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EXACT SOLUTIONS OF TIME FRACTIONAL FREE
CONVECTION FLOWS OF VISCOUS FLUID OVER AN
ISOTHERMAL VERTICAL PLATE WITH CAPUTO AND

CAPUTO-FABRIZIO DERIVATIVES

NEHAD ALI SHAH1, M. A. IMRAN2, FIZZA MIRAJ2

Abstract. The unsteady time fractional free convection flow of an incom-
pressible Newtonian fluid over an infinite vertical plate due to an impulsive
motion of the plate and constant temperature at the boundary is ana-
lyzed. The old (Caputo) and new (Caputo-Fabrizio) fractional derivative
approaches have been used to develop a physical model and a compari-
son has been drawn between their solutions. Boundary layers equations
in non-dimensional form are solved analytically by the Laplace transform
technique. Exact solutions for velocity and temperature are obtained in
terms of Wrights function. The expressions for rate of heat transfer in
both cases are also determined. Solutions for integer order derivatives are
obtained as limiting case. Numerical computations were made through
software Mathcad and observed some physical aspects of fractional and
material parameters are presented. It is found that the rate of heat trans-
fer of Caputo-Fabrizio model have higher values than Caputo one as we
increased the value of fractional parameter and fractional fluids tend to
superpose to that of ordinary fluid.
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1. Nomenclature

Cp− specific heat at constant pressure
g− gravitational acceleration
Gr− Grashof number
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k− thermal conductivity
Pr− Prandtl number
Re− Reynolds number
s− Laplace transform parameter
T− Fluid temperature
Tw− Wall temperature
T∞− Temperature far away from the plate
u−Velocity component along x direction
µ−Dynamic viscosity
ν− Kinematic viscosity
θ− Non-dimensional temperature
α fractional parameter
H(t)−Heaviside unit step function

2. Introduction

Newtonian liquids depicted by Navier-Stokes conditions have been broadly
examined in the writing in the course of recent decades. To a great extent, this
is expected to the truth that they are moderately straightforward and their
answers are advantageous. Normal convection streams past a vertical plate
are indispensable in settling some mechanical also, building issues, for exam-
ple, the filtration and plan of procedures, the drying of permeable materials in
material ventures and sunlight based vitality gatherer. Various examinations
have been accounted for in writing to comprehend the issues utilizing explana-
tory and numerical techniques under various limit conditions [1-21]. Recently,
the fractional calculus has encountered much success in the disruption of com-
plex dynamics. In particular, it has been proved to be a valuable tool for
handling viscoelastic properties of materials. In the case of diffusion phenom-
ena, for instance, α = 1 corresponds to classical diffusion while for 0 < α < 1
or α > 1 the transport phenomenon exhibits sub-diffusion, respectively, super-
diffusion. Some interesting results regarding the flows of Newtonian fluids with
fractional derivatives can be found in [22-24]. In the most recent, Vieru et al.
[25], Nazish [26], Shakeel et al. [27], Ali et al. [28], Imran et al. [29] studied the
viscous fluid with Caputo fractional derivatives under different thermal and
geometric conditions. The solutions obtained with this operator are written in
complex form and are expressed in terms of special functions. Moreover, the
kernel of this operator is singular and difficult to handle when we used Laplace
transform. In (2015) a modern definition introduced by Caputo and Fabrizio
[30] with non-singular kernel and easy to use in Laplace transform. After that
several researchers have shared their contribution [31-35]. Motivated by above
studies, we solve the unsteady natural convection flow of viscous fluid due to
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an impulsive motion of the plate with constant wall temperature. The old (Ca-
puto) and new (Caputo-Fabrizio) fractional derivative approaches have been
used to develop a physical model and a comparison has been drawn between
their solutions. Boundary layers equations in non-dimensional form are solved
analytically by the Laplace transform technique. Exact solutions for velocity
and temperature are obtained in terms of Wrights function. The expressions
for rate of heat transfer in both cases are also determined. Solutions for integer
order derivatives are obtained as limiting case.

3. Mathematical model of the problem

Let us consider the effect of heat transfer on unsteady boundary layer flow
of an incompressible fluid with fractional derivatives past an infinite vertical
flat plate situated at the plan y = 0. Let us suppose that, initially at t = 0,
both the plate and fluid are stationary with constant temperature T∞. At the
beginning, the plate starts to move with constant velocity in its own plane
and temperature of the plate raised to Tw. As the plate is infinite, all physical
quantities are functions of y and t only. With these conditions, along with
the assumption that the viscous dissipation term in the energy equation is
neglected and under the usual Boussinesqs approximation on the temperature
gradient, the unsteady boundary layer equations are:

∂u(y, t)
∂t

= ν
∂2u(y, t)

∂y2
+ gβ(T (y, t)− T∞), (1)

ρCp
∂T (y, t)

∂t
= k

∂2T (y, t)
∂y2

, (2)

the appropriate initial and boundary conditions for present work are:

u(y, 0) = 0, T (y, 0) = T∞, y ≥ 0, (3)

u(0, t) = UoH(t), T (0, t) = Tw, t > 0, (4)

u(y, t) → 0, T (y, t) → T∞, as y →∞, (5)

u
′
=

ku

νh
, t

′
= t

gk

nuh
, y

′
=

h

k
y, Preff =

Pr

Re
, Pr =

µCp

k
,

Gr =
gβν(Tw − T∞)

U3
o

, Re =
ν2

g

(
h

k

)3

, θ =
T − T∞
Tw − T∞

, (6)

into Eqs. (1)-(5) and, dropping prime notations, the set of non-dimensional
fractional partial differential equations is

∂u(y, t)
∂t

= Re
∂2u(y, t)

∂y2
+ Grθ(y, t), y, t > 0, (7)
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∂θ(y, t)
∂t

=
1

Preff

∂2θ(y, t)
∂y2

, y, t > 0. (8)

and then replacing the time derivative of integer order with non-integer order
α, we have

Dα
t u(y, t) = Re

∂2u(y, t)
∂y2

+ Grθ(y, t), y, t > 0, (9)

Dα
t θ(y, t) =

1
Preff

∂2θ(y, t)
∂y2

, y, t > 0. (10)

The corresponding initial and boundary conditions are:

u(y, 0) = 0, θ(y, 0) = 0, y ≥ 0, (11)

u(0, t) = H(t), θ(0, t) = 1, t > 0, (12)

u(y, t) → 0, θ(y, t) → 0, as y →∞. (13)

4. Some basic definitions of fractional derivatives

Definition-1 The Caputo time-fractional derivative of order αε[0, 1) is de-
fined by

CDα
t f(t) =

1
Γ(1− α)

∫ t

0
(t− τ)−αf ′(τ)dτ. (14)

The Laplace transform of Caputo time-derivative (14) is

L
{

CDα
t f(t)

}
= sαL {f(t)} − sα−1f(0). (15)

Definition-2 The Caputo-Fabrizio time fractional derivative of order α ∈
[0, 1) is defined as,

CF Dα
t f(t) =

1
1− α

∫ t

0
exp

(
−α(t− τ)

1− α

)
f ′(τ)dτ. (16)

The Laplace transform of Caputo-Fabrizio time derivative is

L
{

CF Dα
t f(t)

}
=

sL {f(t)} − f(0)
(1− α)s + α

. (17)

Remark It is important to point out that Caputo time-fractional derivatives
and Caputo-Fabrizio time-fractional derivatives can be extended for α → 1.
Indeed, using equations (14) and (16) and using the limit for α → 1, we obtain

lim
α→1

L
{

CDα
t f(t)

}
= lim

α→1

CF Dα
t f(t) = sL {f(t)} − f(0) = L

{
f ′(t)

}
. (18)

As a consequence we have,

f ′(t) = lim
α→1

CDα
t f(t) = lim

α→1

CF Dα
t f(t). (19)
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5. Calculation of temperature field with Caputo derivative

The partial differential equation (10) is not coupled to the momentum Eq.
(9). Consequently, we shall firstly determine the temperature field by means
of Laplace transform and then, the velocity field. Applying Laplace transform
[36-40] to Eq. (11)2, subject to Eq. (12)2 we obtain,

Preffsαθ(y, s) =
∂2θ(y, s)

∂y2
, (20)

where s is the transform parameter and θ(y, s) is the Laplace transform of the
function θ(y, t) which has to satisfy the conditions:

θ(y, s) =
1
s
, θ(y, s) → 0, as y →∞. (21)

The solution of Eq. (20) subject to the condition (21) is

θ(y, s) =
1
s
exp

(
−y

√
Preffsα

)
. (22)

Now, applying the inverse Laplace transform to Eq. (22), using the formula

L−1

{
e−asb

sc

}
= tc−1Φ(c,−b;−at−b), 0 < b < 1, we find

{
θ(y, t) = Φ

(
1,−α

2 ;−y
√

Preff t−
α
2

)
, 0 < α < 1

θ(y, t) = erfc

(
y
√

Preff

2
√

t

)
, α = 1

(23)

where Φ(x, y; z) = Σ∞n=0
zn

Γ(n+1)Γ(x−ny) , is the Wright’s function.
To measure the rate of heat transfer from plate to the fluid in terms of Nusselt
number, introduce the Eq. (22) into the following relation for αε(0, 1)

Nu = − lim
y→0

L−1

{
∂T (y, s)

∂y

}
= −L−1

{
lim
y→0

∂T (y, s)
∂y

}
=

√
PreffF1,α/2(0, t)(24)

respectively for α = 1

Nu =

√
Preff

π
. (25)

5.1. Calculation of temperature field with Caputo-Fabrizio deriva-
tive. Applying the Laplace transform to Eq. (10) by using the definition Eq.
(17) and initial condition (11)2, we have

sθ(y, s)
(1− α)s + α

=
1

Preff

d2θ(y, s)
dy2

. (26)
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Solution of Eq. (26) subject to conditions (21)

θ(y, s) =
1
s
exp

(
−y

√
Preffa1s

s + αa1

)
, (27)

where a1 = 1
1−α with inverse Laplace transform

θ(y, t) = 1− 2a1Preff

π

∫ ∞

0

sin(yu)
u(a1Preff + u2)

exp

(
− αa1tu

2

a1Preff + u2

)
du, (28)

and the Nusselt number

Nu =
a1Preffe−αa1t

√−αa1
erf (−αa1t) .

Temperature field for ordinary case is obtained for α → 1 and is given as

θ(y, t) = 1− 2
π

∫ ∞

0

sin(yu)
u

exp

(
− tu2

Preff

)
du. (29)

Further, using the formula

∫ ∞

0

sin(βu)
u

exp
(−γu2

)
du =

π

2
erf

(
β

2
√

γ

)
, (30)

so, Eq. (29) reduced to

θ(y, t) = 1− erf

(
y
√

Preff

2
√

t

)
= erfc

(
y
√

Preff

2
√

t

)
, (31)

respectively the Nusselt number for α → 1

Nu =

√
Preff

π
.

6. Calculation of velocity field with Caputo derivative

By applying the Laplace transform to Eq. (9) and using the initial condition
(11)1, we have

sαu(y, s) = Re
∂2u(y, s)

∂y2
+ Grθ(y, s), (32)

where u(y, s) the Laplace transform of the function u(y, t), which has to satisfy
conditions:

u(0, s) =
1
s
, u(y, s) → 0, as y →∞. (33)

The solution of the differential equation (32), subject to the conditions (33) is
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u(y, s) =
1
s
.exp

(
−y

√
sα

Re

)
+

a

sα+1

[
exp

(
−y

√
sα

Re

)
− exp

(
−y

√
Preffsα

)]
,(34)

where a = Gr
RePreff−1 .

By inverting Eq. (34) we find that

u(y, t) = Φ

(
1,−α

2
;−y

√
1

Re
t−

α
2

)
+ atαΦ

(
α + 1,−α

2
;−y

√
1

Re
t−

α
2

)
−

atαΦ
(
α + 1,−α

2
;−y

√
Preff t−

α
2

)
, αε(0, 1). (35)

6.1. Velocity for ordinary case when α → 1.

u(y, t) = Φ

(
1,−1

2
;−y

√
1

Re
t−

1
2

)
+ aΦ

(
2,−1

2
;−y

√
1

Re
t−

1
2

)
−

aΦ
(

2,−1
2
;−y

√
Preff t−

1
2

)
. (36)

6.2. Calculations of velocity field with Caputo-Fabrizio derivative.
Applying Laplace transform to Eq. (9) keeping in mind the initial condition
using definition Eq. (17) and expression θ(y, s) from Eq. (27)

su(y, s)
(1− α)s + α

= Re
∂2u(y, s)

∂y2
+

Gr

s
exp

(
−y

√
Preffa1s

s + αa1

)
, (37)

Solution of ordinary differential equation (37) subject to conditions (33) in
suitable form

u(y, s) =
1
s
exp

(
− y

√
a1s

Re(s + αa1)

)
+

+
Gr

(1− RePreff)a1

1
s
exp

(
− y

√
Preffa1s

(s + αa1)

)
+

+
Grα

(1− RePreff)
1
s2

exp
(
− y

√
Preffa1s

(s + αa1)

)
−

− Gr
(1− RePreff )a1

1
s
exp

(
− y

√
a1s

Re(s + αa1)

)
−

− Grα
(1− RePreff)

1
s2

exp
(
− y

√
a1s

Re(s + αa1)

)
.

(38)
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Now consider

Φ1

(
y, s,Preffa1, αa1

)
=

1
s
exp

(
− y

√
Preffa1s

s + αa1

)
(39)

G1

(
y, s,Preffa1, αa1

)
=

1
s2

exp
(
− y

√
Preffa1s

s + αa1

)
=

1
s
Φ1

(
y, t,Preffa1, αa1

)

(40)

Φ2

(
y, s,

a1

Re
, αa1

)
=

1
s
exp

(
− y

√
a1s

Re(s + αa1)

)
(41)

G2

(
y, s,

a1

Re
, αa1

)
=

1
s2

exp
(
− y

√
a1s

Re(s + αa1)

)
=

1
s
Φ2

(
y, t,

a1

Re
, αa1

)

(42)
Applying the inverse Laplace transform to the equations (39),(40),(41) and
(42)

Φ1

(
y, t,Preffa1, αa1

)
= 1−2Preffa1

π

∫ ∞

0

sin(yx)
(Preffa1 + x2)

exp
(
− αa1tx

2

Preffa1 + x2

)
dx

(43)

g1

(
y, t,Preffa1, αa1

)
=

∫ t

0
Φ1

(
y, τ,Preffa1, αa1

)
dτ (44)

Φ2

(
y, t,

a1

Re
, αa1

)
= 1− 2a1

Reπ

∫ ∞

0

sin(yx)
( a1
Re + x2)

exp
(
− αa1tx

2

a1
Re + x2

)
dx (45)

g2

(
y, t,

a1

Re
, αa1

)
=

∫ t

0
Φ2

(
y, τ,

a1

Re
, αa1

)
dτ (46)

Applying inverse Laplace transform to equation (38) and using Eqs. (43-46)
we get

u(y, t) = g2

(
y, t,

a1

Re
, αa1

)
+

Gr
(1− RePreff)a1

φ1

(
y, t,Preffa1, αa1

)
+

+
Grα

(1− RePreff)
g1

(
y, t,Preffa1, αa1

)
−

− Gr
(1− RePreff)a1

φ2

(
y, t,

a1

Re
, αa1

)
−

− Grα
(1− RePreff)

g2

(
y, t,

a1

Re
, αa1

)
.

(47)
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6.3. Velocity for ordinary case when α → 1.

u(y, t) = Φ

(
1,−1

2
;−y

√
1

Re
t−

1
2

)
+ aΦ

(
2,−1

2
;−y

√
1

Re
t−

1
2

)
−

aΦ
(

2,−1
2
;−y

√
Preff t−

1
2

)
. (48)

7. Numerical discussion and results

In order to obtain some information on the fluid motion, we have made sev-
eral numerical simulations using Mathcad software. The obtained results are
presented in the graphs from Figs. 1-7. We are interested to analyze the influ-
ence of the fractional parameter α on the Nusselt number and on fluid velocity
and to compare the flows of the ordinary fluid with flows of the fluids modeled
by time-fractional Caputo and Capto-Fabrizio derivatives. Also, the influence
of the time, Grashof number, Prandtl effective number and Reynolds number
on the fluid velocity has been analyzed by numerical calculations and graphi-
cal illustrations. Diagrams from Figs. 1 and 2 are plotted in order to discuss
the influence of the fractional parameter α and Preff on the Nusselt number
respectively. From tabular values we have observed that for fixed values of
Preff = 0.7 (for air) and small time, as we increased the value of fractional
parameter α, the Nusselt numbers for Caput and Caputo-Fabrizio reduces.
But in comparison the Nusselt number for Caputo-Fabrizio has greater values
than Caputo one and an opposite behavior has been observed for large val-
ues of time. Therefore, we can enhance the rate of heat transfer of fractional
models by adjusting the values of fractional parameter α. From the tabular
values in Fig. 2, we pictured the influence of Preff for fixed values of α. It
is clearly seen that by increasing the value of Preff for both fractional mod-
els, the rate of heat transfer increases. In the comparison sense the rate of
Caputo-Fabrizio has great values than Caputo for small time and inverse for
large values of time. To see time influence on velocity field, we have plotted
Fig. 3 and observed that velocity is an increasing function of time for both
fractional models. It is also observed that for different values of fractional
parameter fluid velocity near the plate is maximum and then decreasing away
from the plate in the free stream region. The fluid velocity of Caputo-Fabrizio
slightly superposed to that of Caputo. Fig. 4 is depicted to see the impact of
Preff on fluid velocity, as expected the fluid velocity is a decreasing function
of Preff . Physically, it is due to the reason that fluids with larger Prandtl
number have higher viscosity and small thermal conductivity, which makes
the fluid thicker and hence causes a decrease in fluid velocity. Therefore, in-
creasing values of the parameter Preff leads to a slower fluid flow. Fig. 5
is presented the influence of Reynolds number and it can be seen that fluid
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velocity near the plate is maximum and decreases in its free stream region, as
we increased the values of Reynolds number fluid velocity decreases. Grashof
number impact can be seen in Fig. 6, and observed that by increasing the
values of Gr fluid velocity also increases. The Grashof number approximates
the ratio of the buoyancy to viscous force action on the fluid which causes the
natural convection. It is due to the fact that the thermal buoyancy effects
which gives rise in fluid flow. This parameter has an opposite effect than the
Preff , because increasing values of the parameter Gr leads to a faster fluid
flow. To validate our analytical solutions and the results obtained through
numerical techniques by Stehfest’s [39] and Tzou’s [40] formula are in good
agreement.

8. Conclusion

Exact study of Newtonian fluid due to impulsive motion of isothermal verti-
cal plate has been carried out. The ordinary governing equations after making
dimensionless are converted in fractional partial differential equations with Ca-
puto and Caputo-Fabrizio fractional model and then used the Laplace trans-
form to obtain the exact solutions for temperature and velocity field. Solutions
for ordinary case and the rates of heat transfer are also obtained as limiting
cases. To study the physically significant of the studied problem, we have
plotted some graphs and drawn some important points which are as follows.
1): Rate of heat transfer decreased as we increased the value of fractional
parameter.
2): Rate of heat transfer increased by increasing the value of Preff .
3): Fluid velocity is a decreasing function of α, Re and Preff .
4): Fluid velocity is an increasing function of time t and Grashof number Gr.
5): Fractional fluids have greater velocities than ordinary one and velcoity of
fractional fluid with Caputo-Fabrizio has slightly high velocity in comparison
with Caputo one.
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Figure 1. Rate of heat transfer for different value of α
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Figure 2. Rate of heat transfer for different value of Preff
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Figure 3. Profiles of dimensionless velocities versus y for α at
Preff = 2, Re = 0.7, Gr = 4 and different vales of time t.
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Figure 4. Profiles of dimensionless velocities versus y for α at
t = 2, Re = 0.7, Gr = 4 and different vales of Preff
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Figure 5. Profiles of dimensionless velocities versus y for α at
t = 2, P reff = 2, Gr = 4 and different vales of Re
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Figure 6. Profiles of dimensionless velocities versus y for α at
t = 2, P reff = 2, Re = 0.7 and different vales of Gr
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Figure 7. Validation of obtained analytic results and results
obtained through numerical inversion techniques


