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BOUNDS OF F-INDEX FOR UNICYCLIC GRAPHS WITH
FIXED PENDENT VERTICES

M. JAVAID!, MAQSOOD AHMAD!, M. HUSSAIN?, W.C. TEH 3

ABSTRACT. Furtula and Gutman [J. Math. Chem., 53 (4) (2015), 1184-
1190] reinvestigated the F-index as a sum of cubes of the degrees of all
the vertices in a chemical graph and proved its various properties. A
connected graph with equal order and size is called unicyclic graph, where
order is number of vertices and size is number of edges. In this paper, we
characterize the extremal graphs in a family of graphs called by unicyclic
graphs with fixed number of pendent vertices. We also investigate the
bound on F-index in the same family of graphs i.e
4(2n+3a) < F(G) < 8n+ a(a+2)(a+3)

for each G € UT, where Uy is a class of all the unicyclic graphs such that
the order of each graph is n with a pendent vertices.
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1. INTRODUCTION

A non-empirical numeric quantity associated with a molecular graph that
remained invariant under graph isomorphism and encode at least one physi-
cal or chemical property of underlying organic molecules, is called topological
index (TT). It turned out that TT’s exhibit pivotal role in predicting the physi-
cal as well as chemical properties (boiling point, volatility, stability, solubility,
connectivity, chirality and melting point) of chemical compounds. Further-
more, cheminformatics is a latest field that unifies chemistry, mathematics
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and information science that enable quantitative structure activity relation-
ship (QSAR) and quantitative structure property relationship (QSPR) which
primarily depend on suitable TI’s and resulted in examining the bioactivities
and chemical re-activities of the chemical compounds, see [5].

Although, graph theory has immense applications in diversified areas like com-
puter science, optimization, biology, engineering, social sciences and particu-
larly in chemistry. Consequently, several books [27, 28, 29, 30, 31, 32, 33, 34]
and research articles [35, 36, 37, 38, 39] have been authored on the applica-
tions in the area of mathematical chemistry and chemical graph theory. In
literature, for a simple-connected graph, TI’s are distributed into four ma-
jor classes, namely, degree-based, distance-based, counting polynomial related
and spectral-based TI’s. Among these types, the degree-based TI’s are vastly
studied and explored, see the recent survey [13].

Harry Wiener (1947) was the first who established the correlation between a
distance based topological index and the boiling point of paraffin, see [20].
Initially this index was called Wiener number but later on this extensively
investigated index was popularized by the name Wiener index. Numerous
topological indices of valuable and practical nature were introduced after the
Wiener index such as first, second, multiplicative, augmented and generalized
Zagreb indices as well as co-indices, Randi¢ indices, atom bond connectivity
(ABC) index, fourth version of ABC, geometric-arithmetic (GA) index and
fifth version of GA, see [1, 2,4, 6, 7,9, 12, 14, 15, 26, 10, 11].

In 1972, Furtula and Gutman [14] defined a degree based index as sum of
cubes of degrees of end vertices of each edge of molecular graph. Approxi-
mately 43 years after the inception of this index, Furtula and Gutman (2015)
[8], reconsidered and reinvestigated by offering lower and upper bounds as
well as establishing its vitality in determining physico-chemical properties of
chemical compounds. The years long state of obliviousness of this index gives
rise to its name, forgotten topological index (F-index).

Che and Chen [41] offered improved lower and upper bounds for F-index, as
compared to [8], with regard to size, minimum and maximum degrees, irreg-
ularity and Zagreb indices. In addition they provide characterization for all
graphs analogous to benzenoid systems. Recently, Gao et al. [40] exhibited the
F-index of some substantial drug molecular structures. Milovanovic et al. [16]
and De et al. [3] workout and described the F-index and F-coindex for certain
families of graphs. Basavanagoud and Timmanaikar [17] computed F-index
of Kragujevac trees. Khaksari and Ghorbani [18] investigated F-index for the
certain product of graphs. Akhter et al. [19] established the ordering among
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the few graphs with respect to F-index belonging to the class of unicyclic and
bicyclic graphs.

In present article, we provide the existence of the extremal graphs with respect
to F-index in the class of unicyclic graphs with certain pendent vertices. We
also investigate the lower and upper bounds of the F-index in the same class
of graphs. The rest of the paper is organized as; Section 2 includes the basic
definitions and results, Section 3 consists of the main results on the graphs
with minimum and maximum F-index and also covers the result related to
the lower and upper bounds of F-index in the family of unicyclic graphs with
certain pendent vertices.

2. PRELIMINARIES

Let G(V(G), E(G)) be a graph with vertex-set V(G) and edge-set E(G)
such that v = |V(G)| and e = |E(G)| are order and size of the graph G,
respectively. Also the edge e = uv shows connection between two vertices u
and v i.e. u and v are adjacent. Two or more edges with same end points are
called parallel edges or multi-edges and an edge which connects a vertex to
itself is called a loop. A graph is connected if there is some path between each
pair of vertices. A connected graph G without any cycle is called a tree having
that |V(G)| = |E(G)|—1 and a graph that contains at least one cycle is called
cyclic. A vertex of a graph is called a cycle-vertex if it is on its some cycle,
otherwise it is a tree-vertex. Moreover, d(u) represents the degree of vertex
u € G. In the present study, all the graphs are simple (without parallel edges
and loops) and undirected. For the further study about the graph theoretic
terminologies, we refer [21]. Now, we define some topological indices which
will be useful in the main results.

Definition 2.1 For a molecular graph G, the first Zagreb index and the second
Zagreb index are defined as

Mi(G)= > [d(r)+d(s)] and Ma(G)= > [d(r) x d(s)].

rs€E(G) rs€E(G)

Definition 2.2. Let G be a molecular graph. Then, general Randié index
(Ra(@Q)) is defined as follows:

Ra(G)= ) [d(r) x d(s))".

rs€E(G)

For a = —%, a = % and o = 1, we obtain Randi¢ index, reciprocal Randié

index and the second Zagreb index respectively.
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Gs G4

FIGURE 1. G (cycle), G2 (two cycles with common vertex ),
G3 (two cycles with no common vertex or edge) and G4 (two
cycles with common edge).

Definition 2.3. Let G be a molecular graph. Then, the forgotten index
(F-index) is defined as follow:

seV(G)

The general form of first Zagreb index is Mlﬁ(G) = > [d(r)Pt+d(s)P71,
rs€E(G)

where 8 € R, 3 # 0, 1. The first general Zagreb index becomes Forgotten index

if 3 = 3. For the detailed studies of the foresaid indices, we refer (Gutman

and Trinajsti; 1972) [14], (Milan Randié; 1975) [22], Bollobds and Erdds; 1998)

[23], (Amic et al.; 1998) [24], (Furtula and Gutman; 2015) [25].

A connected graph is w-cyclic if m = n — 1+ w, where n is order and m is size
of the graph. For w =0, w =1 or w = 2, it is called tree, unicyclic or bicyclic
respectively. Moreover, in a unicyclic (1-cyclic) graph there is a unique cycle
and a bicyclic (2-cyclic) graph contains two or three cycles. To understand w-
cyclic structure of graphs, the base-graph(s) (minimum subgraph(s)) G; and
G2, G3 & G4 of the unicyclic and bicyclic graphs with no pendant vertices are
shown in FIGURE 1 respectively.

Now, we define some more unicyclic graphs from its base-graph. Let U(n,r,[)
be a unicyclic graph with n vertices obtained by attaching r pendent vertices
to any [ > 2 vertices of the cycle Cp, where p = n — rl. Similarly the uni-

cyclic graph u' (n,r/,k:) is obtained by identifying one end point of a path
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of order k (graph with k — 2 vertices of degree two and 2 pendent vertices)
with a vertex of the cycle C; and the other end with the central vertex of the
star 51,/ (graph with ' pendent vertices and one vertex of degree 7“/), where
g=n—-r —k+1land 2 <k <n-—r —2 Assume that U(n,r )= U and
Z/ll(n, 7“/, k)= U,, then the partitions of their vertex set with respect to degrees
of vertices are as follows;

d(v), for veU 1 2 T+ 2

|d(v)] rl p—1 [
Table 2.1.

d(v), for veU 1 2 r+1

ld(v)| P lq+k-3]1 1
Table 2.2.

Now, we obtain Uy from U by deleting r pendent vertices from a vertex of
degree r+ 2 and joining these vertices to another vertex of degree r+ 2. More-
over, we derive Ug from Uq by deleting 2r pendent vertices from the vertex
of degree 2r + 2 and joining these vertices to the vertex of degree r + 2. If
we continue this pattern, after [ — 1 iterations we obtain U;_; from Uj_5 by
deleting (I — 1)r pendent vertices from a vertex of degree (I — 1)r + 2 and
joining these vertices to the last vertex of degree r + 2, where 2 <[ < p.

Let Uy be a class of all the unicyclic graphs such that the order of each graph
is n with a pendent vertices. Moreover, assume that Uy, Us and U3 be three
subclasses of U such that the pendent vertices are attached with the cycle-
vertices, tree-vertices and both of them respectively.

3. MAIN RESULTS

In this section, we present the main results of the paper. Before to the final
results, we establish some basic lemmas which will be frequently used in the
main results.

Lemma 3.1 Let G; and G2 be any two connected graphs of same order and
size with degree sequences < d%,d%,dl, o dl > and < d%,d%,dg, ey d? > Te-
J

spectively such that d} = d? for 1 < i < n, where dg is degree of vertices v; in

GI for 1 < j < 2and n = |V(Gy)| = [V(Gy)|. Then, F(G) = F(Ga).

Proof. If G; and G2 are isomorphic then there is nothing to prove. Assume
that G1 and G2 are non-isomorphic. Since d} = d? for 1 <1 < n, therefore

1 41 41 1 2 32 52 2
< dl,d2,d3,...,dn >=< dl,d27d3, ,dn > .
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FIGURE 2. Non-isomorphic graphs of equal order and size have
same F-index.

n n
Consequently > (d})3 = 3" (d?)3 which implies that
i=1 i=1

F(Gy) = F(Gy).
Lemma 3.2 Let u and v be any two vertices of the graph G such that

wv € E(G). Assume that G’ is obtained from G by the deletion of uv and
joining u to an other vertex of G say w i.e G@ = G — uv + uw. Then

(i) F(G") = F(G) if d(w) = d(v) ~
(ii) F(G/) > F(G) if d(w) > d(v) — 1 and
(ii) F(G) < F(G) if d(w) < d(v) —

where d(v) and d(w) are degrees of v and w in G respectively.

Proof. Since d(v) and d(w) denote the degrees of v and w in G respectively.
Therefore, by definition of F-index, we have

F(G) = F(G') = d(v)* + d(w)* — (d(v) = 1)* — (d(w) + 1)*

= =3(d(w) + d(v))[d(w) — (d(v) — 1)].
Using d(w) = d(v) — 1,/d(w) d(v) — 1 and d(w) < (v)/— 1 in the above
equality, we obtain F(G') = F(G), F(G') > F(G) and F(G') < F(G) respec-
tively. This complete the proof.

Lemma 3.3 Forr >2,p,¢g>3,2<1<p,2<k<g—-3and0<i<[—1,
F-index of the unicyclic graphs U; and U’ are

(i) F(U;) = ri+(1—i—1)(r+2)*+8(p—14i)+[(i+1)r+2]*

(i) F(U') = 8(q+k—3)+(r+1)>+r+27.

Proof. Proof is obvious by Definition 2.3, Table 2.1 and Table 2.2.
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FIGURE 3. G is obtained by applying a transformation on G.

Taking ¢ = 0 in the above lemma, we obtain the following corollary;
Corollary 3.4. For r > 2, p > 3 and 2 <[ < p, F-index of the unicyclic
graph U is

F(U)=rl4+1(r+2)+8(p—1).

Theorem 3.5. Let r >2,p,¢>3,2<[<p,2<k<g—3and0<:i<[—-1.
Then

(i) FU (n,r,2)) < FU(n,r 1)),

(ii) FU (n,r,k)) = FU (n,7,k+1)),

(iii) FUn, 7 1)) < FU (n,7,2)),

(iv) (UO) < F(Ujy) < .. < F(Up_q),

(v) F(U (n rk)) < F(L[(n r,1)).

Proof.(i) Putting [ = 1 in Corollary 3.4, we obtain,
FU(n,r, 1) =r+8(p—1)+ (r+2)°

For k = 2, Lemma 3.3(ii) yields

FU (n,r',2)) =7 +8(g— 1) + (r +1)> +27.

Sincep=n—rl,g=n—1r —k+1,r =rlandp—g=1 —r+1,forl =1
and k = 2 we have

FU(n,r1)) = FU (n,r',2)) =3r> +9r —20 > 0
Consequently, F (U (n,r, 2)) < FU(n,r, 1)) for r > 2.
(ii) By Lemma 3.3 (ii),

/

FU (n,r' k) =8(q+k—3)+ (' +1)°+1 +27.
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Since for k = k + 1, we have ¢ = ¢ — 1. Therefore
F(u/(n,r’,k;—{—]_)) :8(q_|_k_3) +(’I"/ —|—1)3+7’” 4o
Thus, FU (n,r' k) = FU (n,r, k + 1)).

(iii) Using Lemma 3.3 (ii) and Corollary 3.4, we have
FU (n,7,2)) =8(g—1)+ (r +1)3+ 7 + 27and
FU(n,r,) =rl+1(r+2)°+8(p — ).
Since p—qg=1 —rl+1, 7 =rl and k = 2 therefore
FU(n,r, 1)) — FU (n,r',2)) = r°1(1 = 1?) + 31r?(2 = 1) + 9lr — 12 < 0.
Consequently, F(U(n,r,1)) < F(U (n,r,2)).

(iv) Using Lemma 3.3 (i), we have
F(U;) — F(Ujyq) =8 — 1202(i + 1) — 3r%i(i + 3).
By Lemma 3.1(iii), F(U;) < F(Uj41). Using i = 0,1,2,3,...,1 — 2, we have
F(Up)< F(Up)< ... < F(Uy_1).
(v) Since by (i) and (ii), we have
FU (n,7,2)) < FUU(n,7,1)) and FU (n,7,k)) = FU (n,rk +1)).
Consequently,
FU (n,1,2)) = FU (n,7,3)) = ... = FU (n,r,q - 3))
Thus, F(U (n,r,k)) < F(U(n,r,1)) for 2 <k < q—3.
Theorem 3.6. If r > 2, p>3,2<[<p, a=rland n > 5. Then, for each
G eluy
(a) FU(n,r1)) < F(G),
(b) F(G) < F(U(n,r 1)),
where UY is a class of all the unicyclic graphs such that each graph has n

order and « pendent vertices. Moreover, equality holds if G = U(n,r,l) and
G = U(n, 1) respectively.

Proof.(a) We consider the following cases;

Case 1: Assume that G € U; such that G = U; for some 1 < 7 <[ — 1.
Since, U(n,r,1) = Ug therefor by Theorem 3.5 (iv) U(n,r, 1)) < G = U; for
1<i<l—1.
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Case 2: If G € Uy such that G = U (n,r', k). By Theorem 3.5 (iii) and (ii),
we have

FU(n,r,1)) < FU (n,r',2)) and

FU' (n,7,2)=FU (n,r',3)) = ... = FU (n, 7, k)).

Therefore F(U(n,r,1)) < F(U (n,r ,k)) for each k > 2. If G € Us is other
than U’ (n, r, k), then using the transformation of deletion and addition of an
edge, we obtain G = U (n,r , k). Then by Lemma 3.2 and Theorem 3.5 (ii), we
get F(U(n,r,1)) < F(U (n,r',k)). Consequently, F(U(n,r,1)) < G for each
G e Us.

Case 3: If G € Us, then we have two possibilities. (i) There exists G* €
GG1 U G2 such that the degree sequences of G and G* are same. Then, by
Lemma 3.1 F'(G) = F(G*). (ii) After using some transformations of the dele-
tion and addition of the edges, we obtain G* € Uy or G* € Us such that
F(G*) < F(G) (by Lemma 3.2). Finally, we follow case (i) or case (ii) (proved
above) and get the result.

From all the cases, F'(U(n,r 1)) < F(G) for each G € Ug.
(b) The proof is same as of part (a) using Lemmas 3.1-3.4 and Theorem 3.5.

Theorem 3.7. Let U be a class of all the unicyclic graphs such that the
order of each graph is n with a pendent vertices. Then,

4(2n+3a) < F(G) < 8n+ a(a+2)(a+ 3)

for each G € U, where the lower bound is achieved if and only if G = U(n, 1,1)
and the upper bound is achieved if and only if G =2 U(n,r,1).

Proof. Using corollary 3.4, we obtain F/(U(n,1,1)) = 4(2n+3«a) and F(U(n,r, 1))
= 8n+a(a+2)(a+3) for o = rl pendent vertices. Moreover, by Theorem 3.6
(a) F(U(n,r 1)) < F(G) implies that F(U(n,1,1)) < FU(n,r 1)) < F(G) and
F(G) < FU(n,r 1)) for each G € Uy . Consequently, we obtain 4(2n + 3a) <
F(GQ) <8n+ a(a+ 2)(a+ 3) for each G € Uy. Moreover, the lower bound is
achieved if and only if G =2 U(n,1,1) and the upper bound is achieved if and
only if G =U(n,r,1).

4. CONCLUSION

In this paper, we have characterized the extremal graphs with minimum
and maximum F-index in the class of unicyclic graphs with certain pendent
vertices. A mathematical inequality consisting on the lower and upper bounds
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of the F-index is also established in the terms of order of the graphs and the
attached pendent vertices.

5. ACKNOWLEDGEMENT

The authors would like to express their sincere gratitude to the anonymous
referees for their insightful comments and valuable suggestions, which led to
a number of improvements in the earlier version of this manuscript.

REFERENCES

[1] S. Akther and M. Imran, The sharp bounds on general sum-connectivity index of four
operations on graphs. J. Inequal. Appl. 2016, 241 (2016).

[2] K. C. Das, A. Yurttas, M. Togan, A.S. Cevik and I. N. Cangul, The multiplicative Zagreb
indices of graph operations. J. Inequal. Appl. 2013, 90 (2013).

[3] N. De, Sk. Md. Abu Nayeem and A. Pal, The F-coindex of some graph operations. J.
Inequal. Appl. 2016, 5:221 (2016).

[4] F. Zhan, Y. Qiao and J. Cai, Unicyclic and bicyclic graphs with minimal augmented
Zagreb index. J. Inequal. Appl. 2015, 126 (2015).

[5] M.V. Diudea, QSPR/QSAR studies by molecular descriptors, Nova Science Publishers,
(2001).

[6] E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, An atom-bond connectivity index:
modelling the enthalpy of formation of alkanes, (1998).

[7] B. Furtula, A. Graovac and D. Vukicevic, Augmented Zagreb index. Journal of Mathe-
matical Chemistry 48(2010): 370-380.

[8] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., 53(4)(2015) 1184-
1190.

[9] M. Ghorbani and N. Azimi, Note on multiple Zagreb indices. Iranian Journal of Mathe-
matical Chemistry, 3(2)(2012): 137-143.

[10] M. Ghorbani, M.A. Hosseinzadeh, Computing ABC} index of nanostar dendrimers.
Optoelectron. Adv. Mater. Rapid Commun. 4, 2010, 1419-1422.

[11] A. Graovac, M. Ghorbani, M.A. Hosseinzadeh, Computing fifth geometric-arithmetic
index for nanostar dendrimers. J. Math. Nanosci. 1, 2011, 33-42.

[12] A. Graovac, M.A. Hosseinzadeh, Computing ABC4 index of nanostar dendrimers, Op-
toelectron. Adv. Mater. Rapid Commun. 4 (2010): 1419-1422.

[13] I. Gutman, Degree-based topological indices, Croat. Chem. Acta (2013), 86, 351-361.

[14] 1. Gutman, N. Trinajsti, Graph theory and molecular orbitals. III. Total w-electron
energy of alternant hydrocarbons, Chem. Phys. Lett. 17(1972) 535-538.

[15] I. Gutman and O. E. Polansky, Mathematical concepts in organic chemistry, Springer
Science and Business Media, (1986).

[16] 1.Z. Milovanovié, M.M. Matejié, E.I. Milovanovié, Remark on forgotten topological index
of line graphs, Bulletin of the Int. Mathematical Virtual Institute, 7(2017), 473-478.
[17] B. Basavanagoud, S. Timmanaikar, Computing first Zagreb and forgotten indices of
certain dominating transformation graphs of Kragujevac trees, Journal of Computer and

Mathematical Sciences, 8(3)(2017), 50-61



Bounds of F-index for unicyclic graphs with fixed pendent vertices 61

[18] A. Khaksari, M. Ghorbani, On the forgotten topological index, Iranian J. Math. Chem.
8(3)(2017), 1-12

[19] S. Akhter, M. Imran, M.R. Farahani, Extremal unicyclic and bicyclic graphs with re-
spect to the F-index AKCE International Journal of Graphs and Combinatorics 14(2017)
80-91.

[20] H. Wiener, Structural determination of Paraffin boiling points, J. Am. Chem. Soc.
69(1947): 17-20.

[21] D.B. West, Introduction to Graph Theory, USA Printce Hall 1996.

[22] M. Randié , On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975)
6609-6615.

[23] B. Bollobas, P. Erdos, Graphs of extremal weights, Ars Combin. 50 (1998) 225-233.

[24] D. Amic, D. Beslo, B. Lucic, S. Nikolic, N. Trinajsti¢, The vertex-connectivity index
revisited, J. Chem. Inf. Comput. Sci. 38 (1998) 819-822.

[25] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015): 1184-
1190.

[26] C. Wang, J. Liu, S. Wang, Sharp upper bounds for multiplicative Zagreb indices of
bipartite graphs with given diameter, Discrete Applied Mathematics, 227 (2017): 156-
165.

[27] A.T. Balaban (Ed.), Chemical Application of Graph Theory, Academic Press, Lon-
don,1976.

[28] A. Graovac, I. Gutman, and N. Trinajstié, Topological Approach to the Chemistry of
Conjugated Molecules, Springer-Verlag, Berlin, 1977.

[29] D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structure,
Research Studies Press, Chichester, 1983.

[30] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-
Verlag, Berlin, 1986.

[31] D. Bonchev and D. H. Rouvray (Eds.), Chemical Graph Theory-Introduction and Fun-
damentals, Gordon and Breach, New York, 1991.

[32] N. Trinajsti¢, Chemical Graph Theory, 2nd revised ed. ; CRC, Boca Raton, Fl., 1992.
48.

[33] J.R. Dias, Molecular Orbital Calculations Using Chemical Graph Theory, Springer-
Verlag, Berlin, 1993.

[34] M.V. Diudea and O. Ivanciuc, Molecular Topology, Comprex, Cluj 1995 (in Romanian).

[35] A.T. Balaban, Applications of graph theory in chemistry J. Chem. Inf. Comput. Sci.,
1985, 25 (3), 334-343

[36] J. R. Dias, and G. W. A. Milne, Chemical Applications of Graph Theory, J. Chem. Inf.
Comput. Sci., 32 (1), 1992, 210-242.

[37] P.J. Hansen, P.C. Jurs, Chemical applications of graph theory. Part I. Fundamentals
and topological indices, J. Chem. Educ. 65, 1988, 574-580.

[38] P. G. Seybold, M. May, and U. A. Bagal, Molecular-structure property relationship J.
Chem. Educ. 64 (1987) 575-581.

[39] Z. Mihali¢ and N. Trinajstié¢, A graph-theoretical approach to structure-property rela-
tionshipsJ. Chem. Educ. 69, 1992, 701-712.

[40] W. Gao, M.R. Farahani, L. Shi, Forgotten topological index of some drug structures,
Acta Med. Medit., 32(1), 2016, 579-585.

[41] Z. Che, Z. Chen, Lower and upper bounds of the forgotten topological index, MATCH
Commun. Math. Comput. Chem., 76(3), 2016, 635-648.



