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ANALYSIS OF STEADY NON ISOTHERMAL TWO
DIMENSIONAL FLOW OF SECOND GRADE FLUID IN A

CONSTRICTED ARTERY

A.A. MIRZA1, A.M. SIDDIQUI2, T. HAROON3

Abstract. Steady analytical solution of non-isothermal, second grade
fluid through an artery having constriction of cosine shape in two dimen-
sion is presented. The governing equations are transformed into stream
function formulation which are solved analytically with the help of regular
perturbation technique. The solutions thus obtained are presented graph-
ically in terms of streamlines, wall shear stress, separation points, pressure
gradient and temperature distribution. It is observed that an increase in
height of constriction (ε) gives rise in wall shear stress, pressure gradient
and temperature, whereas critical Reynolds number (Re) decreases. Fur-
ther an increase in second grade parameter (α) increases the temperature,
pressure gradient, velocity and wall shear stress while critical Re decreases.
Its worthy to mention that the present results are compared with the al-
ready published results which ensures good agreement.

Keywords: Second grade fluid, heat transfer, wall shear stress, pressure
distribution
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1. Introduction

The number and complexity of arterial plaques increase with age and with
systemic risk factors but the rate of progression of individual plaques is vari-
able. There is a complex and dynamic interaction between mechanical wall
stress and atherosclerotic lesions. The blood flows in the closed circuit from
the heart to arteries, arterioles, capillaries, venules, veins and then back to the
heart and kept in continuous motion within the cardiovascular system. The
natural flow of blood depends upon the pumping of the heart, this pumping
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of heart produces the oscillatory flow of blood in the arteries. The flow in the
capillaries is characterized by low Reynolds number and large flexible particles.
An in growth of tissue into the artery not only causes an increased resistance
to flow, but it may also reduce the blood flow through the artery, of course
the tissue may continue to grow until the artery is completely occluded.
Many authors studied the flow characteristic of blood by considering blood as
a Newtonian as well as non-Newtonian fluid. Womersley [1] studied the flow
of blood in an elastic artery considering the blood as a Newtonian fluid under
simple harmonic pressure gradient and studied the frequency influence on flow
rate. Newman et al. [2] presented a model to examine the oscillatory blood
flow through the rigid artery numerically with mild constriction. Although
blood is non-Newtonian at low shear rates Merrill [3], it can be treated as
an incompressible Newtonian fluid at the flow rates encountered in the larger
arteries where constriction commonly occur. Some authors studied the blood
flow considering the blood as non-Newtonian fluid [4-10].
Constriction in the artery disturbs the flow of blood and becomes the cause
for the diseases in the arteries and the hydrodynamic factor can play a sig-
nificant role in the development and progression of these diseases. We are
not interested in the actual cause of this constriction in the artery, but these
constrictions effect the flow of blood in the arteries. One of the earliest pa-
per in which the flow characteristics of blood in a constriction is studied is
Young [11], who considered the flow in a mildly constricted artery based on
a highly simplified linear model. Young [11] has suggested that once a lesion
has developed there may be a coupling effect between its further development
and the changed flow characteristics. The work of Young [11] was extended
by Forrester and Young [12] to discuss the effect of flow separation on a mild
constriction. Lee and Fung [13] solved the problem of flow of blood through
constricted artery numerically. Morgan and Young [14] extend and modify
the work of Forrester and Young [12] which is applicable to both the mild and
severe constriction for Reynolds numbers below transition.
The goal of the present investigation was to predict analytically when and
where separation of flow occurs for the constriction of given geometry along
with heat transfer analysis. This analysis is concerning with the oscillatory
blood flow through the locally constricted artery by using perturbation tech-
nique considering δ as a small parameter. The solution is applicable to both
mild and severe constriction for Reynolds number below transition. The gen-
eral approach is an extension and modification of the work by K. Haldar [15]
and makes use of both the integral-momentum and integral-energy equation.
Chow and Soda [16] presents the analytical solution for Newtonian fluid in an
axisymmetric artery valid for the case where the spread of roughness is large
compared with mean radius of the artery. Chow, Soda and Dean [17] analyze
the steady laminar flow of Newtonian fluid for different physical quantities by
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considering the sinusoidal wall variation. Analytical solutions are obtained by
considering the blood as a non-Newtonian fluid. At the end graphical results
are presented which shows the effect of second grade parameters on wall shear
stress, points of separation and reattachment and on temperature distribution.
Fox and Hugh [18] investigate that in the arterial system static zones occur,
which are due to separation of the main flow from the walls of the arteries.

2. Governing Equations

It is assumed that the blood behaves like a homogeneous, incompressible,
non-isothermal and Non-Newtonian fluid of second grade. The governing equa-
tions are continuity, conservation of momentum and conservation of energy
defined as follows

∇̃ · Ṽ = 0, (1)

ρ
dṼ
dt

= −∇̃p̃ + divτ̃ + ρb̃, (2)

and

ρcp
dT̃

dt
= κ∇̃2T̃ + φ, (3)

where Ṽ is the velocity vector, ρ the constant density, p̃ the dynamic pressure, b̃
the body force per unit mass and τ̃ the extra stress tensor, cp, κ are respectively
the specific heat and thermal conductivity, d/dt is the material time derivative
defined as

d

dt
=

∂

∂t
+ Ṽ · ∇̃. (4)

and T̃ is the temperature, φ the dissipation function defined as φ = τ̃ · ∇̃Ṽ
and

∇̃2 =
∂2

∂r̃2
+

1
r̃

∂

∂r̃
+

∂2

∂z̃2
, (5)

is Laplacian.
The constitutive equation for the extra stress tensor τ̃ for second grade fluid
is given as

τ̃ = µÃ1 + α1Ã2 + α2Ã2
1, (6)

in which, µ is the coefficient of dynamic viscosity and α1, α2 are normal stress
moduli for second grade fluid. The Rivlin-Ericksen tensors Ã1 and Ã2 are
defined as

Ã1 =
(
∇̃Ṽ

)
+

(
∇̃Ṽ

)∗
, (7)

and

Ã2 =
d

dt
Ã1 + Ã1

(
∇̃Ṽ

)
+

(
∇̃Ṽ

)∗
Ã1, (8)
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where superscript * stands for the transpose of the tensor. The velocity vector
for steady axisymmetric flow in cylindrical coordinates is

Ṽ = (ũ (r̃, z̃) , 0, w̃ (r̃, z̃)) . (9)

If we substitute (6) in (2) and making use of (7)-(8), we obtain the momentum
equation in the absence of body forces of the form as [19]

ρ
dṼ
dt

= −gradp̃+µ∇̃2Ṽ+(α1 + α2)∇·Ã2
1+α1

[
∇̃2

(
∇̃ × Ṽ

)
× Ṽ + grad

{(
Ṽ · ∇̃2Ṽ

)
+

1
4
|Ã2

1|
}]

,

(10)
where |Ã2

1| denote the norm of matrix and is given by

|Ã2
1| = 4

(
∂ũ

∂r̃

)2

+ 4
(

∂w̃

∂z̃

)2

+ 4
(

ũ

r̃

)2

+ 2
(

∂ũ

∂z̃
+

∂w̃

∂r̃

)2

. (11)

Component form of equations (1) and (10) by making use of (9) and (11),
along with energy equation in dimensional form are

∂ũ

∂r̃
+

ũ

r̃
+

∂w̃

∂z̃
= 0, (12)

∂h̃

∂r̃
− ρw̃Ω̃ = −µ

∂Ω̃
∂z̃

+
(α1 + α2)

r̃

{
Ω̃2 + 2

∂

∂z̃

(
ũΩ̃

)}
− α1w̃

(
∇̃2Ω̃− Ω̃

r̃2

)
,

(13)

∂h̃

∂z̃
+ ρũΩ̃ = µ

(
∂Ω̃
∂r̃

+
Ω̃
r̃

)
− 2

(α1 + α2)
r̃

∂

∂r̃

(
ũΩ̃

)
+ α1ũ

(
∇̃2Ω̃− Ω̃

r̃2

)
, (14)

and equation (3) takes the form

ρcp

(
ũ

∂

∂r̃
+ w̃

∂

∂z̃

)
T̃ = κ∇̃2T̃ +

{
2µ + α1

(
ũ

∂

∂r̃
+ w̃

∂

∂z̃

)}

{(
∂ũ

∂r̃

)2

+
(

ũ

r̃

)2

+
(

∂w̃

∂z̃

)2

+
1
2

(
∂ũ

∂z̃
+

∂w̃

∂r̃

)2
}

+ 4(α1 + α2)

{(
∂ũ

∂r̃

)3

+
(

ũ

r̃

)3

+
(

∂w̃

∂z̃

)3

− 3ũ

4r̃

(
∂ũ

∂z̃
+

∂w̃

∂r̃

)2
}

,

(15)

where the modified pressure h̃ and Ω̃ are given as follows

h̃ =
ρ

2
(
ũ2 + w̃2

)
+p−α1

{
w̃

(
∂

∂r̃
+

1
r̃

)
− ũ

∂

∂z̃

}
Ω̃−1

4
(3α1 + 2α2) |Ã2

1| and Ω̃ =
∂w̃

∂r̃
−∂ũ

∂z̃
.

(16)
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Eliminating modified pressure h̃ from the equations (13) and (14), the com-
patibility equation is obtained in dimensional form as follows

ρ

(
ũ

∂

∂r̃
+ w̃

∂

∂z̃
− ũ

r̃

)
Ω̃ =

{
µ + α1

(
ũ

∂

∂r̃
+ w̃

∂

∂z̃
− ũ

r̃

)} (
∇̃2Ω̃− Ω̃

r̃2

)

− 2(α1 + α2)
r̃

[(
∂2

∂r̃2
− 1

r̃

∂

∂r̃
+

∂2

∂z̃2

)
(ũΩ̃) +

1
2

∂

∂z̃
(Ω̃2)

]
.

(17)

Now the boundary conditions for current problem on velocity components
according to the geometry are

ũ = w̃ = 0, at r̃ = R(z̃)
∂w̃

∂r̃
= 0, at r̃ = 0

Q̃ =
∫ R(ez)

0
r̃w̃dr̃ =

1
2
u0R

2
o,

(18)

and on temperature in dimensional form are

T̃ = T1 at r̃ = R(z̃)

∂T̃

∂r̃
= 0 at r̃ = 0.

(19)

3. Problem Formulation:

It is assumed that the blood behaves like a homogeneous, non-isothermal,
incompressible, non-Newtonian fluid of second grade and the flow field is in-
dependent of time. At the inlet and outlet sections of the artery, the flow is
assumed to be the Poiseuille or fully developed flow. Consider the blood flow
in an artery with symmetric constriction of cosine shape as [15] having radius
of unobstructed region is Ro and R(z) is the variable radius of the constricted
region, z-axis is assumed to be the axial axis of the artery and r-axis normal
to it as

R (z̃) = Ro − λ

2

(
1 + cos

(
4πz̃

lo

))
, − lo

4
≤ z̃ ≤ lo

4
,

= Ro otherwise,
(20)

where λ is the maximum height of constriction and lo/2 is the length of con-
stricted region. Introducing the dimensionless quantities of the form

u =
ũ

uo
, w =

w̃

uo
, r =

r̃

Ro
, z =

z̃

lo
, h =

R2
o

µuolo
h̃, θ =

T̃ − To

T1 − To
, (21)

where ∗̃ denotes the dimensional variables, µ is dynamic viscosity, h is modified
pressure, uo is the characteristic velocity, T1 and To represents the temperature
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r

z

Ro

R(z)

lo
2

Fig.1 Geometry of the constricted tube.

on the boundary and blood respectively.
Dimensionless form of the boundary profile by using (21) is

f(z) = 1− ε

2
(1 + cos 4πz), −1

4
< z <

1
4
,

= 1 otherwise,
(22)

where ε = λ/Ro is dimensionless height of constriction and f = R/Ro. The
governing equations for second grade fluid in two dimensions are highly non-
linear in two variables i,e. u and w. Introducing the stream functions of the
form

u =
δ

r

∂ψ

∂z
, w = −1

r

∂ψ

∂r
, (23)

which satisfy the continuity equation identically and component form of the
momentum equation in terms of stream function takes the form

∂h

∂r
− δRe

r2

∂ψ

∂r

(
E2ψ

)
=

δ2

r

∂
(
E2ψ

)

∂z
+

δ(α + β)
r3

((
E2ψ

)2 − 2δ2 ∂

∂z

(
∂ψ

∂z
E2ψ

))

− αδ

r

∂ψ

∂r

(
∇2 − 1

r2

)
E2ψ

r
,

(24)

∂h

∂z
− Reδ

r2

∂ψ

∂z

(
E2ψ

)
=−

(
∂

∂r
+

1
r

) (
1
r
E2ψ

)
+ 2

(α + β)
r

∂

∂r

(
δ

r2

∂ψ

∂z

(
E2ψ

))

− αδ

r

∂ψ

∂z

(
∇2 − 1

r2

)(
1
r
E2ψ

)
,

(25)

where the modified pressure h is defined as

h =
Reδ

2
(
u2 + w2

)
+ p− αδ

{
w

(
∂

∂r
+

1
r

)
− δu

∂

∂z

}
Ω− δ

4
(3α + 2β) |A2

1|,
(26)
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and |A2
1| is given by

|A2
1| = 4

(
∂

∂r

(
δ

r

∂ψ

∂z

))2

+4
(

∂

∂z

(
−1

r

∂ψ

∂r

))2

+4
(

δ

r2

∂ψ

∂z

)2

+2
(

∂

∂z

(
δ

r

∂ψ

∂z

)
+

∂

∂r

(
−1

r

∂ψ

∂r

))2

.

(27)
Eliminating modified pressure h from (24) and (25) by cross differentiation to
obtain the compatibility equation in terms of stream function of the form

Reδ
∂

(
ψ, E2ψ

r2

)

∂ (r, z)
+

1
r
E4ψ = αδ

∂
(
ψ, E4

r2 ψ
)

∂ (r, z)
+

2δ(α + β)
r

{
E2

(
∂ψ

∂z

E2ψ

r2

)
− E2ψ

r2

∂

∂z

(
E2ψ

r2

)}
,

(28)
and energy equation in terms of stream function becomes

Peδ

r

∂(ψ, θ)
∂(z, r)

= ∇2θ + Br

{
2 + δ

α

r

(
∂ψ

∂z

∂

∂r
− ∂ψ

∂r

∂

∂z

)}

{
δ2

((
∂

∂r

(
1
r

∂ψ

∂z

))2

+
(

1
r2

∂ψ

∂z

)2

+
(

1
r

∂2ψ

∂r∂z

)2
)

+
1
2

(
δ2

r

∂2ψ

∂z2
− ∂

∂r

(
1
r

∂ψ

∂r

))2
}

+ 4Br(α + β)

{
δ3

((
∂

∂r

(
1
r

∂ψ

∂z

))3

+
(

1
r2

∂ψ

∂z

)3

+
(

1
r

∂2ψ

∂r∂z

)3
)

+
3δ

4r2

∂ψ

∂z

(
δ2

r

∂2ψ

∂z2
− ∂

∂r

(
1
r

∂ψ

∂r

))2
}

.

(29)

Boundary conditions in terms of stream functions reduces as

− 1
r

∂ψ

∂r
= 0, ψ = −1

2
, θ = 1 at r = f,

− ∂

∂r

(
1
r

∂ψ

∂r

)
= 0, ψ = 0,

∂θ

∂r
= 0 at r = 0,

(30)

where

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+ δ2 ∂2

∂z2
, Ω =

∂w

∂r
− δ

∂u

∂z
, E2 =

∂2

∂r2
− 1

r

∂

∂r
+ δ2 ∂2

∂z2
,

(31)

and

α =
α1uo

µRo
, β =

α2uo

µRo
, δ =

Ro

lo
, Re =

uoRo

ν
, Br =

µu2
o

κ(T1 − To)
, Pe =

ρcpRouo

κ
.

(32)

Now our task is to find the solution in terms of stream function (ψ) and theta
(θ). Once the stream function is obtained, one can easily find the expressions
for velocity components.
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4. Solution:

Regular perturbation technique is applied on ψ and θ to solve the compati-
bility equation (28) and energy equation (29) along with boundary conditions
(30) by considering δ as the small parameter of the form

ψ = ψo + δψ1 + δ2ψ2 + · · ·,
θ = θo + δθ1 + δ2θ2 + · · ·. (33)

We obtained the system of equations after substituting equation (33) into
equations (28)-(30) and equating the coefficients of δ0, δ and δ2. The systems
obtained from these equations are named as zeroth, first and second order
system. From the first systems, we have

ψo =
η2

2
(
η2 − 2

)
, where η =

r

f
, (34)

which is zeroth order solution and similar as [15,16].
The zeroth order temperature is obtained by making use of ψo and correspond-
ing boundary conditions on temperature as follows

θo = 1− Br

f4

(
η4 − 1

)
. (35)

We observed that zeroth order temperature is independent of second grade
parameters and depends upon the ratio of heat production by dissipation to
heat transport by conduction. The first order solution is found by using ψo

along with the boundary conditions as follows

ψ1 =
Ref

′η2

36f

(
η6 − 6η4 + 9η2 − 4

)
, (36)

it is observed that the first order solution is similar as viscous fluid [15,16] and
independent of second grade parameter. First order temperature is obtained
by using ψo, ψ1, θo and boundary conditions on temperature for first order as
follows

θ1 =− Brf
′(η2 − 1)
72f7

[
48(2α + β)

(
4η4 − 5η2 − 5

)
+ f2

{
4Re

(
3η6 − 13η4 + 5η2 + 5

)

+Pe

(
9η6 − 7η4 − 43η2 + 101

)}]
.

(37)

One can recover the first order temperature for viscous solution easily by
substituting α = β = 0. First order temperature also depends upon heat
transport by convection to conduction. Similarly second order solution is
obtained by integrating and making use of ψo, ψ1 subject to the boundary
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conditions as

ψ2 =
η2(η2 − 1)2

21600f4

[
f ′2

{−120Re

{
α(31η4 − 138η2 + 233) + 10β(η4 − 4η2 + 3)

}
+ R2

ef
2
(
38η6

−314η4 + 759η2 − 818
)− 18000f4

}
+ 3ff ′′

{
40Reα(3η4 − 14η2 + 29)−R2

ef
2
(
2η6

−16η4 + 41η2 − 52
)

+ 1200f4
}]

.
(38)

The second order temperature is found by using the expressions for ψo, ψ1, ψ2

and θo, θ1 along with the boundary conditions of the form

θ2 =
Br

6350400f8

[
49f ′2(1− η2)

{
36

{
21Pe(2α + β)

(
64η8 − 216η6 + 139η4 + 639η2 − 1361

)

+ 2Re

{
α

(
912η8 − 5538η6 + 2064η4 + 22η2 + 22

)
+ β

(
728η8 − 4447η6 + 6553η4 − 2047η2

−2047)}}+ 5f2
{
225P 2

e

(
η10 − 3η8 − 8η6 + 72η4 − 173η2 + 231

)
+ 5PeRe

(
88η10 − 632η8

+1069η6 + 141η4 − 2055η2 + 2697
)

+ 4R2
e

(
156η10 − 1284η8 + 3441η6 − 3697η4 + 815η2

+ 815 )} − 43200f4
(
2η4 + 18η2 − 33

)}− 13824f4f ′3
(
1125η10 − 1284η8 + 3441η6 − 3697η4

+815η2 − 292
)

+ 49f ′′(η2 − 1)
{
36

{
3Pe(2α + β)

(
64η8 − 261η6 + 139η4 + 639η2 − 1361

)

+2Re

{
2α

(
8η8 − 67η6 − 267η4 + 73η2 + 73

)
+ 3β

(
8η8 − 67η6 + 133η4 − 67η2 − 67

)}}

+ f2
{
225P 2

e

(
η10 − 3η8 − 8η6 + 72η4 − 173η2 + 231

)
+ 12R2

e

(
20η10 − 172η8 + 503η6

−697η4 + 173η2 + 173
)

+ PeRe

(
200η10 − 1672η8 + 3953η6 − 1647η4 − 6147η2 + 11853

)}

−14400f4(10η4 − 2η2 − 11)
}

+ 4608f ′f ′′f5
(
675η7 − 1764η5 + 1225η3 − 136

)]
,

(39)

which is general solution for second order temperature, we can recover the
viscous second order solution by setting α = β = 0. Now we can easily find
the velocity components u, v and temperature distribution θ by using (33) and
(23).

5. Pressure Distribution:

In this section the modified pressure and pressure are calculated by applying
the perturbation technique of the form

h = ho + δh1 + δ2h2 + · · ·,
p = po + δp1 + δ2p2 + · · ·. (40)

Using equation (40) in equations (24)-(26) along with perturb form of ψ. The
different orders of pressure are obtained by the relation:

(∗) =
∫ z

0

∂(∗)
∂z

dz +
∫ r

0

∂(∗)
∂r

dr. (41)
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Equating the coefficients of δ0, δ, δ2 on both sides of (24)- (26). The zeroth
order pressure gives the solution as follows

ho = po =
1

12π

[
3

(ε− 1)
7
2

(
5ε3 − 18ε2 + 24ε− 16

)
tanh− 1

(
tan 2πz√

ε− 1

)

+
ε sin 4πz

2f3(ε− 1)3
{
8(ε− 1)2 + 10f(ε− 1)(ε− 2) + f2

(
15ε2 − 44(ε− 1)

)}]
.

(42)

It is observed that the second grade parameters α, β are absent from zeroth
order modified pressure and the zeroth order pressure. Solutions for first order
modified pressure and pressure are obtained by applying (41) of the form

h1 =
1

3f6

{
16(α + β)(3η2 − 2) + 3Ref

2(4η4 − 8η2 + 1)
}

+
1

3(ε− 1)8
{
8(α + β)

(
2(ε− 1)2 − 3η2f2

)− 3Re

(
(ε− 1)4 − 4η2f2(ε− 1)2 + 2η4f4

)}
.

(43)

p1 =
1
f6

{
8α

(
7η2 − 8

3

)
+ 16β

(
2η2 − 1

3

)
− 3Ref

2

}

− 1
3(ε− 1)8

{
3Re

(
2η4f4 − 4(ε− 1)2η2f2 + (ε− 1)4

)
+ 8(α + β)

(
3η2f2 − 2(ε− 1)2

)}
,

(44)

it is found that the first order pressure for viscous fluid is obtained by setting
α = β = 0. Similarly second order modified pressure and pressure in integral
form are given as follows

h2 =
2η2f ′

9f7

{−4Re

(
α(10η4 − 27η2 + 27)− β(2η4 − 9η2 + 9)

)
+ R2

ef
2(2η6 − 11η4 + 18η2 − 11)

−36f4
}

+
1

270

∫ z

0

1
f8

[
f ′2

{
48Re

(
α(650η6 − 1485η4 + 1215η2 − 182)− 5β

(
26η6 − 99η4

+81η2 − 14
))−R2

ef
2(1560η8 − 7260η6 + 9720η4 − 4620η2 + 479) + 360f4(30η2 − 11)

}

+3ff ′′
{−16Re

(
α(50η6 − 135η4 + 135η2 − 26)− 5β(2η6 − 9η4 + 9η2 − 2)

)

+R2
ef

2(40η8 − 220η6 + 360η4 − 220η2 + 29)− 120f4(6η2 − 1)
}]

dz,
(45)
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p2 =
2f ′

9f7

{
4Re

(
α(28η6 − 90η4 + 54η2 − 11) + βη2(14η4 − 45η2 + 27)

)

−R2
ef

2(2η8 − 11η6 + 18η4 − 11η2 + 4)− 36η2f4
}

+
1

270

∫ z

0

1
f8

[
f ′2

{
48Re

(
α(650η6 − 1485η4 + 1215η2 − 182)− 5β(26η6 − 99η4 + 81η2 − 14)

)

−R2
ef

2(1560η8 − 7260η6 + 9720η4 − 4620Y 2 + 479) + 360f4(30η2 − 11)
}

+3ff ′′
{−16Re

(
α(50η6 − 135η4 + 135Y 2 − 26)− 5β(2η6 − 9η4 + 9η2 − 2)

)

+R2
ef

2(40η8 − 220η6 + 360η4 − 220η2 + 29)− 120f4(6η2 − 1)
}]

dz.
(46)

Setting α = β = 0 gives second order pressure for viscous fluid.
Wall shear stress for the second grade fluid is obtained from the component
of extra shear stress as follows

τω =− 4
f3

+
2δf ′

3f6
(Ref

2 − 48α) +
δ2

f7

{
f ′2

(
244Reα

15
+

67R2
ef

2

540
+

8f4

3

)

−ff ′′
(

4Reα

5
+

R2
ef

2

36
+

4f4

3

)}
.

(47)

The points of separation and reattachment at the wall are calculated by setting
τω = 0, which gives us quadratic equation in terms of Re. The solution for Re

is

Re =
4

δf2G

[
F ±

√
F 2 − f2G(135f4 + 4320αδff ′ − 90δ2f4f ′2 + 45δ2f5f ′′)

]
,

(48)

where
F = 45f3f ′ + 1098αδf ′2 − 54αδff ′′,

G = 15ff ′′ − 67f ′2.
(49)

Equation (48) gives the critical value of Re which gives the separation and
reattachment points.

6. Graphical Discussions :

In this section solutions are presented graphically for stream lines, wall
shear stress, zero wall shear stress, temperature distribution and pressure gra-
dient. Analysis are presented numerically for second grade parameters (α, β),
height of constriction (ε), Reynolds number (Re), Brinkman number (Br) and
Pecket number (Pe). In figure 2 behavior of stream lines are shown for zeroth
order 2(a), first order 2(b), second order 2(c) and up to second order 2(d)
respectively, for Re = 12, ε = 0.2, δ = 0.1, α = 0.04, β = 0.02. In these figures
z−axis lies in the horizontal direction and r−axis is perpendicular to it. The
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Fig.2(a)Zeroth order stream lines. Fig. 2(b) First order stream lines.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r

–0.2 –0.1 0 0.1 0.2
z

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r

–0.2 –0.1 0 0.1 0.2
z

Fig.2(c) Second order stream lines. Fig. 2(d) Up to second order stream
lines.

zeroth order solution corresponds to laminar flow, first order solution induces
the clockwise and counterclockwise rotational motion in the converging and
diverging regions, which is prediction of separation and reattachment points.
Figure 2(c) shows the stream lines for second order solution, which also shows
the rotational motion and indicates the presences of separation and reattach-
ment points. Figure 2(d) presents the stream line solution up to second order.
By setting α = 0, stream lines presents Newtonian behavior which are similar
to [17]. The distribution of wall shear stress for Re is presented in figure 3. It
is found that as we increases the Re wall shear stress becomes negative in the
converging region and then increases near the throat of the constricted region
and becomes negative in the diverging region. The negative shearing in the
converging and diverging sections of the artery predicts the reverse flow and
indicates the points of separation in the upstream region and reattachment in
the downstream region of the artery.
Figure 4 predicts the effect of ε on wall shear stress. The straight line indicates
that there is no constriction and the flow is Poiseuille flow. It is observed that
as we increases the ε, wall shear stress increases near the throat of the artery
and becomes negative in the diverging section of the artery, which predicts
the point of reattachment. The separation point was considered to be the
point nearest the throat where a reversed flow along the wall of the artery
could be observed. The point farthest down stream from the throat where
back flow occurs is defined as the reattachment point. Figure 5 presents the
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Fig.5 separation point for α in converging region. Fig.6 Reattachment point
for α in diverging region.

distribution of separation point in the converging section of the artery for the
different values of α along with the fixed values of δ and ε. It is noted that the
separation point lie to the right of the minimum points, actually the purpose
for the zero wall shear stress is to find the critical Reynolds number where
the separation occurs. It is observed from figure 5 that the critical Reynolds
number decreases as ε increases.
In figure 6 zero wall shear stress is plotted for α in diverging section of the
artery. The purpose is to determine the critical value of Re at which reattach-
ment occurred in the diverging region. It is noted that as the critical Reynolds
number reached the reattachment occurs in the diverging region. It is found
form figure 6 that as α increases the critical Reynolds number decreases.
To study the behavior of the temperature distribution numerically for dif-

ferent values of α, ε , Br, Pe, calculations are carried out through graphs.
Figure 7 shows the behavior of temperature for distinct values of Br. It is
found that as the Br number increases, the temperature rises high over the
constriction for the fixed values of the other parameters. Figure 8 predicts the
effect of ε over the pressure gradient for fixed values of Re, δ and second grade
parameters. It is observed that as ε increases pressure gradient increases. The
straight line indicates the absence of constriction in the artery.
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7. Conclusion:

In this article consideration has been given to the second grade steady state
flow of blood through an artery of infinite length with heat transfer having
constriction of length lo/2. Underlying problem is solved with the help of
approximate analytical technique, namely, regular perturbation technique. In
the current investigation second grade fluid is analyzed for flow pattern, pres-
sure gradient, wall shear stress, separation point, temperature distribution and
draw the graphs for each. We note that by setting α = β = 0, the results ob-
tained are similar to viscous fluid. It is also observed that the general pattern
of streamlines is same as [16 - 17], wall shear stress is similar as [14 - 15] and
separation and reattachment points identical with [15]. It is noted that:

• As we increase Re, wall shear stress and pressure gradient increases.
• Increase in ε increases the wall shear stress, pressure gradient and

temperature.
• Critical Re decreases as the ε increases.
• Increase in α increases the temperature, pressure gradient, velocity

and wall shear stress.
• Temperature increases with the increase in Br and Pe.
• Critical Re decreases in the converging and diverging regions with the

increase in second grade parameter α.
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