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CONNECTIVE ECCENTRICITY INDEX OF CERTAIN

PATH-THORN GRAPHS

M. JAVAID1, M. IBRAHEEM1, A. A. BHATTI2

Abstract. Let G be a simple connected graph with V (G) and E(G) as
the vertex set and edge set respectively. A topological index is a numeric
quantity by which we can characterize the whole structure of a molecu-
lar graph or a network to predict the physical or chemical activities of the
involved chemical compounds in the molecular graph or network. The con-

nective eccentricity index of the graph G is defined as ξce(G) =
∑
v∈G

d(v)
e(v)

,

where d(v) and e(v) denote the degree and eccentricity of the vertex v ∈ G
respectively. In this paper, we compute the connective eccentricity index
of the various families of the path-thorn graphs and present the obtained
results with the help of suitable mathematical expressions consisting on
various summations. More precisely, the computed results are general ex-
tensions of the some known results.

Key words : Distance-based index; Eccentricity; Path-thorn graph.
AMS SUBJECT : 05C05;05C12;05C35;05C90.

1. Introduction

Topological indices are numerical quantaties of the graph which characterise
the whole graph and these are isomorphic under the operation of graph isomor-
phism. Topological indices have found applications in a sapcific area of mathe-
matical chemistry which is known as chemical graph theory. The combination
of information science, mathematics, and chemistry leads to a new subject
called cheminformatics. It studies the quantitative structure-property rela-
tionship (QSPR) and the quantitative structure-activity relationship (QSAR)
that are used to predict the biological activities in the chemical compounds of

1Department of Mathematics, School of Science, University of Management
and Technology, Lahore, Pakistan; javaidmath@gmail.com, ibraheemsaim364@gmail.com.
2Department of Mathematics, National University, of Computer and Emerging Sciences,
Lahore, Pakistan; akhlaq.ahmad@nu.edu.pk.

87



88 Javaid et al.

the underlying molecular graph. There are some main classes of topological
indices such as degree-based, distance-based and polynomial related indices of
the graphs.

For the first time in 1947, Harold Wiener made the use of a topological index
in chemistry while working on the boiling point of paraffin which later named
the Wiener index, see [23]. He introduced the notion of path number of the
graph as the sum of distance between any two carbon atoms in molecules. The
Wiener index is equal to the count of all shortest distances in the graph. After
the Wiener index, the theory of topological indices is started. In the pro-
gressive studies of indices, various topological indices have been introduced
by different chemists and mathematicians. A large numbers of such indices
depend on degrees of vertices and some others depend on distance property
of the vertices. The distance-based index such as the total eccentricity index,
eccentric connectivity index, eccentric distance sum index, average eccentric-
ity index, reformed eccentric connectivity index, adjacent eccentric distance
sum index and superaugmented eccentric connectivity index are studied in
[7, 8, 15, 18, 20, 17, 10, 14, 16, 21, 22, 24]. The connective eccentricity index
(CEI) is most familiar among the distance-based indices which is defined by
Gupta, Singh and Madan, see [9].

In order to explore the potential of the CEI in predicting biological activity,
the authors used non-peptide N-benzimidazole derivatives to investigate the
predictability of the CEI with respect to antihypertensive activity. It is noted
that the results obtained by using CEI were better than the corresponding
values obtained by using Balanan’s mean square distance index and accuracy
of prediction was found to be about 80 percent in the active range for details,
see [9]. De [3] reported some bounds for CEI in term of some graph invariants
such as maximum and minimum degree, radius, diameter, first Zagreb index
and first Zagreb eccentricity index, etc. Ashrafi et al. [1, 2] determined the
closed formulas for the CEI of nanotubes and nanotori.

Ghorbani and Malekjani [12] computed the CEI of an infinite family of fullerenes.
Yu and Feng in [25] derived some lower or upper bounds for the CEI of graphs
in term of several graph invariants such as independence number, radius, ver-
tex connectivity, the numbers of vertices with eccentricity 1 and investigated
the maximal and minimal value of CEI among all n-vertex graphs with fixed
numbers of pendent vertices. Nilanjan, Pal and Nayeem have also studied CEI
on some graph operations. Nilanjan presented some bounds for this CEI in
terms of different graph invariants [4, 5]. In [11], Ghorbani calculated some
bounds of CEI and explicit expression for this index for two infinite classes
of dendrimers. Nilanjan et al. compute the CEI of complete thorny graph,
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bipartite thorny graph, star thorny graph, cycle thorny graph and path thorny
graph in [6].

In this paper, we compute the results related to CEI of complete path-thorn
graph, complete bipartite path-thorn graph, star path-thorn graph, cycle path-
thorn graph and path path-thorn graph. In general, these constructed graphs
and their mathematical expressions with respect to CEI are the extensions of
some known results. The rest of the paper is organised as; Section 2 contains
the basic definitions related to graphs theoretic concepts. Mainly thorny graph
and path-thorn graph are distinguished. Section 3 contains the main results
of this paper.

2. Preliminaries

Let G be a simple connected graph with E(G) and V (G) as the edge set
and vertex set respectively. We also let m and n be the number of vertices and
edges of the given graph G. For a vertex v ∈ V (G), d(v) denote the degree of
vertex v. For vertices u, v ∈ V (G), the distance is denoted by d(u, v) and is
defined as the length of a shortest path between vertices u and v in G. The
eccentricity of a vertex v is the maximum distance from v to any other vertex
of graph G and is denoted by e(v). The diameter of a graph G is the maximum
eccentricity of any vertex in the graph and is denoted by diam(G).

Definition 2.1. Let G be a graph then the total eccentricity index, eccen-
tric connectivity index, eccentric distance sum index, and superaugmented
eccentric connectivity index are defined as

ξ(G) =
∑
v∈G

e(v), ξc(G) =
∑
v∈G

e(v)d(v), ξd(G) =
∑
v∈G

e(v)D(v), and

ξac(G) =
∑
v∈G

M(v)
e(v) respectively, where d(v) denotes the degree, e(v) shows ec-

centricity and M(v) presents the product of degrees of all neighbors of vertex
v of the graph G and D(v) =

∑
u∈G

d(u, v).

Definition 2.2. Let G be a graph then connective eccentricity index of graph

G is defined as ξce(G) =
∑
v∈G

d(v)
e(v) , where d(v) and e(v) denote the degree and

eccentricity of the vertex.

Let G be a graph with vertex set {vi : 1 ≤ i ≤ n} and {pi : 1 ≤ i ≤ n}
be the set of positive integers then the thorn graph of any graph G denoted
by G∗{p1,p2,...,pn} is obtained by attaching pi pendant vertices to vi for each i.

This notation is given by Gutman, for detail see [13]. Now, we extend this
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definition and define path-thorn graph. Let {v1, v2, ..., vn} be the vertex set of
G and {pq1, p

q
2, ..., p

q
n} be the set of positive numbers which present the number

of paths such that the length of each path is fixed by q. The path-thorn graph
of the graph G is denoted by G∗{pq1,p

q
2,...,p

q
n}

and obtained by attaching pqi paths

to the vertices vi for each i.

Let Kν be a complete graph with ν vertices. The complete path-thorn graph
K∗n is obtained by attaching pqi paths each of length q to the vertex vi of Kν ,
where i = 1, 2, ..., ν. Let Kν1,ν2 be the complete bipartite graph with ν1 + ν2
vertices such that ν1 vertices have degree ν2, ν2 vertices have degree ν1 and
eccentricity of each vertex is 2. Therefore, connective eccentricity index (CEI)
of complete bipartite Kν1,ν2 is ν1ν2. Let K∗m,n be the complete bipartite path-

thorn graph obtained by attaching pqi number of paths each of length q to each
vertex of Kν1,ν2 , where 1 ≤ i ≤ ν1 + ν2. Similarly, we obtain path path-thorn
graph P ∗n , cycle path-thorn graph C∗n and star path-thorn graph S∗n = K1,(n−1)
from path Pν , cycle Cν and star Sν = K1,(ν−1) by joining pqi paths each of
length q to each vertex vi of Pν , Cν and Sν = K1,(ν−1) respectively, where
1 ≤ i ≤ ν.

3. Main Results

In this section, we present the main results of the connective eccentricity
index (CEI) for the various families of the path-thorn graphs such as complete
path-thorn, complete bipartite path-thorn, star path-thorn, cycle path-thorn
and path path-thorn graphs.

Theorem 3.1. Let Kν be a complete graph and K∗n be its complete path-
thorn graph. Then, CEI of complete path-thorn graph is given by

ξce(K∗n) =
ν(ν − 1)

q + 1
+ [

3q + 2

(q + 1)(2q + 1)
+

q−1∑
j=1

2

q + 1 + j
]

ν∑
i=1

pqi ,

where ν ≥ 3, q ≥ 1, pi ≥ 1 for 1 ≤ i ≤ ν and n = ν + q
ν∑
i=1

pi.

Proof. Let Kν be a complete graph with vertices vi for i = 1, 2, 3, ..., ν and the
complete path-thorn graph K∗n is obtained by attaching pqi path-thorn each of
length q to the vertex vi of Kν . The vertices of newly attached path-thorn are
vtij for i = 1, 2, 3, ..., ν, j = 1, 2, 3, ..., q and t = 1, 2, 3, ...pqi . The degrees and

eccentricities of the vertices of K∗n are dk∗n(vi) = ν − 1 + pqi , ek∗n(vi) = q + 1,
dk∗n(vt

ij
) = 2, dk∗n(vt

iq
) = 1 and ek∗n(vtij) = q + 1 + j, where i = 1, 2, 3, ..., ν,

j = 1, 2, 3...., q − 1 and t = 1, 2, ...pqi .
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ξce(K∗n) =
n∑
i=1

d(vi)

e(vi)
=

ν∑
i=1

d(vi)

e(vi)
+

ν∑
i=1

q−1∑
j=1

pqi∑
t=1

d(vtij)

e(vtij)
+

ν∑
i=1

pqi∑
t=1

d(vtiq)

e(vtiq)

=
ν∑
i=1

ν − 1 + pqi
q + 1

+
ν∑
i=1

q−1∑
j=1

pqi∑
t=1

2

q + 1 + j
+

ν∑
i=1

pqi∑
t=1

1

2q + 1

=
ν(ν − 1)

q + 1
+

ν∑
i=1

pqi
q + 1

+

q−1∑
j=1

2

q + 1 + j

ν∑
i=1

pqi+
1

2q + 1

ν∑
i=1

pqi

=
ν(ν − 1)

q + 1
+

1

q + 1

ν∑
i=1

pqi+

q−1∑
j=1

2

q + 1 + j

ν∑
i=1

pqi+
1

2q + 1

ν∑
i=1

pqi

=
ν(ν − 1)

q + 1
+[

1

q + 1
+

q−1∑
j=1

2

q + 1 + j
+

1

2q + 1
]
ν∑
i=1

pqi

ξce(K∗n) =
ν(ν − 1)

q + 1
+[

3q + 2

(q + 1)(2q + 1)
+

q−1∑
j=1

2

q + 1 + j
]

ν∑
i=1

pqi .

Theorem 3.2. Let Kν1,ν2 be a complete bipartite graph and K∗m,n be its
complete bipartite path-thorn graph. Then, CEI of K∗m,n is given by

ξce(K∗m,n) =
2ν1ν2

(q + 2)
+[

ν1∑
i=1

pqi+

ν2∑
i=1

p∗qi ]
(3q + 4)

(q + 2)(2q + 2)
+2

q−1∑
j=1

1

q + 2 + j

ν1∑
i=1

pqi+

2

q−1∑
j=1

1

q + 2 + j

ν2∑
i=1

p∗qi ,

where ν1, ν2 ≥ 2, q ≥ 1, pi ≥ 1 for 1 ≤ i ≤ ν1 + ν2 and |V (K∗m,n)| =

(ν1 + ν2) + q
ν∑
i=1

pi = m+ n.

Proof. Let {v1, v2, v3, .., vν1 , u1, u2, u3, ..., uν2} be the vertex set of graph
Kν1,ν2 . The path-thorn pqi and p∗qi each of length q are attached to vi and
ui respectively to get K∗m,n for i = 1, 2, ..., ν1 and i = 1, 2, .., ν2 respectively.

The vertices of the newly attached path-thorn are vtij for i = 1, 2, 3, ..., ν1,

j = 1, 2, 3, ..., q, t = 1, 2, 3, ..., pqi and utij for i = 1, 2, 3, ..., ν2, where j =

1, 2, 3, ..., q, t = 1, 2, 3, ..., p∗qi . The eccentricities and degrees of the vertices
of the graph K∗m,n are given by d(vi) = ν2 + pqi , e(vi) = q + 2, e(ui) =

q + 2, d(vi) = ν2 + pqi , d(ui) = ν1 + p∗qi , e(vtij) = q + 2 + j, e(utij) = q + 2 + j,

for vi, i = 1, 2, ..., ν1, j = 1, 2, ..., q, t = 1, 2, ..., pqi , and for ui, i = 1, 2, ..., ν2,
j = 1, 2, ..., q, t = 1, 2, ..., p∗qi , d(vtij) = 2, d(utij) = 2, i = 1, 2, ..., ν2, j =
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1, 2, ..., q − 1, d(vtiq) = 1, d(utiq) = 1, for vertices of v path-thorn are t =

1, 2, ..., pqi and for vertices of u thorn paths are t = 1, 2, ..., p∗qi .

ξce(K∗m,n) =

ν1∑
i=1

d(vi)

e(vi)
+

ν2∑
i=1

d(ui)

e(ui)
+

ν1∑
i=1

q−1∑
j=1

pi∑
t=1

d(vtij)

e(vtij)
+

ν2∑
i=1

q−1∑
j=1

p∗i∑
t=1

d(utij)

e(utij)

+

ν1∑
i=1

pi∑
t=1

d(vtiq)

e(vtiq)
+

ν2∑
i=1

p∗i∑
t=1

d(utiq)

e(utiq)

=

ν1∑
i=1

ν2 + pqi
q + 2

+

ν2∑
i=1

ν1 + p∗qi
q + 2

+

nu1∑
i=1

q−1∑
j=1

pqi∑
t=1

2

q + q2 + j
+

nu2∑
i=1

q−1∑
j=1

p∗qi∑
t=1

2

q + 2 + j

+
1

2q + 2

nu2∑
i=1

pqi+
1

2q + 2

ν2∑
i=1

p∗qi

=
(ν1)(ν2)

q + 2
+

(ν1)(ν2)

q + 2
+

ν1∑
i=1

pqi
q + 2

+

ν2∑
i=1

p∗qi
q + 2

+

q−1∑
j=1

2

q + 2 + j

ν1∑
i=1

pqi

+

q−1∑
j=1

2

q + 2 + j

ν2∑
i=1

p∗qi +
1

2q + 2

ν1∑
i=1

pqi+
1

2q + 2

ν2∑
i=1

p∗qi

=
2(ν1)(ν2)

(q + 2)
+[

1

q + 2
+

1

2q + 2
+2

q−1∑
j=1

1

q + 2 + j
]

ν1∑
i=1

pqi+[
1

q + 2
+

1

2q + 2

+2

q−1∑
j=1

1

q + 2 + j
]

ν2∑
i=1

p∗qi

ξce(K∗m,n) =
2(ν1)(ν2)

(q + 2)
+[

ν1∑
i=1

pqi+

ν2∑
i=1

p∗qi ]
(3q + 4)

(q + 2)(2q + 2)
+2

q−1∑
j=1

1

q + 2 + j

ν1∑
i=1

pqi

+2

q−1∑
j=1

1

q + 2 + j

ν2∑
i=1

p∗qi .

Theorem 3.3. Let Sν be a star graph and ξce(S∗n) be its star path-thorn
graph. Then, CEI of ξce(S∗n) is given by

ξce(S∗n) =
(ν − 1)(2q + 3)

(q + 1)(q + 2)
+

7T

12
+

5pq1
6

+

q−1∑
j=1

2pq1
q + 1 + j

+

q−1∑
j=1

2T

q + 2 + j
.

where q ≥ 1, pi ≥ 1 and pq1 is attached to central vertex of Sν . |V (S∗n)| =

ν + q
ν∑
i=1

pi.
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Proof. Let Sν be star graph and star path-thorn graph S∗n obtained by
attaching path-thorns pqi of length q to each vertex (νi), i = 1, 2, 3, ..., ν of Sν
. The eccentricities and degrees of the vertices are
e(v1) = q + 1, d(v1) = ν − 1 + pq1, e(vi) = q + 2, d(vi) = 1 + pqi , i =

2, 3, ..., n, e(ut1j) = q+1+j, j = 1, 2, 3, ..., q, d(ut1j) = 2, t = 1, 2, 3, ..., pqi , j =

1, 2, 3, ..., q− 1, d(ut1q) = 1, t = 1, 2, 3, ..., pqi , d(utij) = q+ 2 + jj = 1, 2, 3, ..., q

i = 1, 2, 3, ..., ν, t = 1, 2, 3, ..., pqi , d(utij) = 2, j = 1, 2, 3, ..., q − 1, i =

1, 2, 3, ..., ν, t = 1, 2, 3, ..., pqi d(utiq) = 1, i = 1, 2, 3, ..., ν t = 1, 2, 3, ..., pqi .

ξce(S∗n) =
d(v1)

e(v1)
+

ν∑
i=2

d(vi)

ev(i)
+

P q
i∑

t=1

q−1∑
j=1

d(ut1j)

e(ut1j)
+

pqi∑
t=1

d(ut1q)

e(ut1q)
+

pqi∑
t=2

q−1∑
j=1

ν∑
i=2

d(utij)

e(utij)
+

pqi∑
t=2

ν∑
i=2

d(utiq)

e(utiq)

=
ν − 1 + pq1
q + 1

+

ν∑
i=2

1 + pqi
q + 2

+

pq1∑
t=1

q−1∑
j=1

2

q + 1 + j
+

pq1∑
t=1

1

2q + 1
+

q−1∑
j=1

pqi∑
t=1

ν∑
i=2

2

q + 2 + j
+

ν∑
i=2

pqi∑
t=2

1

2q + 2

ξce(S∗n) =
(ν − 1)(2q + 3)

(q + 1)(q + 2)
+

7T

12
+

5pq1
6

+

q−1∑
j=1

2pq1
q + 1 + j

+

q−1∑
j=1

2T

q + 2 + j
.

Theorem 3.4. Let Cν be a cycle graph with odd vertices and (C∗n be its cycle
path-thorn graph. Then, CEI of cycle path-thorn Graph is given by

ξce(C∗n) =
4ν

n+ 2q − 1
+

4(ν + 3q − 1)T

(ν + 4q − 1)(ν + 2q − 1)
+

q−1∑
j=1

4T

ν + 2q + 2j − 1
.

where q ≥ 1, pi ≥ 1 and |V (C∗n)| = ν + q
ν∑
i=1

pi.

Proof.Let Cν be a cycle graph with odd vertices and (C∗n be its cycle path-
thorn graph obtained by attaching path-thorns pqi of length q to each vertex
of Cν . The eccentricity and degrees of new cycle path thorn graph are (vi) =
ν+2q−1

2 , d(vi) = 2+pqi , i = 1, 2, 3, ..., ν, e(utij) = ν+2q+2j−1
2 , j = 1, 2, 3, ..., q−

1, i = 1, 2, 3, ..., n, t = 1, 2, 3, ..., pqi , d(utij) = 2, j = 1, 2, 3, ..., q − 1 i =

1, 2, 3, ..., ν, t = 1, 2, 3, ..., pqi , d(utiq) = 1, e(utiq) = fracν + 4q − 12, i =

1, 2, 3, ..., ν, t = 1, 2, 3, ..., pqi .
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ξce(C∗n) =
ν∑
i=1

d(vi)

e(vi)
+

ν∑
i=1

pqi∑
t=1

q−1∑
j=1

d(utij)

e(utij)
+

ν∑
i=1

pqi∑
t=1

d(utiq)

e(utiq)

=
ν∑
i=1

2 + pqi
ν+2q−1

2

+

q−1∑
j=1

2
ν+2q+2j−1

2

ν∑
i=1

pqi+
1

ν+4q−1
2

ν∑
i=1

pqi

=
ν∑
i=1

4 + 2pqi
ν + 2q − 1

+

q−1∑
j=1

4

ν + 2q + 2j − 1

ν∑
i=1

pqi+
2

ν + 4q − 1

ν∑
i=1

pqi

=
4ν

n+ 2q − 1
+

ν∑
i=1

2pqi
ν + 2q − 1

+[
2

ν + 4q − 1
]

ν∑
i=1

pqi+

q−1∑
j=1

4

ν + 2q + 2j − 1

ν∑
i=1

pqi

=
4ν

n+ 2q − 1
+

2T

ν + 2q − 1
+

2T

ν + 4q − 1
+

q−1∑
j=1

4T

ν + 2q + 2j − 1

ξce(C∗n) =
4ν

n+ 2q − 1
+

4(ν + 3q − 1)T

(ν + 4q − 1)(ν + 2q − 1)
+

q−1∑
j=1

4T

ν + 2q + 2j − 1
.

Theorem 3.5. Let Cν be a cycle graph with even vertices and (C∗n be its
cycle path-thorn graph. Then, CEI of Cycle path-thorn graph is given by

ξce(C∗n) =
4ν

ν + 2q
+

4T (ν + 3q)

(ν + 2q)(n+ 4q)
+

q−1∑
j=1

4T

ν + 4j

where q ≥ 1, pi ≥ 1 and |V (C∗n)| = ν + q
ν∑
i=1

pi.

Proof. Let Cν be a cycle graph with odd vertices and (C∗n be its cycle path-
thorn graph obtained by attaching path-thorns pqi of length q to each vertex of
Cν .The eccentricities and degrees of new cycle path thorn graph are C∗ne(vi) =
ν+2q
2 ,d(vi) = 2 + P qi , i = 1, 2, 3, ..., ν, e(vtij) = ν+4q

2 , j = 1, 2, 3, ..., q − 1,

i = 1, 2, 3, ..., ν, t = 1, 2, 3, ..., P qi , d(utij) = 2, j = 1, 2, 3, ..., q − 1, i =

1, 2, 3, ..., ν, t = 1, 2, 3, ..., P qi , d(utiq) = 1, e(utiq) = ν+4q
2 , i = 1, 2, 3, ..., ν, t =

1, 2, 3, ..., P qi .

ξce(C∗n) =
ν∑
i=1

d(vi)

e(vi)
+

ν∑
i=1

P q
i∑

t=1

q−1∑
j=1

d(utij)

e(utij)
+

ν∑
i=1

P q
i∑

t=1

d(utiq)

e(utiq)

=

ν∑
i=1

2 + P qi
ν+2q
2

+

q−1∑
j=1

2
ν+4j
2

ν∑
i=1

P qi +
1

ν+4q
2

n∑
i=1

P qi
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=
4ν

n+ 2q
+

2T

ν + 2q
+

2T

ν + 4q
+

q−1∑
j=1

4T

ν + 4j

ξce(C∗n) =
4ν

ν + 2q
+

4T (ν + 3q)

(ν + 2q)(n+ 4q)
+

q−1∑
j=1

4T

ν + 4j
.

Theorem 3.6. Let Pν be path graph with even vertices and P ∗m be its path
path-thorn graph. Then, its CEI Graph is given by

ξce(P ∗m) =
2 + P qν/2 + P

′q
ν/2

ν + q − 1
+

[ν/2]−1∑
i=1

4 + P qi + P
′q
i

q + i− 1 + ν/2
+

ν/2∑
i−1

q−1∑
j=1

4 + P qi + P
′q
i

2j + i− 1 + ν/2
+

ν/2∑
i=1

P qi + P
′q
i

2q + i− 1 + ν/2

where q ≥ 1, pi ≥ 1 and |V (P ∗n)| = ν + q
ν∑
i=1

pi.

Proof. Let Pm be the paths of even vertices s.t m ≥ 2

{v′ν/2, v
′

ν−1/2, ..., v
′
2, v

′
1, v1, v2, ..., vν/2} we attached path-thon P qi and P

′q
i of

length q to all vertices of Pν .The degrees and eccentricities of P ∗m are d(vν/2) =

1 + P qν/2, d(v
′

ν/2) = 1 + P
′q
ν/2 e(vν/2) = ν − 1 + q, e(v

′

ν/2) = ν − 1 + q and

d(vi) = 2+P qi , d(v
′
i) = 2+P

′q
i , e(vi) = q−1+i+ν/2, d(v

′
i) = q−1+i+ν/2, i =

1, 2, ..., [ν/2] − 1, d(vtij) = 2, d(v
′t
ij) = 2 e(vtij) = 2j + i − 1 + ν/2 e(v

′t
ij) =

2j + i − 1 + ν/2 for i = 1, 2, 3, ..., [ν/2] − 1, j = 1, 2, 3, ..., q − 1 and d(vtiq) =

1, d(v
′t
iq) = 1 e(vtiq) = 2q + i− 1 + ν/2, e(v

′t
iq) = 2q + i− 1 + ν/2

ξce(P ∗m) =
d(vν/2)

e(vm/2)
+
d(v

′

ν/2)

e(v
′
ν/2)

+

[ν/2]−1∑
i=1

d(vi)

e(vi)
+

[ν/2]−1∑
i=1

d(v
′
i)

e(v
′
i)

+

ν/2∑
i=1

q−1∑
j=1

P q
i∑

t=1

d(vtij)

e(vtij)
+

ν/2∑
i=1

q−1∑
j=1

P
′q
i∑

t=1

d(v
′t
ij)

e(v
′t
ij)

+

ν/2∑
i=1

P q
i∑

t=1

d(vtiq)

e(vtiq)
+

ν/2∑
i=1

P
′q
i∑

t=1

d(v
′t
iq)

e(v
′t
iq)

=
1 + P qν/2

ν − 1 + q
+

1 + P
′q
ν/2

ν − 1 + q
+

[ν/2]−1∑
i=1

2 + P qi
q − 1 + i+ ν/2
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+

[ν/2]−1∑
i=1

2 + P
′q
i

q − 1 + i+ ν/2
+

ν/2∑
i=1

q−1∑
j=1

P q
i∑

t=1

2

2j + i− 1 + ν/2

+

ν/2∑
i=1

q−1∑
j=1

P
′q
i∑

t=1

2

2j + i− 1 + ν/2
+

ν/2∑
i=1

P q
i∑

t=1

1

2q + i− 1 + ν/2

+

ν/2∑
i=1

P
′q
i∑

t=1

1

2q + i− 1 + ν/2

ξce(P ∗m) =
2 + P qν/2 + P

′q
ν/2

ν − 1 + q
+

[ν/2]−1∑
i=1

4 + P qi + P
′q
i

q − 1 + i+ ν/2

+

ν∑
i=1

q−1∑
j=1

4 + P qi + P
′q
i

i− 1 + 2j + [ν/2]
+

ν∑
i=1

P qi + P
′q
i

i− 1 + 2j + [ν/2]

Theorem 3.7. Let Pν be path graph with odd vertices and P ∗m be its path
path-thorn graph. Then, its CEI is given by

ξce(P ∗m) =
2 + P qo

q + [ν − 1]/2
+

2 + P qν/2 + P
′q
ν/2

i− 1 + q + [ν + 1]/2
+

[ν/2]−1∑
i=1

4 + P qi + P
′q
i

q − 1 + i+ [ν + 1]/2

+

ν/2∑
i=1

q−1∑
j=1

2P qi + 2P
′q
i

2j + i− 1 + [ν + 1]/2
+

ν/2∑
i=1

P qi + P
′
i

2q + i− 1 + [ν + 1]/2
.

where q ≥ 1, pi ≥ 0 and |V (P ∗n)| = ν + q
ν∑
i=1

pi

Proof. Let path consist of ν− 1 vertices and there is one vertex fix named vo
that is the central vertex. Path will be of the form
{v′ν/2, v

′

ν−1/2, ..., v
′
2, v

′
1, vo, v1, v2, ..., vν/2}. We attached P qo path-thorn to cen-

tral vertex P qi to vν/2, and P
′q
i to v

′

ν/2. The eccentricities and degrees of

path-thorn graph are d(vo) = 2 + Po, e(vo) = q + [ν − 1/2], d(vν/2) =

1 + P q/2, d(v
′

ν/2) = 1 + P
′q
ν/2, e(vν/2) = i − 1 + q + [ν + 1]/2, e(v

′

ν/2) =

i− 1 + q + [ν + 1]/2, d(vi) = 2 + P qi , d(v
′
i) = 2 + P

′q
i , e(vi) = q − 1 + i+ [ν +

1]/2, e(v
′
i) = q − 1 + i+ [ν + 1]/2, e(vt)ij = 2j + i− 1 + [ν + 1]/2, e(v

′t)ij =

2j + i − 1 + [ν + 1]/2, d(vt)ij = 2, d(v
′t)ij = 2 for i = 1, 2, 3, ..., ν/2, j =

1, 2, 3, ..., q−1, t = 1, 2, ..., Pi and e(v
t)iq = 2q+i−1+[ν+1]/2, e(v

′t)iq = 2q+

i− 1 + [ν + 1]/2, d(vt)iq = 1, d(v
′t)iq = 1, i = 1, 2, 3, ..., ν/2, t = 1, 2, 3, ..., Pi
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ξce(P ∗m) =
d(vo)

e(vo)
+
d(vν/2)

e(vν/2)
+
d(v

′

ν/2)

e(v
′
ν/2)

+

[ν/2]−1∑
i=1

d(vi)

e(vi)
+

[ν/2]−1∑
i=1

d(v
′
i)

e(v
′
i)

+

ν/2∑
i=1

q−1∑
j=1

P q
i∑

t=1

d(vt)ij
e(vt)ij

+

ν/2∑
i=1

q−1∑
j=1

P
′q
i∑

t=1

d(v
′t)ij

e(v′t)ij
+

ν/2∑
i=1

P q
i∑

t=1

d(vt)iq
e(vt)iq

+

ν/2∑
i=1

P
′q
i∑

t=1

d(v
′t)iq

e(v′t)iq

=
2 + P qo

q + [ν − 1]/2
+

1 + P qν/2

i− 1 + q + [ν + 1]/2
+

1 + P
′q
ν/2

i− 1 + q + [ν + 1]/2

+

[ν/2]−1∑
i=1

2 + P qi
q − 1 + i+ [ν + 1]/2

+
2 + P

′q
i

q − 1 + i+ [ν + 1]/2

+

ν/2∑
i=1

q−1∑
j=1

P q
i∑

t=1

2

2j + i− 1 + [ν + 1]/2
+

ν/2∑
i=1

q−1∑
j=1

P
′q
i∑

t=1

2

2j + i− 1 + [ν + 1]/2

+

ν/2∑
i=1

P q
i∑

t=1

1

2q + i− 1 + [ν + 1]/2
+

ν/2∑
i=1

P
′q
i∑

t=1

1

2q + i− 1 + [ν + 1]/2

ξce(P ∗m) =
2 + P qo

q + [ν − 1]/2
+

2 + P qν/2 + P
′q
ν/2

i− 1 + q + [ν + 1]/2
+

[ν/2]−1∑
i=1

4 + P qi + P
′q
i

q − 1 + i+ [ν + 1]/2

+

ν/2∑
i=1

q−1∑
j=1

2P qi + 2P
′q
i

2j + i− 1 + [ν + 1]/2
+

ν/2∑
i=1

P qi + P
′
i

2q + i− 1 + [ν + 1]/2
.

4. Conclusion

In this paper, we have computed the connective eccentricity index for the var-
ious families of the path-thorn graphs such as complete path-thorn, complete
bipartite path-thorn, path path-thorn, cycle path-thorn and star path-thorn
graphs. Moreover, the obtained results are shown in the suitable forms with
the help of mathematical expressions consisting on various summations.
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