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SOLVING DIFFERENTIAL EQUATIONS BY WAVELET

TRANSFORM METHOD BASED ON THE MOTHER

WAVELETS & DIFFERENTIAL INVARIANTS

HAMID REZA YAZDANI, MEHDI NADJAFIKHAH, AND MEGERDICH TOOMANIAN

Abstract. Nowadays, wavelets have been widely used in various fields
of science and technology. Meanwhile, the wavelet transforms and the
generation of new Mother wavelets are noteworthy. In this paper, we
generate new Mother wavelets and analyze the differential equations by
using of their corresponding wavelet transforms. This method by Mother
wavelets and the corresponding wavelet transforms produces analytical
solutions for PDEs and ODEs.
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1. Introduction

In mathematics, the combined techniques have been appeared very success-
ful for analyzing problems. In this paper, we propose a new method based
on the wavelet transforms and differential invariants. The first is related to
the wavelet theory, and the latter uses Lie groups for analyzing differential
equations. Hence, we begin by introducing a history of Lie groups.

At the end of the nineteenth century, Sophus Lie introduced the notion of
Lie group in order to study the solutions of ordinary differential equations
(ODEs). He showed that the order of an ordinary differential equation can
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be reduced by one if it is invariant under one-parameter Lie group of point
transformations. This observation unified and extended the available inte-
gration techniques. Lie devoted the remainder of his mathematical career to
developing these continuous groups that have now an impact on many areas of
mathematically based sciences. The applications of Lie groups to differential
equations and systems were mainly established by Lie and Emmy Noether
and then advocated by lie Cartan [2]. Such Lie groups are invertible point
transforms of both the dependent and independent variables of the differential
equations. The symmetry group method provides ultimate tools for analyzing
differential equations and the important points are to understand and to con-
struct solutions of differential equations. Many examples of applications of Lie
groups in the theory of differential equations were discussed in the literature,
the most important of them are: reduction of order of ODEs, construction of
invariant solutions, mapping solutions to other solutions and the detection of
linearizing transforms (for some other applications of Lie symmetries see [1],
[2]).

The wavelets are important functions in the functional and harmonic anal-
ysis. The first wavelet was introduced by the David Hilbert ’s Ph.D. student,
Alfréd Haar (Hungarian Mathematician) in 1909 [5]. Nowadays, wavelets have
numerous applications in many fields of science and technology, such as seis-
mology, image processing, signal processing, coding theory, biosciences, fi-
nancial mathematics, fractals and so on [1]. In the many of applications of
wavelets for solving differential equations, the numerical solutions in special
conditions were obtained. Meanwhile, wavelets with two or more variables are
very important. In this paper, we make some new Mother wavelets with two
variables, these wavelets depend on the differential invariants of differential
equations. Therefore, we can use their correspondent transforms for solving
differential equations. This method called Wavelet Transform Method (WTM)
based on the Mother wavelets. We will show the performance of WTM with
an example. Then, the obtained solutions by WTM will be compared with
other methods such as the Lie symmetry method.

The remainder of the paper organized as follows. In section 2, we recall some
needed preliminaries to construct the differential invariants, Mother wavelets
and wavelet transforms. In section 3, the wavelet transform method based on
the Mother wavelets is proposed. In sections 4, WTM is demonstrated by an
example. Finally, the conclusions and future works are presented.

2. Preliminaries

In this section, we recall some needed results to construct differential in-
variants, the Mother wavelets, and their transforms. First, we remember the
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Lie symmetry method that can be applied for obtaining the differential in-
variants and reducting the order of PDEs. After that, the wavelets and their
transforms are discussed. The related definitions and theorems are considered.

2.1. The Lie symmetry method. In this section, we recall some needed
concepts and results from the Lie theory and the general procedure for de-
termining symmetries for any system of partial differential equations (PDEs)
(see [8] and [9]). To begin, let us consider

∆ν(x, u
(n)) = 0, ν = 1, · · · , l, (1)

as the general case of a nonlinear system of partial differential equations of or-
der nth in p independent and q dependent variables involving x = (x1, · · · , xp),
u = (u1, · · · , uq) and the derivatives of u with respect to x up to n, where u(n)

represents all the derivatives of u of all orders from 0 to n. We consider a one-
parameter Lie group of infinitesimal transforms acting on the independent and
dependent variables of the system (1):

(x̃i, ũj) = (xi, uj) + s(ξi, ηj) +O(s2), i = 1 · · · , p, j = 1 · · · , q,

where s is the parameter of the transform and ξi, ηj are the infinitesimals
of the transforms for the independent and dependent variables, respectively.
The infinitesimal generator v associated with this group of transforms can
be written as v =

∑p
i=1 ξ

i∂xi +
∑q

j=1 η
j∂uj , So a symmetry of a differential

equation is a transform which maps solutions of the equation to other solutions.
The invariance of the system (1) under the infinitesimal transforms leads to
the invariance conditions (Theorem 2.36 of [9]):

Pr(n)v
[
∆ν(x, u

(n))
]
= 0, ∆ν(x, u

(n)) = 0, ν = 1, · · · , l,

where Pr(n) is called the nth order prolongation of the infinitesimal generator
given by Pr(n)v = v +

∑q
α=1

∑
J ϕ

α
J (x, u

(n))∂uαJ , where J = (j1, · · · , jk), 1 ≤
jk ≤ p, 1 ≤ k ≤ n and the sum is over all J ’s of order 0 < #J ≤ n. If
#J = k, the coefficient ϕαJ of ∂uαJ will only depend on k-th and lower order

derivatives of u, and ϕJα(x, u
(n)) = DJ(ϕα −

∑p
i=1 ξ

iuαi ) +
∑p

i=1 ξ
iuαJ,i, where

uαi := ∂uα/∂xi and uαJ,i := ∂uαJ/∂x
i.

In fact, these infinitesimal symmetries form a Lie algebra under the usual
Lie bracket. The first useful result of symmetry group methods is to construct
new solutions from known solutions. The second is when a nonlinear system of
differential equations admits infinite symmetries, so it is possible to transform
it to a linear system. Here, the symmetry group method will be applied to
the PDE to be connected directly to some order differential equations. To do
this, a particular linear combinations of infinitesimals are considered and their
corresponding invariants are determined.
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For every generator vector field, we can determine differential invariants
corresponding to vector field by solving the following characteristics system

dx

ξ
=
dt

τ
=
du

ϕ

and reduce the order of PDE by expressing PDE in the coordinates (x, t, u).
Those coordinates will be constructed by searching for independent invariants
(y, v) corresponding to the infinitesimal generator. Hence by using the chain
rule, the expression of the equation in the new coordinate allows us to the
reduced equation. For more informations and examples, see [10].

2.2. The wavelets. In the mathematics and other scientific fields, the wavelets
are very important functions. In this section, we introduce wavelets as func-
tions belong to L2(R2) (the space of squared integrable functions with integral
norm).

Definition 1. A Function ψ ∈ L2(R2) is called a wavelet, if it satisfies in the
follow admissible condition

Cψ =

∫
R2

|F (ψ)(ω)|2dω
|ω|2

> 0

where F (ψ)(ω) is the Fourier transform of wavelet ψ and as follows

F (ψ)(ω) =
1

2π

∫
R2

exp(−ix.ω)ψ(x)dω

and Cψ is called wavelet coefficient of ψ. Note that ω = (ω1, ω2) and x =
(x1, x2) belong to R2. For more details and examples, see [2].

Definition 2. The wavelet ψ is called Mother wavelet, if it satisfies in the
following properties ∫

R2

ψ(x)dx = 0, (2)∫
R2

|ψ(x)|2dx = 1, (3)

lim
|ω|→∞

F (ψ(ω)) = 0 (4)

Indeed, the first property equivalents to Cψ > 0, that is admissible condition
for the Mother wavelet ψ. For more details see [5].

In fact, the Mother wavelets have admissible condition, n-zero moments
and exponential decay properties. The Mother wavelet have two parameters:
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the translation parameter b = (b1, b2) and the scaling parameter a > 0. The
Mother wavelet corresponding to (a, b) as follows

ψa,b(x) = ψ(
x− b

a
) = ψ(

x1 − b1
a

,
x2 − b2
a

)

Definition 3. The wavelet transform corresponding to the Mother wavelet ψ
for function f ∈ L2(R2) with parameters (a, b) is defined as follow

Wψ(f)(a, b) =
1

|a|.Cψ

∫
R2

ψa,b(x).f(x)dx

Thus, wavelet transform depends on wavelet ψ, function f , and parameters
(a, b).

Theorem 1. The wavelet transform is an operator from L2(R2) to L2(R2)
that satisfies in following properties:

1. Linearity: Wψ[αf(x) + βg(x)] = αWψ[f(x)] + βWψ[g(x)],
2. Translation: Wψ[f(x− k)] =W (a, b− k), k ∈ R2,

3. Scaling: Wψ[
1√
s
f(xs )] =W (as ,

b
s),

4. Wavelet shifting: Wψ(x−k)[f(x)] =W (a, b+ ak),
5. Linear combination: Wαψ1+βψ2 [f(x)] = αWψ1 [f(x)] + βWψ2 [f(x)],
6. Wavelet scaling: Wψ(x/s)√

(|s|)
[f(x)] =W (as, b).

Proof. for proof and more details, see [5]. □
In fact, the wavelet transforms corresponding Mother wavelets are isome-

tries. Therefore, In smooth manifold M , if W (M) is a collection of wavelet
transforms of M , then W (M) is a Lie subgroup of I(M) (the isometry group
of M) [2].
The admissible condition implies that the wavelet transform is invertible. On
the other hands, since the wavelet transform is an isometry, Thus it is invert-
ible. The inversion formula for the wavelet transform Wψ(f) is

f(x) = f(x1, x2) =
1

Cψ

∫
R+×Rn

Wψf(a, b)ψa,b(x)
da db1 db2

a3

So, by inversion formula (also called the synthesis formula), the function f(x)
corresponds to the wavelet transform Wψ(f) will be obtained.

3. The wavelet transform method

The wavelet tranform method (WTM) have the following steps:

1 . Apply equivalence algorithms (for example, the Lie symmetry method)
on the differential equation, and obtain differential invariants.

2 . Build the suitable Mother wavelets based on the differential invari-
ants.
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3 . Multiply the Mother wavelet in both sides of the equation and take
the wavelet transform. Solve the reduced differential equation and
obtain the wavelet transform.

4 . By the inversion formula, calculate the analytic solution.

In follow, some WTM formulas are proposed. First, we remember the Bonnet
theorem, for proof and more details see [3].

Theorem 2 (The Bonnet theorem). If f, g are continuous functions on [a, b]
such that g does not change its sign on [a, b], then there exist c ∈ [a, b]∫ b

a
f(x).g(x)dx = f(c)

∫ b

a
g(x)dx.

Note that, all functions such as wavelets and solutions are smooth and Mother
wavelets (based on their constructions) are compactly supported. Therefore,
there exist [a, b] in support and c ∈ [a, b] that satisfies in the Bonnet theorem.

Theorem 3. Assume ∆ν(x, t, u
(m)) = 0 is m-th order differential equation

with two independent variables (x, t) and ψ is a Mother wavelet based on the
differential invariants (with t is constant and x is variable), we have:

i) Wψ(∂tu)(x, t) =
d
dtWψ(u)(x, t),

ii) Wψ(∂
n
t u)(x, t) =

dn

dtnWψ(u)(x, t),

iii) Wψ(∂xu)(x, t) = (∂ψ∂x /ψ)Wψ(u)(x, t),

iv) Wψ(∂
n
xu)(x, t) = (−1)n(∂

nψ
∂xn /ψ)Wψ(u)(x, t).

Proof. We consider a = 1, b = 0 and prove (i)-(iv).
i) We have

Wψ(∂tu)(x, t) =
1

√
cψ

∫
utψdx =

1
√
cψ

∫
lim
h→0

u(x, t+ h)− u(x, t)

h
ψdx

= lim
h→0

1

h

{ 1
√
cψ

∫
u(x, t+ h)ψdx− 1

√
cψ

∫
u(x, t)ψdx

}
= lim

h→0

ũ(x, t+ h)− ũ(x, t)

h
=

d

dt
ũ(x, t).

where ũ(x, t) =Wψ(x, t).

ii) By following the induced above procedure (according to the derivation
order of t (i.e. n)), we have

Wψ(∂
n
t u)(x, t) =

1
√
cψ

∫
u
(n)
t ψdx =

1
√
cψ

d

dt

∫
∂n−1u

∂tn−1
ψdx

=
d

dt

{ d
dt

∫
∂n−2u

∂tn−2
ψdx

}
= ... =

dn

dtn
ũ(x, t).
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iii) We know that

Wψ(∂xu)(x, t) =
1

√
cψ

∫
uxψdx = (

1
√
cψ
.ψ.u]+∞

−∞ − 1
√
cψ

∫
u
∂ψ

∂x
dx

= −
( ∂ψ
∂x

ψ

)
(c)ũ(x, t).

where (for caculating the integral) we use the integral by part with u = ψ, dv =
∂u
∂x , also assume limx,t→∞ u(x, t) = 0 and finally, we use the Bonnet theorem
with

f(x) =
∂ψ
∂x

ψ
, g(x) = u(x, t)ψ(x, t)

(assume supp(g) = A.B, such that A,B are closed intervals in R) at c ∈ A.
iv) By following inducely above procedure (according to the derivation order
of x), we get

Wψ(
∂nu

∂xn
)(x, t) = (

1
√
cψ
.ψ
dn−1u

dxn−1
]+∞
−∞ − (

1
√
cψ
.
∂ψ

∂x
.
dn−2u

dxn−2
]+∞
−∞

+...+ (−1)n
( ∂nψ
∂xn

ψ

)
(c)ũ(x, t).

hereafter, if

lim
x,t→∞

u(x, t) = lim
x,t→∞

ux(x, t) = ... = lim
x,t→∞

u(n−1)
x (x, t) = 0,

by the Bonnet theorem with

f(x) =
∂nψ
∂xn

ψ
, g(x) = u(x, t)ψ(x, t)

(assume supp(g) = A.B, such that A,B are closed intervals in R) at c ∈ A,
formula (iv) will be obtained. □

In fact, we take the wavelet transform from every side of ∆ν(x, t, u
(m)) = 0

by the assumption t = cte, x = variable, a = 1, b = 0, then solve the reduced
equation according to ũ(x, t) and its t-derivations, obtain ũ(x, t), here after,
for given Mother wavelet ψ(x, t) and obtained wavelet transform ũ(x, t), we
calculate u(x, t) from the below formula (1D-inversion formula)

u(x, t) =

∫
R
ũ(x, t)ψ(x, t)dx (5)

u(x, t) is desired analytic solution and Differential equation is solved by WTM
according to ψ based on the differential invariants. In the following section,
for example, we apply WTM on the heat equation.
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4. Example

Here, we demonstrate WTM by example, we implement WTM on the heat
equation and obtain solutions. Finally, WTM results will be proposed. First,
we apply the Lie symmetry method on the heat equation ut = uxx and obtain
symmetry groups, vector fields and differential invariants (for more details and
calculations, see [9]). The results of Lie symmetry method proposed in the
following table:

Table 1. The Lie symmetry method: Symmetry groups, Vector fields, Di-
mension of Lie groups, Differential invariants

Symmetry groups Vector Field dim(g)Differential invariants
Translation with factor (c) c∂x + ∂t 2 x− ct, u

Scaling with factor (a) x∂x + 2t∂t + 2au∂u, 3 (x/
√
t), (u/ta)

Galilean boost 2t∂x − xu∂u 2 t, u exp(x2/4t)

In table 1, the symmetry groups are translation, scaling and Galilean boost
(respectively). In table 2, we offer the adequate Mother wavelet for every
differential invariant and symmetry group.

Table 2. The Mother wavelets: symmetry groups, differetial invariants and
Mother wavelets

Symmetry groups Differential Invariants Mother wavelets

Translation x− ct, u
(4/5) exp(−(x2 + t2)/2) sin(π(x− ct)/2)
(4/5) exp(−(x2 + t2)/2) cos(π(x− ct)/2)

Scaling (x/t), (x/
√
t), (u/ta) exp(−(x2 + 15t2)/20) cos(x/t) sin(x/t)

Galilean boost t, u exp(x2/4t) exp(−(x2 + 15t2)/20) cos(x/t) sin(x/t)

By computation, it can be seen that the offered functions have properties
(2) − (4) of the Mother wavelets. Figures 1-3 show the graphs of Mother
wavelets and some properties are clear from these figures.

Now, we apply WTM on the heat equation. First, consider the Mother
wavelet

ψ1 := (4/5) exp(−x
2 + t2

2
) sin(

π

2
(x− 2t))

obviously, supp(ψ1) = {(x, t) ∈ [−π, π].[−π, π] | (x − 2t) ̸= 2k} = A.B. Then,
by multiplying both sides of the heat equation in ψ1 and taking the wavelet
transform, we have

d

dt
ũ(x, t) = (

∂2

∂x2
ψ1)ũ(x, t)

by calculating the second derivation of ψ1 and using of the Bonnet theorem,
there exists c ∈ A such that

d

dt
ũ(x, t) = −(c2 − πc− 3.5)ũ(x, t)
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Figure 1. The graph of ψ1

therefore
ũ(x, t) = F (x) exp(−(c2 − πc− 3.5)t) +K

where K is constant at R and F (x) is a function of x that according to the
initial or boundary conditions will be determined. Thus, the general analytic
solution from (5) is

u(x, t) = (4/5)

∫ {
F (x) exp(−(c2−πc−3.5)t) exp(−x

2 + t2

2
) sin(

π

2
(x−2t))

}
dx

Second, consider the Mother wavelet

ψ2 := (4/5) exp(−x
2 + t2

2
) cos(

π

2
(x− 2t))

Obviously, supp(ψ2) = {(x, t) ∈ [−π, π].[−π, π] | (x − 2t) ̸= 2k + 1} = A.B.
Then by multiplying the both sides of heat equation in ψ2 and taking the
wavelet transform, we get

d

dt
ũ(x, t) = (

∂2

∂x2
ψ2)ũ(x, t)

by calculating the second derivation of ψ2 and using of the Bonnet theorem,
there exists c ∈ A such that

d

dt
ũ(x, t) = −(c2 + πc− 3.5)ũ(x, t)
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Figure 2. The graph of ψ2

therefore
ũ(x, t) = F (x) exp(−(c2 + πc− 3.5)t) +K

where K is a real constant and F (x) is a real function that can be deter-
mined according to the initial-boundary conditions. Thus, according to (5),
the general analytic solution is the following

u(x, t) =

∫ {
F (x) exp(−(c2 + πc− 3.5)t) exp(−x

2 + t2

2
) cos(

π

2
(x− 2t))

}
dx

Third, let us ψ3 as follows

ψ3 := exp(−x
2 + 15t2

20
) cos(

x

t
) sin(

x

t
)

Obviously, supp(ψ3) = {(x, t) ∈ [−2π, 2π].[−π2 ,
π
2 ] |

x
t ̸= kπ

2 } = A.B. After
taking the wavelet transform from the both sides of heat equation under ψ3,
we have

d

dt
ũ(x, t) = (

∂2

∂x2
ψ3)ũ(x, t)

Now, with calculate the second derivation ψ3 and use of the Bonnet theorem,
there exist c ∈ A such that

d

dt
ũ(x, t) = −c

2t2 − 40ct− 10t2 − 400

100t2
ũ(x, t)
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Figure 3. The graph of ψ3

therefore

ũ(x, t) = F (x) exp(−
∫ {c2t2 − 40ct− 10t2 − 400

100t2
}
dt) +K

By a little calculation, we get

ũ(x, t) = F (x)t−
2
5
c exp(

c2t2 − 10t2 + 400

100
) +K

where K and F (x) are constant at R and the function of x can be determined
based on according to the initial or boundary conditions. Therefore from (5),
the general analytic solution as follows

u(x, t) =

∫ {
F (x)t−

2
5
c exp(

c2t2 − 10t2 + 400

100
) exp(−x

2 + 15t2

20
) cos(

x

t
) sin(

x

t
)
}
dx.

We can calculate such complicated integrals with numerical methods like ap-
proximation by taylor (around every points) or maclaurin (around zero) serie
exapnsion of exponential & trigonometric functions, Thus by approximating
these integrals, final solution are obtained. The results of wavelet transform
method on the heat equation are presented in table 3.
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Table 3. WTM results: the Mother wavelet, the wavelet tranform, the ana-
lytic solution

M.W The wavelet tranform The analytic solution
ψ1 F (x) exp(−(c2 − πc− 3.5)t) +K

∫ {
F (x) exp(−(c2 − πc− 3.5)t).ψ1

}
dx

ψ2 F (x) exp(−(c2 + πc− 3.5)t) +K
∫ {

F (x) exp(−(c2 + πc− 3.5)t).ψ2

}
dx

ψ3 F (x)t−
2
5
c exp( c

2t2−10t2+400
100 ) +K

∫ {
F (x)t−

2
5
c exp( c

2t2−10t2+400
100 ).ψ3

}
dx

Note that, in comparision with WTM based on the quasi-wavelets [13], by
Mother wavelet ψ1, ψ2, we conclude that A(c) = π

c , therefore c = 1.38,−4.47,

but c ∈ [−π, π] so c = 1.38 and u(x, t) = F (x) exp(−π2

4 t)+K (for more details
and information about WTM based on the quasi-wavelets, see [13]).

5. Conclusions & future works

In this paper, we present a new method based on the Mother wavelets
and the corresponding wavelet transforms. We used the findings of symmetry
methods such as the Lie’s symmetry method to construct favorable Mother
wavelets. Then, we found the related wavelet transforms and affect them
on both sides of the differential equation. Because of the integral nature of
these transforms, the differential equation has been reduced. We solve the
resulting reduced equation and get the solution. As we have seen, this method
is very dependent on the presentation of a suitable Mother wavelet. Therefore,
the basic and primary step is finding the appropriate Mother wavelet that is
based on the differential invariants of the differential equation. In the future,
by implementing this algorithm on various differential equations, we seek to
find the appropriate Mother wavelet for each equation and each symmetry
group. We also try to generalize this method to higher dimensions and more
independent variables.
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