): p. 338-353.
[2] Atanassov, K.T., Intuitionistic fuzzy sets. Fuzzy sets and Systems, 1986. 20(1): p. 87-96.
[3] Atanassov, K.T., More on intuitionistic fuzzy sets. Fuzzy sets and systems, 1989. 33(1):

p. 37-45.
[4] Atanassov, K. and G. Gargov, Interval valued intuitionistic fuzzy sets. Fuzzy sets and

systems, 1989. 31(3): p. 343-349.
[5] Atanassov, K.T., Type-1 Fuzzy Sets and Intuitionistic Fuzzy Sets. Algorithms, 2017.

10(3): p. 106.
[6] Asiain, M.J., et al., Negations with respect to admissible orders in the interval-valued

fuzzy set theory. IEEE Transactions on Fuzzy Systems, 2018. 26(2): p. 556-568.



99 Zeeshan Ahmad, Tahir Mahmood, Muhammad Saad, Naeem Jan, Kifayat Ullah

[7] Kumar, K. and H. Garg, TOPSIS method based on the connection number of set pair
analysis under interval-valued intuitionistic fuzzy set environment. Computational and
Applied Mathematics, 2018. 37(2): p. 1319-1329.

[8] Kumar, K. and H. Garg, Connection number of set pair analysis based TOPSIS method
on intuitionistic fuzzy sets and their application to decision making. Applied Intelligence,
2018. 48(8): p. 2112-2119.

[9] Mahmood, T., et al., Several hybrid aggregation operators for triangular intuitionistic
fuzzy set and their application in multi-criteria decision making. Granular Computing,
2018. 3(2): p. 153-168.

[10] Li, H. 3D distances of intuitionistic fuzzy sets based on hesitating index. in 2018 Chinese
Control And Decision Conference (CCDC). 2018. IEEE.

[11] Cuong, B.C., Picture fuzzy sets. Journal of Computer Science and Cybernetics, 2014.
30(4): p. 409.

[12] Wei, G., Picture fuzzy cross-entropy for multiple attribute decision making problems.
Journal of Business Economics and Management, 2016. 17(4): p. 491-502.

[13] Wei, G., Picture fuzzy aggregation operators and their application to multiple attribute
decision making. Journal of Intelligent & Fuzzy Systems, 2017. 33(2): p. 713-724.

[14] Wei, G., Picture fuzzy Hamacher aggregation operators and their application to multiple
attribute decision making. Fundamenta Informaticae, 2018. 157(3): p. 271-320.

[15] Wei, G., et al., Picture 2-tuple linguistic aggregation operators in multiple attribute
decision making. Soft Computing, 2018. 22(3): p. 989-1002.

[16] Torra, V., Hesitant fuzzy sets. International Journal of Intelligent Systems, 2010. 25(6):
p. 529-539.

[17] Chen, S. and L. Cai, Interval-valued hesitant fuzzy sets. Fuzzy Syst Math, 2013. 6(007).
[18] Zhang, Z., Interval-valued intuitionistic hesitant fuzzy aggregation operators and their

application in group decision-making. Journal of Applied Mathematics, 2013. 2013.
[19] Ullah, K., et al., On Bipolar-Valued Hesitant Fuzzy Sets and Their Applications in

Multi-Attribute Decision Making The Nucleus, 2018. 55(2): p. 85-93.
[20] Mahmood, T., et al., Some Aggregation Operators for Bipolar-Valued Hesitant Fuzzy

Information based on Einstein Operational Laws. Journal of Engineering and Applied
Sciences, 2017. 36(2): p. 63-72.

[21] Mahmood, T., et al., Some Aggregation Operators For Bipolar-Valued Hesitant Fuzzy
Information. Journal of Fundamental and Applied Sciences, 2018. 10(4S): p. 240-245.

[22] Dehmiry, A., M. Mashinchi, and R. Mesiar, Hesitant-Fuzzy Sets. International Journal
of Intelligent Systems, 2018. 33(5): p. 1027-1042.

[23] Alcantud, J.C.R. and V. Torra, Decomposition theorems and extension principles for
hesitant fuzzy sets. Information Fusion, 2018. 41: p. 48-56.

[24] Zhou, H., J.-q. Wang, and H.-y. Zhang, Multi-criteria decision-making approaches based
on distance measures for linguistic hesitant fuzzy sets. Journal of the operational re-
search Society, 2018. 69(5): p. 661-675.

[25] Wang, R. and Y. Li, Picture hesitant fuzzy set and its application to multiple criteria
decision-making. Symmetry, 2018. 10(7): p. 295.

[26] Pappis, C.P. and N.I. Karacapilidis, A comparative assessment of measures of similarity
of fuzzy values. Fuzzy sets and systems, 1993. 56(2): p. 171-174.

[27] Chen, S.-M., Measures of similarity between vague sets. Fuzzy sets and Systems, 1995.
74(2): p. 217-223.

[28] ohrmann, C., et al., A combination of fuzzy similarity measures and fuzzy entropy
measures for supervised feature selection. Expert Systems with Applications, 2018.



Similarity Measures for Picture Hesitant Fuzzy Sets 100

[29] Dengfeng, L. and C. Chuntian, New similarity measures of intuitionistic fuzzy sets and
application to pattern recognitions. Pattern Recognition Letters, 2002. 23(1-3): p. 221-
225.

[30] Dhavudh, S.S. and R. Srinivasan, Intuitionistic Fuzzy Graphs of Second Type. Advances
in Fuzzy Mathematics, 2017. 12(2): p. 197-204.

[31] Liu, H.-W., New similarity measures between intuitionistic fuzzy sets and between ele-
ments. Mathematical and Computer Modelling, 2005. 42(1-2): p. 61-70.

[32] Mishra, A.R., R.K. Singh, and D. Motwani, Multi-criteria assessment of cellular mobile
telephone service providers using intuitionistic fuzzy WASPAS method with similarity
measures. Granular Computing, 2018: p. 1-19.

[33] Hwang, C.M., M.S. Yang, and W.L. Hung, New similarity measures of intuitionistic
fuzzy sets based on the Jaccard index with its application to clustering. International
Journal of Intelligent Systems, 2018. 33(8): p. 1672-1688.

[34] Garg, H. and K. Kumar, An advanced study on the similarity measures of intuitionistic
fuzzy sets based on the set pair analysis theory and their application in decision making.
Soft Computing, 2018: p. 1-12.

[35] Wei, G. and Y. Wei, Similarity measures of Pythagorean fuzzy sets based on the cosine
function and their applications. International Journal of Intelligent Systems, 2018. 33(3):
p. 634-652.

[36] Ye, J., Cosine similarity measures for intuitionistic fuzzy sets and their applications.
Mathematical and Computer Modelling, 2011. 53(1-2): p. 91-97.

[37] Xu, Z. and X. Cai, Correlation, Distance and Similarity Measures of Intuitionistic Fuzzy
Sets, in Intuitionistic Fuzzy Information Aggregation. 2012, Springer. p. 151-188.

[38] Mahmood, T., et al., An Approach Towards Decision Making and Medical Diagnosis
Problems Using the Concept of Spherical Fuzzy Sets. Neural Computing and Applica-
tions, 2018.

[39] Wei, G., Some cosine similarity measures for picture fuzzy sets and their applications
to strategic decision making. Informatica, 2017. 28(3): p. 547-564.

[40] Wei, G., Some similarity measures for picture fuzzy sets and their applications. Iranian
Journal of Fuzzy Systems, 2018. 15(1): p. 77-89.

[41] Joshi, D. and S. Kumar. An Approach to Multi-criteria Decision Making Problems
Using Dice Similarity Measure for Picture Fuzzy Sets. in International Conference on
Mathematics and Computing. 2018. Springer.

[42] Wei, G. and H. Gao, The generalized Dice similarity measures for picture fuzzy sets and
their applications. Informatica, 2018. 29(1): p. 107-124.

[43] Zhang, Y., et al., A new concept of Cosine similarity measures based on dual hesitant
fuzzy sets and its possible applications. Cluster Computing, 2018: p. 1-10.

[44] Sun, G., et al., Grey relational analysis between hesitant fuzzy sets with applications
to pattern recognition. Expert Systems with Applications, 2018. 92: p. 521-532.

[45] Ullah, K., T. Mahmood, and N. Jan, Similarity Measures for T-Spherical Fuzzy Sets
with Applications in Pattern Recognition. Symmetry, 2018. 10(6): p. 193.

[46] Palmeira, E.S., et al., Application of two di¤erent methods for extending lattice-valued
restricted equivalence functions used for constructing similarity measures on L-fuzzy
sets. Information Sciences, 2018. 441: p. 95-112.

[47] Zhang, W., et al., Semantic distance between vague concepts in a framework of modeling
with words. Soft Computing, 2018: p. 1-18.


