QUASI INVO-REGULAR RINGS

PETER V. DANCHEV

ABSTRACT. We define the class of *quasi invo-regular* rings and prove that they curiously coincide with the so-called invo-regular rings, recently introduced and explored by the present author in Ann. Univ. Mariae Curie-Sklodowska – Sect. Math. (2018).

Key words: unit-regular rings, invo-regular rings, quasi invo-regular rings. AMS SUBJECT: Primary 16U99, 16E50; Secondary 13B99.

1. Introduction and Background

Throughout the text of the current short paper, all rings R are assumed to be associative, containing the identity element 1, which differs from the zero element 0 of R. Our standard terminology and notations are mainly in agreement with those from [6]. For instance, U(R) denotes the set of all units in R, Id(R) the set of all idempotents in R, Nil(R) the set of all nilpotents in R and J(R) the Jacobson radical of R. As for the specific notions, they will be recollected below explicitly.

It is classically well known that a ring R is said to be unit-regular if, for every $r \in R$, there exists $u \in U(R)$ such that r = rur (see, e.g., [5]). Moreover, referring to [7], a ring R is said to be clean if, for each $r \in R$, there exist $u \in R$ and $e \in Id(R)$ such that r = u + e. It was shown in [1] that unit-regular rings are rather special sorts of clean rings. However, in the case when $u \in R$ is an arbitrary element depending on r (not necessarily a unit), these rings are called regular and they generally are not longer clean.

On the other hand, in [3] were investigated the so-called *invo-regular* rings that are rings which form a proper subclass of unit-regular rings, provided $u^2 = 1$, that is, u is an involution. These rings were completely characterized

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, "Acad. G. Bonchev" str., bl. 8, 1113 Sofia, Bulgaria.

 $Email: \ danchev@math.bas.bg; \ pvdanchev@yahoo.com.$

there as being a subdirect product of family of copies of the fields \mathbb{Z}_2 and \mathbb{Z}_3 ; thus they are surprisingly commutative.

So, we come to our key concept.

Definition 1. A ring R is called quasi invo-regular if, for any $x \in R$, there exists $v \in R$ such that x = xvx and v or 1 - v is an involution.

Such an element v is usually termed quasi-involution. Thus $v^2 = 1$ or 1 - v = w whence v = 1 - w for some $w^2 = 1$. This allows us to write that x = xvx or that $x = x^2 - xwx$.

The leitmotif of this brief article is to visualize the most important properties of the newly defined ring class. Curiously, we shall prove in the sequel that these quasi invo-regular rings do coincide with the already known and characterized invo-regular rings.

2. Main Results

We begin with the following decomposition property.

Proposition 1. For every quasi invo-regular ring 6 = 0 and $R \cong R_1 \times R_2$, where either $R_1 = \{0\}$ or R_1 is a quasi invo-regular ring of characteristic 2, and either $R_2 = \{0\}$ or R_2 is a quasi invo-regular ring of characteristic 3.

Proof. Given x=2, one writes that 2=4v or 2=4-4w for some involutions $v,w\in R$. In both cases we, however, have that 2=4v or 2=4w which after squaring leads to 12=0. Now, with the Chinese Remainder Theorem at hand, one decomposes $R\cong R_1\times R_2$ for some two quasi invo-regular rings R_1,R_2 , where 4=0 in R_1 and hence, in view of the above, 2=0 in R_1 , and where 3=0 in R_2 , as stated.

We now arrive at our rather surprising result.

Theorem 2. The next three points are equivalent:

- (i) R is quasi invo-regular;
- (ii) R is invo-regular;
- (iii) R is a subdirect product of family of copies of the fields \mathbb{Z}_2 and \mathbb{Z}_3 .

Proof. The equivalence (ii) \iff (iii) was proved in [3].

The implication (ii) \Rightarrow (i) being elementary, we shall be concentrated on the reverse one (i) \Rightarrow (ii). To that goal, we first appeal to Proposition 1 to decompose R as $R = R_1 \times R_2$, where either R_1, R_2 are zero rings (not necessarily simultaneously), or R_1 and R_2 are quasi invo-regular rings of characteristic 2 and 3, respectively.

Furthermore, we deal with two possible cases, namely:

QIR Rings 3

Case 1: Consider R_1 . Clearly, $J(R_1) = \{0\}$ and, for any element $x \in R_1$, it must be that x = xvx for some $v \in R_1$ such that $v^2 = 1$ or $v^2 = 0$. Therefore, each unit u in R_1 has to be an involution, that is, $u^2 = 1$ and hence $(u-1)^2 = 0$ implying that $u \in 1 + Nil(R_1)$, i.e., $U(R_1) = 1 + Nil(R_1)$. Since R_1 is (unit-)regular, we furthermore may apply [2] or [4] concluding that R_1 is necessarily a boolean ring.

Case 2: Consider R_2 . For any $x \in R_2$, one writes that x = xvx with $v^2 = 1$ or $(1-v)^2 = 1$. The latter gives that $v^2 = 2v = -v$ because 3 = 0here. Thus $(-v)^2 = -v$ shows that -v is an idempotent. But we may also equivalently write that -x = (-x)(-v)(-x) and so, as $(-v)^2 = 1$ whenever $v^2 = 1$, we may without loss of generality assume that x = xvx and that v is an involution or an idempotent by replacing $x \to -x$. We claim that every unit u of R_2 must be an involution, that is, $u^2 = 1$. In fact, substituting xby u^{-1} , it readily follows that $u^2 = 1$ or $u^2 = u$ which means in the second situation that u = 1 is an involution too. Furthermore, for each nilpotent $q \in R_2$, 1+q being a unit has to be an involution as well. Thus $(1+q)^2=1$ yields that $q^2 = -2q = q$ which riches us that q(q-1) = 0 whence q = 0 as q-1 inverts in R_2 . This deduces that R_2 is of necessity abelian, i.e., every idempotent is central. Since x = xvx assures that xv is an idempotent, we derive that $x = xvx = x^2v$. If v is an involution, we have nothing to do, so let us assume that v is just an idempotent. Hence $xv = x^2v = x$. Consequently, $x = xvx = x.x = x^2 = x.1.x$. This immediately ensures that R_2 is invo-regular of characteristic 3.

These two cases obviously imply, in turn, that $R \cong R_1 \times R_2$ is invo-regular, too, as pursued.

The next comments and subsequent discussion might be somewhat useful.

Remark 1. Seemingly, the quasi-involution property gives nothing new in the stated above definition of quasi invo-regular rings. However, it could be essential in the general situation when we consider the generalized unit-regularity by replacing "unit" with "quasi-unit".

We shall say that a ring R is quasi unit-regular if, for any $x \in R$, there is $u \in R$ such that x = xux and u or 1 - u is a unit. This element u will be called quasi-unit.

We end our work with the following intriguing question:

Problem 1. Are all quasi unit-regular rings clean?

If yes, this will considerably extend the well-known fundamental result due to Camillo-Khurana from [1] which states that unit-regular rings are always clean. If not, what can be said in this direction provided that u or 1-u is a torsion unit. We shall normally call this element u torsion quasi-unit.

It is also principally known that all artinian rings R with zero J(R) are always unit-regular (cf. [5]). Even something a little more – the artinian rings are themselves both noetherian and clean.

So, we close with the following challenging query:

Conjecture. A ring is artinian if, and only if, it is both noetherian and clean with nil Jacobson radical.

It is worthwhile noticing that in noetherian rings any nil-ideal (especially, the nil-radical) is necessarily nilpotent, so that "nil" in this case is definitely equivalent to "nilpotent".

References

- [1] V. P. Camillo and D. Khurana: A characterization of unit regular rings, Comm. Algebra 29 (2001), 2293–2295.
- [2] P. V. Danchev: A new characterization of boolean rings with identity, Irish Math. Soc. Bull. **76** (2015), 55–60.
- P. V. Danchev: Invo-regular unital rings, Ann. Univ. Mariae Curie-Sklodowska, Sect. A

 Math. 72 (2018), 45–53.
- [4] P. V. Danchev and T. Y. Lam: Rings with unipotent units, Publ. Math. Debrecen 88 (2016), 449–466.
- [5] G. Ehrlich: *Unit-regular rings*, Portugal. Math. **27** (1968), 209–212.
- [6] T. Y. Lam: A First Course in Noncommutative Rings, Second Edition, Graduate Texts in Math., Vol. 131, Springer-Verlag, Berlin-Heidelberg-New York, 2001.
- [7] W. K. Nicholson: Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269–278.