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Abstract

Essential and widely studied topological indices, including the well-known Zagreb indices (M; and My),
and the newly proposed Inverse Sum Indeg Eccentricity Index (£7s7), To ensure the contributions of all
edges within a graph are effectively considered. By emphasizing on the total eccentricity of non-adjacent
vertices, Hua et al. introduced the eccentric connectivity coindex (£¢). Inspired by their contributions, we
introduce the inverse sum indeg eccentric coindex (£7s7), which is defined as the ratio of the product of
the eccentricities to the sum of the eccentricities for all isolated pair of vertex in a connected graph. This
study primarily aims to establish various bounds for ;g7 in finite simple graphs and derives the values of
the proposed indices for two specific graph constructions. Additionally, we present a comprehensive set of
relationships for €747 using several graph products.

Keywords: Topological index, Eccentricity of a vertex, Graph products

1. Introduction

A graph invariant, often referred to as a topological index, is a numerical parameter obtained directly
from the structural properties of a molecule graph. These indices are widely used in theoretical chemistry
to model various molecular properties, including physico-chemical, biological, and pharmaceutical charac-
teristics. Numerous graph invariants linked to the graph-theoretic notion of eccentricity has been previously
proposed also utilized in QSAR/QSPR studies. Many of these indices have proven to be effective tools for
predicting pharmaceutical properties.

*Corresponding author
Email addresses: mrfarahani880gmail.com (M. R. Farahani), pramank@gmail.com (K. Pattabiraman),
sudharsanmaths1999@gmail.com (S. Sudharsan), shobhap49@gmail.com (S. V. Patil), alaeiyan@iust.ac.ir (M. Alaeiyan),
m_cancan@yyu.edu.tr, m_cencen@yahoo.com (M. Cancan)

Received : 15 June 2024; Accepted: 19 August 2024; Published Online: 22 August 2024



Pattabiraman, Journal of Prime Research in Mathematics, 20(1) (2024), 81-98 82

In this study, we concentrate on the properties of simple connected graphs. Consider such a graph be K,

the set of vertices and edges, are denoted by Ue(A) and €0(A) correspondingly. The graph A has n vertices
and m edges. An edge connecting two vertices x and y is denoted as wy. The complement of A, denoted by

A, is a graph with the same vertex set Ue(A), where two vertices are adjacent if and only if they are not
adjacent in A. The degree of a vertex z, denoted by d(z), is the number of vertices directly connected to x
in A. The first and second Zagreb indices are defined as

M) = ¥ d@?= ¥ (d&)+d(y)

zeVe(A) zye€o(A)

Ma(A) = >0 d(x)d(y)

zy€CI(A)

such a topological indices were first introduced in [I1, [12]. For detailed information on their properties and
additional references, see [7, 9] 13| [6], 14} 23], 31, B3, [34]. For historical context, refer to [10].
In 2008, Doslic introduced a pair of Zagreb coindices [8], building on the earlier definitions.

MM = Y (@) +dy) ad LA) = Y d@)dy)
y¢ea(h) zy¢ea(h)

Recently studied some detail by the Zagreb coindices in [1}, 2, 17, 18, [19].
The distance between the two vertices such as x and y in graph A is denoted as

df\(xa y)

The eccentricity e; of x € Ue(A) is defined as

€z = max{dz(v,y) | z,y € Ve(A)}.

In all the vertices of graph A the diameter and radius is notated as p(/~\) and T(K) correspondingly. If
p(A) = r(A), then A is self-centred graph denoted as s — ¢ graph. A vertex = € Ue(A) with d(z) =n — 1 is
known as a universal vertex. N

In 1997, Sharma et al. [28] recommended the eccentric connectivity index of A as

58(7\): Y. d@e= Y etey

x€Ve(A) zy€Cd(A)
The invariants 7(A) and £2(A) defined as
A= ¥ € and

x€Ve(A)

)= ¥ dnye= ¥ (@+e)

zeVe(A) zye€(A)
are respectively called the total eccentricity and second eccentric connectivity index [3] of A.
The first and second Zagreb eccentricity indices [29, [30] of A are respectively, defined as
)= X cand&n(d)= X ae.

zeWe(A) TY€EI(A)

In 2019, Hua and Miao [20] proposed the eccentric connectivity coindex of A as

EM) =anh)= ¥ (a+e).

zy¢€d(A)

In 2021, Mahdieh Azari [22] proposed the second Zagreb eccentricity coindex of A as
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Gn(A) =Ex(A) = 3 ae
aygea(R)

The Harmonic eccentric index and its coindex [I2] of A are respectively, defined as

eihy= > ot and i(h)= > e
zyc®d(A) TYgEd(A)

The status or transmission [16] of a vertex x in the graph A is defined as

D, = Z _ d]\(xay)
{z,y}€Ve(A)

The status connectivity indices first and second of a graph /NX, introduced by Ramane et al.[26] are
respectively, defined as

Si(A)= Y (D.+D,)and So(A)= 3. D.D,

zye€(A) zye€o(A)
In 2018, Ramane et al. introduced the concepts of the first and second status connectivity coindices [27],
which are defined respectively as follows:

SA)= Y (D,+D)adS(A)= Y DD,
ayg(R) ayge(R)

Ease way of recognize I.ST and 151 are just the first representation of a class of topological indices and
coindex of the form

e QZ‘Q
ISIgeneral(A) = Z ﬁ
zye€o(A) * v
and TSTpenera(R) = Y QQZ%? (1.1)
aygedd) Y

respectively, Here, Q). represents a specific quantity that can be uniquely and effectively associated with the
vertex x of the graph A.

In this study, we turn our focus to another member of this class, denoted by 1573, which can provisionally
be referred to as the third inverse sum indeg coindex. This index is formulated in such a way that it is
associated with £ and Enty-

Based on the general formula , we define the third IST and IST indices as:

&rsi(A) = ISI3(A) = > “Yand &s(R) = TISL(R) = >
zy€Co(A) zygEo(A)

€x€y
€x T €y

, respectively

Hua and Miao [20] explored several extremal problems concerning the eccentric connectivity coindex and
established various lower bounds for this invariant based on distinct graph parameters. Hayat [15] derived
precise lower bounds for the second Zagreb eccentricity index in the context of n-vertex cacti graphs. Azari
[4] examined the eccentric connectivity coindex’s properties for different graph products. Additionally,
numerous bounds on the eccentric connectivity coindex, expressed in terms of existing invariants, as well as
its values for specific graph constructions, were discussed in [5].

The following concepts are included in the paper:

In Section 2, derive significant bounds for £757(A) across various classes of graphs, offering a deeper un-
derstanding of the range and behavior of this coindex within different graph structures. Section 4 investigates
how &£757(A) interacts with graph
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2. Bounds on £5s1

The A with %e(]&) is set of all vertices is the complement of A and any two vertices of A are adjust if

and only if they are not adjacent in A. The number of edges of A is denoted by 71, that is

m

7o — BB (B®I-D (R,

In this section, we establish some new relation a ;g7 index and other graph parameters.

Theorem 2.1. Let A be a graph on n vertices and m edges. Then

sir(A)? <Ga@) < TP ()

—_—. 2.1
2 p(A) 2 r(A) @1)

The equality on the left-hand side of is satisfied if and only sz is self-centered, while the equality
on the right-hand side holds if and only if A is self-centered or r(A) =1 and p(A) = 2.

Proof. Note that for each 2 € We(A), #(A) < e, < p(A). Therefore,

m(r(A)j) -y rrd) s ey g o) :m<p<A>j>'
2p0)) e i ph) At A SR ) \2r(A)

The equality on the left-hand side of . holds if and only if, for every pair of vertices xy ¢ 60( ),
€r = €y = r(A) = p(A). If A is self-centered, then the left hand side equality in is trivially satisfied.
Now, assume that the left-hand side equality holds in . If A & K, then A is a self-centered graph.
Let A 2 K,,, and consider € We(A) such that e, = p(A) > 2. Then there exists a vertex y € Ue(A) with
zy ¢ €(A). Consequently, p(A) = ¢, = €y = r(A), which implies that A is a self-centered graph.

Similarly, the equality on the right-hand side of . ) holds if and only if, for every pair of vertices
zy & CO(A), € = ¢ = r(A) = p(A). If A is self-centered or satisfies 7(A) = 1 and p(A) = 2, then the
right-hand side equality in ) holds trivially. Let us assume the right-hand side equality holds in . If
p(A) = r(A) =1, then A = Kn, which is self-centered. If 7(A) = 1 and p(A) = 2, there is nothing further to
prove. Let r(A) > 2. Consider x € Ue(A) such that €, = r(A) > 2. Then there exists a vertex y € e(A)
such that zy ¢ €(A). Hence, r(A) = ¢, = €y = p(A), which confirms that A is a self-centered graph. O

Lemma 2.2. [2]] For a vertez x in a connected graph A with n vertices, €z < n— d(x) with equality if and
only z'f/~\ ~ P oorA2K, — 1Ky, 0<1< L%J The graph K, — 1Ky is obtained from K, by removing i

independent edges.

Theorem 2.3. For a graph A with n vertices,

i) < s [P )+ () (.2

with equality if and only if/~\ = Py (or) A K, —iK, 0<i< L%J

Proof. By the Definition of £;5; and Lemma we obtain

— (n —d(x))(n —d(y))
Ersi(A) < Z =
sygea(R) 2r(A)
n? —n(d(z) + d(y)) + d(x)d(y)
— Z d
rygea(X) 2rd)
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_ <n(n_ 1) _m> " M@ M(R)

2 r(A) 2 2 r(A) 2 r(A)
1 nQ(n(nfl)me)_n7~ — ~
) { 5 Mi(A) + Ma(A)| .

The equality in holds if and only if, for any edge zy ¢ €d(A), e, = n — d(z) and ey =n —d(y). This
implies that for each non-trivial vertex = € Ue(A), €, = n — d(z). The equality e, = n — d(z) also holds for
any universal vertex 2 € Le(A). Therefore, €, = n— d(x) holds for all z € Ye(A). According to Lemma
the equality in holds if and only if A = Py or A = K, —iKy for 0<i< L%J O

The proof of this lemma is straightforward.
Lemma 2.4. For a (n,m)—graph A
My (A) = 2m(n —1) — My(A) and My(A) = 2m? — 218 _ ppp(A).
By using Lemma [2.4] and Theorem we obtain the following.

Corollary 2.5. For a (n,m)—graph A,

&s1(R) < i [n(n = 1)(n? = 4m) + 2m(2m —n?) + My (R) - 20(R)] -

Theorem 2.6. For a graph A with n vertices,

(A 5(A)
> eV
Sist) 2 320 2
with equality if and only sz >~ K,.
Proof. For every vertex = € Ye(A), D, = oo dx,y) < Y. €xy = (n— 1)ey, with equality if
B 2€Be(A)|{y} 2€Ve(A)|{y}
and only if for every y € Ve(A)|{z}, d(x,y) = €, that is ¢, = 1. Therefore,

Dy D,
Gsid) = ) () (1)

zye€d(A) 2 p(A)
- > D.D,
2 pM)n =12 A
_ S()
2 p(A)(n—1)?
with equality if and only if A K, d

Lemma 2.7. For a graph A with n vertices,

SR =2wR)2—1 % D25,

1
T2
x€Ve(A)
By using Theorem and Lemma we obtain the following result in terms of Weiner index and the
second status connectivity index.

Corollary 2.8. For a (n,m)—graph A,

WE2-3 T D2 5(E)
Gaih) > ren(d) S W@R? - Y D225
Gsih) = 2 p(R)(n— 1)? tom o W xe%;@ sl




86

Pattabiraman, Journal of Prime Research in Mathematics, 20(1) (2024), 81-98
(2.4)

Theorem 2.9. For a (n,m)— graph A,
((n =D& (®) - &(R)).

Ers1(A) < 2 ()

with equality if and only Zf]\ 1§ s — ¢ graph.
Proof. One can easily verify that for any edge xy ¢ Q‘ED(K), €2 + 632/ > 2¢,€, with equality if and only if
€, = €. Using this fact, we obtain

= 2€ez€ (24 €2)

26r51(A) < =L < —

rs1(A) 2 2 r(A) 2 r(A)

Ty¢Ed(A) TyEEa(A)
(01— d(x) ,

= 2 2r(d) °

zeVe(A)
= (n—~1 ) Z o 1~ Z d(z)é
2 T(A) zeWe(A) 2 T(A) zeVe(A)
1 ~
- E2(A).

n—1 ~
(2 r(A)) Q=3 r(A)

~ 2d)
0

(0= 1&(R) - €(®)] .
The equality in Equation 1) holds if and only if, for every pair of vertices zy ¢ (‘ED(K), € = €. It is
straightforward to verify that the equality in Equation 1) holds if and only if A is self-centered or r(A) = 1

and p(A) = 2.
The product version of eccentricity based topological indices are defined as
= 11 @),

[I € andg(A) =
x€Ve(A)

Gl = 11
x€Ve(A)
Theorem 2.10. For a (n,m)-graph A
1
sih) > (51 Ok ) , (25)
2 p(A) \ &(A)
where m = @ —m holds with equality if and only if A is self-centered or r(/NX) =1 and p(K) =2
Proof. By arithmetic-geometric mean inequality
L Y. €ty
Gsih) _ P"Wadadm
m - m '
(2.6)

H|=

Ers1(A 1
&Si( ) > — H €x€y
2 p(A) xy¢€b(/~\)
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For every vertex x € Ue(A), the factor €, appears (n —1 —d(x)) times in ~ [[  €z€,. Thus
oygeo(A)

H|~

5175{(/\) > 1 [ it
mn 2 p(A)

zeVe(A)

—~
m
] N
S~—
‘3
N
—
=

B 1 zeVe(A)
o2 | T @
zeVe(A)
_ 1 ((51‘@)3"21)“1
2p(0) \ (A
Therefore,
L G
A) > — =~
o) = 2p<A>< &) )

The equality holds if and only if, for each edge zy ¢ QED(K), €€y is constant. If A is a self-centered graph
or 7(A) = 1 and p(A) = 2, then the equality in 1) holds trivially. Suppose that the equality holds in
(2.5), and 7(A) > 2 with A being non-self-centered. Since r(A) > 2, there exist vertices s,¢ € Ue(A) such

that st ¢ GD(ZXV)_aLnd es = r(A). Given that A is non-complete, there also exist vertices a,b € Ue(A) such
that ab ¢ €d(A) and €, = ¢, = p(A). Because A is non-self-centered, we have r(A) < p(A). This leads to

€s€t = T(K)Gt < p(/NX)2 = €4€p, which results in a contradiction. Therefore, equality in 1) holds if and only

if A is self-centered or 7(A) =1 and p(A) = 2. O

Theorem 2.11. For a connected graph A, 5151(7\) < 4p£/(\/~)\) 50(7\) equality holds if and only sz iss—c

graph.

Proof. For a vertex z € Le(A), €, < p(A). Thus

Gad) < Y Sy YEvEs

N A _ 2r(A
zyg€o(A) r(A) TYgEv(A) rd)
A2, /e
< ¥ VA ves
. 27r(A)
TYygE(A)
- p(A) 3 %
21N ee®)
N
SN GRS 0
4 r(A)

with equality if and only if, for every pair of vertices zy ¢ €(A), €, = €y = p(A). Thus, A is self-centered. [

Theorem 2.12. For any graph A with n vertices and m edges,

(n—1)—2m

Esid) =" 5 (2.7)
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Proof. One can see that for any zy ¢ (’ED(K) A eh > 2. Hence, by the definition of £;gy,

s fxo by
— €€ 22) nn-1)
Gsid) = >, ez ) g

wgeod) 7 aygea(R)
The equality occurs in 1) if and only if for any xy ¢ (’30(7\), €z = € = 2, which is equivalent to
p(A) < 2. The following results is immediately from Theorem O

Corollary 2.13. For any connected unicyclic graph A withn > 6 vertices, 5151(K) > w with equality

if and only ifK 1s obtained from S, by joining two of its pendent vertices with an edge.

Corollary 2.14. Let A be (n, m)—graph. IfX is a connected then complement of K,

= n(n—1)

Es1(M) +&s1(A) > == (2.8)

with equality if and only if A and A are s — ¢ with ’I“(K) = p(/NX) =2.

Proof. Since |€0(A)| = m. By Theorem we get
= n(n —1) n(n—1)

G +Ga ) > MOy o2

The equality in 1} holds if and only if p(A), p(A) < 2. Since both A and A are connected and contain no
universal vertices, the equality in li occurs if and only if both A and A are self-centered graphs. O

3. Inequalities between €757 and £g.
In this section, we establish attractive relation between £7g7r and € of graph.

Theorem 3.1. For a (n,m)—connected graph K, then

Gor(®) + T @) > MW (o~ 1) - 2m) 1)
and
Gor(h) + P ) > 28 16— 1) —om) (32)

Equality holds in if and only if each case onN\ is incident to atleast one vertex of eccentricity T(K) and
holds in if and only if each edge of A incident to atleast one vertex of eccentricity p(A).

Proof. Let x1,z2,...xy be the vertices of A and let (€xys €xyy -y €z, ) De the sequence of vertex eccentricities
of A satisfying

p(A) = €1 > e3... > e, = ().

One can see that the following relations holds for any ¢ and j with 1 <i<mand 1 < j <m;

(e0, — 1(R)(er; — r(A)) > 0 and (p(8) — e,)(p(R) — ) > 0
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That is,
€xsea; + (F(A)? > r(A) (g, + ) (3.3)
and
€ €x; T (P(A))2 > p(A)(emi + 633]‘) (3.4)
SRT 1 .
Multiplied by eortes, an both the equation and we have
w7 SR (3.5)
€z; t €x; €z; + €x;
and
€x,€x; INE ~
O ey (36)

€x; T €, €x; T €,

The summation of 1' and 1' over all pairs of nm—adjacent vertices z; and z; in 1~X, we obtain

Z €x;€x; v + (T(K))2 Z L > T(K)E

€z; t €x; 2 _ €g; T €
wix;¢€0(A) z;x; ¢ E(A)
Hence,
~ A 2 —_—~ A
Gor®) + "L &®) > " (1) —2m)
and
~ A 2 _—~ A
G ® + 20 & ® = 2N (1) - 2m)
O
Theorem 3.2. For a (n,m)—connected graph K,
751 (%) + r(R) p(B) &(®) < "B (1) ) (3.7

with inequality if and only z'fK is s — c.

Proof. Let x1,22,...xy be the vertices of A and let (€xys €xyy -y €z, ) De the sequence of vertex eccentricities
of A satisfying

p(A) =€ > e3... > e, = ().

One can see that the following relations holds for any 7 and j with 1 <i<mnand 1 < j <m;

() = €2,) (e, = () 2 0
and (e, —r(R)) (p(R) =€) > 0
This implies that

eniea, +7(R) p(R) < rR)es, + p(R)es, (3.8)
and e, +r(8) p(R) < r(R)es, + p(R)es, (3.9)
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By summing up the Equations in and ( ., we get
2ez,62; +2 1(A) p(A) < (r(A) + p(R))(ea; + €x;) (3.10)
Divided by (ez; + €,;) on both sides on (3.10]), we have
sz, 27(A) p(A ~ ~
gt 2r0) B _ g x
€x; T €z, €x; T €,
Taking summation over all pairs of non-adjacent pair of vertices x; and x; in K, we have
€x;€x; 2r K K ~ ~
>y oy oy P S E) 4R,
zzj¢€(h) T mmigea(h) ' J zz;¢C(A)
R A A
Hence,  28751(A) +r(R) p(8) &) < UELEPAD
O

4. Some Graph Constructions

In this section, we calculate the inverse sum indeg eccentric coindices for various graph constructions.
These graph models are crucial for understanding how the £r57(A) behaves in graphs with increased com-

plexity and symmetry.

4.1. Double graph

Let A be a graph with the vertex set ‘IIe(K) = {v1,v2,...,v,}. Consider two sets of vertices, X =
{z1,22,...,2p} and Y = {y1,92,...,yn} of A, preserving the 0r1g1nal edge set of each version and adding
the edges x;y; and x;y; for every edge v;v; € QED(A) The result is a new graph, A* known as the double

graph of A.
Theorem 4.1. For a double graph A* of K,

Ers1(A%) = 4E57(R) + "N,

Proof. From the definition of double graph INX*, we have

2 ,Lf EK(UZ’) = 17
ev.(x;) = ev. (y;) =
Hence,
A _A*
- €€
S s
Ty Ed(A*)
A* _A* A* _A* A* _A* A* _A*
— Z Ti "Xy Yi "Yj5 emi 6yj Xj eyz
A+ E A+ A* A+ A+ A* A*
viv; e (R) + € er” + et e + el ex +e
A A A2
ehes (})
=4 > +Z >
~ v - (%
v;v;€€0(A) =1
~ 1 & ~
= 4rsr(A) + 3 e
i=1
. 1 ~
= 4 &s1( )+§T(A)-
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4.2. Extended double graph

Let A be a graph with %e(x) = {v1,v2,...,v,}. Consider a bipartite graph A** with bipartition (X,Y)
where X = {z1,22,...,2,} and Y = {y1,¥2,...,yn}. In this graph, an edge x; is adjacent to y; if and only

if i = j or vju; € €d(A). This graph is known as the extended double graph of A. Tt is clear from the above

definition that for each 1 < i < n,
EXx (yz) = 67\(”1’) + 1.

Theorem 4.2. For a extended double graph A of /NX,

- A & (A n(n—1
Est(A™) < - |&si(A) +Ex(A) + EMI; ) + §M22( ) + ( 5 ) _ 4m
1 1, ~ ~ ~  n(n—1)
e SR = Ev(R) + (n— Dr(R +].
T R - BE) - @)+
Proof. By the definition of {757, we obtain
X** X**
T A %% _ € ey
Ersi(A™) = Z e eA**
rygea(ier) @
A** K** K** K** K** K‘** A** A**
_ Z Co; Gy, n €o; Cyi " Z o Cay n €y €y,
viv; @@0(R) AT+ 63/};* e/x\,** + eA,** 1<i<i<n A + elx\;* A:* + A
S (A+1)( y Z (eAj+1)
oo 2eu() € +1+e +1 T e +1+e +1
= A1+ Ay,

el el + (€ §1+e7\)+2

Al — 9 Z v; v

Uﬂ)j%@b(ﬂ) ( vl + €y ) + 2

1

P . . 1
By Jenson’s inequality, we obtain eoFen 72 < Moo, e,

every n — a (non-adjacent) pair of vertices v;v; ¢ @d(A). Hence,

Al AR 4 (A4 A
P ehes, + (el + el )42 e ) v
v;0;¢€(A) (evi + €vj)
A Gn(h) |
= 5 |&sr(A) + 7+ € (A) + 5M22( )+§M12( ) 7

Ersr(A) + €4 (A) + S (A) + S (A) +n(n—1)— 2’m] .

1
2 2 2

y + % with equality if and only if efj\i +

ef}j = 2, for
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Similarly, we can prove

A
4 — 2 Z +1)(e, +1)

1<i<j<n €v; +6 +2

1 (r(A)? —El(A)) — /n
= r(A) + 1 2 +(“1)T(A)+<2>
Hence
Esi(A™) < = |&si(A) +E4(A) 5M12<A> +&MQQU +"("2‘1)—4m
1 17_ 2 _ (X n— (X n(n —1)
® {2( (A)7 = Er(A) + (n = D)7(A) + == ]

4.8. Generalized hierarchical product

Let ¢ # Y C QIe(Al) The generalized hierarchical product AL(Y) 1 Ay of graphs A and Aj is a
graph with vertex set Q?e(Al) X ‘Be(Ag) Two vertices (u,ug) and (vl, vg) are adjacent if and only if either
[up =v1 €Y and ugvg € QED(AQ)] or [ug = v € ‘ITe(Ag) and u1v; € (’EO(Al)]

For ¢ # Y C We(A), a path between vertices u,v € me(A) through Y is a uwv-path in A containing
some vertex z € Y (where z could be either u or v). The distance between u and v through Y, denoted by
dK(Y) (u,v), iAs/the length of any shortest path between u and v that belongs to Y. Thus, dT\(Y) (u,v) = dx(u,v).
For u € Ye(A), we define X(v) (u) = max, eve(R) YA () (u,v). The following invariants related to Y are defined
for the convenience.

(Y) = Z EA(Y) (u) = Z 67\(“)?

ueY ueY
BEi(Y) = Z CA(Y) (U)Z = Z 5]\(“)25
ueY ueY
TAY) = D ez )
ueVe(A)
EAY) = Y g @
ueA
?(K(Y)) = Z (GK(Y)(U)'FGT\(Y)(U));
uvg €d(A)
Ba(A(Y) = Y e @ege(©)-
wwgEo(A)

The eccentricity of a vertex (u1,us) in A1 (Y) M Azas follows.
CA1(Y)UA (u1, uz) = (Y)(Ul) + e (u2).

EDK; is the cartesian product of graphs KI and K; is a graph with set of all vertices %e(]&vl) X ‘Z]e(K;).
Two vertices (uj,uz) and (v1,v2) are adjacent if and only if either [u; = v; € Le(A1) and ugve € Ed(Ag)]
or [ug = vz € Ve(Az) and ujv1 € Ed(Ay)].
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Theorem 4.3. For a graph /~\1(u) M As,

EsrM(V)NK) < [ 70E(Y) + Ear, (Ra)7(Y) + ¥ [Eary (Ba)
2(7“A1—i—rA2)

n [migl@) + Ear (A1 (Y))7(A2) + noar, (A1 (Y)) | +

(%) (@) - @00 + () — 702 = 1)7(Ba) + WD (E)? - &)

" (22) (r(Ea(¥))? - (R (¥) + (nzl> (782 = 1(8)) + (1 = Dz = r(Ra(¥)7(R)

) |

Proof. By the definition of {757, we obtain

A1(Y)rA2 EJTI (Y)NAz

€

- ~— (z1,91) (w2,y2)

Es(Ai(Y)NAy) = ) D -~
(z1,51) (22,y2) €A1 (Y)MA2) C(a1,01) (z2,y2)

By analyzing the structure of A (Y)n Ay , we obtain the following edge partition with respect to the eccen-
tricity of the end vertices of the edges. .
First, calculate the sum A1 over all vertices 1 € Y and n — a vertex pairs y1y2 ¢ €0(As).

w- Y X

Ar(Y
T1EY 1 ya¢€a(A2) (Gazl( )+ )+( Ax( )+ )

611 6331

(Elw\ll( )) + jc\ll(Y)( A2+€A2)+€A26A2

< Y1 Y2
- Z Z N 27’1’( + QTA
1€Y 4 o d@n(Az) 1 2
A Y As A As A
T2y + e iy Z 1 Z Z (e +eyy) + Y] Z €yr €ys
A z1€Y z1€Y Y1y2£€d(Ra) Y1y2£€(Rs)
1

- = [rfT'gE(Y) + &, (A2)7(Y) + [V [Ensy (B2)] -
A Ao

Next, we consider As which is taken over all vertices y; € ‘ITe(K;) and n — a vertex pairs x1xo ¢ @O(Z\Nl ).

A Ao A s
bo Yy @led @Mia
2 _ AW, Ay, e A
y1€Ve(A2) z122¢E0(A1) (611 + €y ) + (6952 + €& )
A1 (Y) Al(Y)) A1(Y) Al(Y)

IN

&y el ) A
20y +rg)

y1€Ve(A2) z122¢E0(A1)

= Spm i [P+ B )R + b (R0
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The third sum As is taken over all vertices z1 € Q]e(AN1 )|Y and unordered vertex pairs {y1,y2} C Q]e(ANQ).

A1 (Y) Ay A (Y) Az
Ay = Z Z (€x + €y ) (efm + €y )

Y AL (Y
21 €Be(A1)|Y y1y2 CVe(Az) (2100 4 elley 4 (M) e

A1(Y)y2 AL(Y) A, A2 As Ao i
1 + €z, 2+ €,r) tel€,] 1 —~
Z Z (e )2 4 € (g2 +e€y2) +€2ey2 (7122) & E)

2(7“A~1 + TAQ) 2(7‘7(1 + TK;) I

IN

21€0e(A1)|Y y1y2CUe(A2)

~6 (V) + (R (V) — 7)) = Dr(Ba) + 3 — VN (R — €1(Ka))

The final sum Ay is taken over all unordered vertex pairs {1, x2} C %e(//\:) and {y1,y2} C %Ie(K;).

A, - Z Z (e;\f( )+ez‘}}) (ei\g( )+6X5) (eﬁf(y)%—e%) (62\21( )+6K5)
Y A (Y Y Ao A (Y

ormr o T tores ey L™ ey 4 (M ey (@D )+ (D + )

) > > oMM Ay 2eh2eha 4 () ent ) (ebz 4 by

= - B 2 +
(21,22} CBe(A1) {y1y2} CVe(A2) L &+ )

o [( 2) (r®my? - @) + () (rEr - a)
+(n1 — 1) (n2 — )7 (A1 (V)7 (A2) |

By adding A; to A4 and simplifying we get the required result. O

4.4. Composition

A1[Ag] is the composition of Ay and Ay is a graph with vertex set Ue(A;) x Ve(Az). Two vertices (z1, y1)
and (9,y2) are adjacent if and only if either z,29 € E(A}) or [z1 = x5 € Ve(A) and y1y» € E(A3)]. The
composition of two graphs is also known as their lexicographic product or wreath product.

The eccentricity of a vertex (z1,y1) € A1[Ag] is given by

. 1 if 6A1 = A2 =1,
El[AQ] — A1 _ A2
(@) — )2 if € 22,

A A
€r) if el 2 2

The number of universal vertlces of A is denoted by C(A).

Theorem 4.4. The inverse sum indeg eccentric coindex of 7\1[7\;] s given by

Ers1(M1[As]) = B (7(A1) + C(A1)) +n3 Ersr(Ar)



Pattabiraman, Journal of Prime Research in Mathematics, 20(1) (2024), 81-98 95

Proof. By the definition of {77 of Kl[ANQ}, we have
6/’\7 [A2]  A1[As]
A TAL (w1,51)  (z2,92)
Ers1(M[Ag]) = Z SR 2002)

_ _ _M[A9] A1[A2]
(x1,51) (22,52) €(A1[A2]) E(z1,91) + €(x2,92)

- YAy (M) y oy @

A
z1€Ve(A1) Y1y2 2 E0(Ay) &?16312(/\7) Y1y2¢€d(A2) 2€x;
6A1>2
217
61\16/\1 AleAl
y1€Ve(A2) z1za@Ed(A]) exl Te w122¢€(A1)  {y1y2}CVe(A2) 61:1 Te
Ay Ay
_ — Eﬂ n2 %17
_ ZNC(Al) > ) <2>+<”2+2(2>) 2 4
Y1y2¢€d(A2) y1y2§§€a(A2)x1€‘Be(A1 maag€(Ar) “1
al>2
T o ) g
= niy C(A1) + 72 (7(A1) = C(A1)) + (nz +2 ( ;)) rsi(A)
= g C(M)) +n3 Ers1(Ay) + 5 C(Z\Vl)
E .~
= 3 ( (M) +C A1)>+n§ $1s1(Ar).
O

The following Corollary we obtain by Theorem
Corollary 4.5. If A1 has no universal vertices, then §151(Z\V1[K;]) = % T(KI) +n3 &SI(?\:).

4.5. Strong Product

The strong product of two graphs A; and Ay is a graph with vertex set %e(]\vl X ]\;) = ‘Be(?&vl) &‘Be(?&vg).

Two vertices (x1,y1) and (x2,y2) are adjacent in the strong product if z1 = z9 and z1x9 € E.

Theorem 4.6. [fry; 2 pg;, then Ersr(Ay R Ay) = ™2 7(Ay) + 2y Er51(A) +n Ersr(A).
Proof. Based on the condition ri- > for every vertex x1 € Ve A2 g1 € Ve A2 ’ v > eAQ, we have
pA €z, Y1
ARAy _ Al
(xlvyl) o
Hence,
Gsi(MRAy) = 3 6<x1,yl>m@;<x2,y2)m@
€ R € —
(@1,51) (@2,02) £E(MRAG)  (@1y1) 1EA2 T (g yp) 1B
(e L
- Z Z 9 Ay + Z Z —
T1€Te(A1)  yiyeg@(Ay) “T1 y1eBe(Ar) wizag€d(Ar) ehl + €k,
> . el > 3 el
+2 # +2 #
2122€€(A1) Y128 €0(A1) Exl + 6962 2122¢€(A1) y1y2¢Ed(A2) 621 + Emz

A1
1

Ay
61'1
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= 77; 7(A1) + norsr(Ay) + 2migrsr (Ay) + 2 < > rs1(A)

= Z2r(Ry) + 2nErss (Ar) + 3 Esi(Aa).

Theorem 4.7. The inverse sum indeg coindezx of A X K; s given by

G miy > ([T B+ G R + (5
+ fnTl Ei(A2) + 7(A2) &r, (A1) + 1 %(E)}

+ (2% € (1) + 21 €y (B2) + €, (R1) &, (B)]

—%é<?>&m@b+2ﬁh@mﬁ@)+&b@®)+&h@a<&ﬁ@®+&m@3ﬂ>-

The equality in Equation (4.9) holds if and only if A1 and Ay are s — ¢ and P =P
A Ao

Proof. The eccentricity of a vertex (x1,y1) € %e(lf\vl X ANQ) is

AMRAy _

A A,
(w1,91) ey}

= max{e,, €,

We know that for any real numbers a,b, we have max{a,b} > “T‘H’ with equality if and only if a = b.

Therefore,

AMRA;  ARA,

€ €
o (z1,91) ~(w2,92)
Srsi(M W Ag) = Z N AiRA, 4 MRA
(@1,91) (@2,92) €(A1BAD) C(z1.91) T C(22.92)
Z max{egll, 6;\12} max{eé‘;,eé\;}

— 2
e s iy Maa el 7} + maz{ell, )7

<6£11 +e$12 > <e£21 +e$22 >
2 2

> Z (MM A1 A

(z1,y1)(z2,y2)Z (A1 XA2) <T1291> + (12292>

() + b)) + )

- Z (4.2)

(z1,91)(w2,y2)E€0(A1KA) 4<€a:1 + 6 —|— 6 —|— e )
= A1+ Ay + Az + Ay,

where A;= The sum of Equation 1) which in taken overall vertices x1 € Q]e(KI) and n — a vertex pairs
1y ¢ €(Ay).

As= The sum of Equation which in taken overall vertices y; € ‘I]e(]\\;) and n — a vertex pairs
T1x9 ¢ QSO(K;)

As= The sum of Equation which in taken overall edges xizo € QED(ANl) and n — a vertex pairs
y1y2 ¢ Qfa(/\N2)-
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and

A,= The sum of Equation (4.2) which in taken overall n — a vertices pairs 1z ¢ €d(A;) and n — a
vertex pairs z1z2 ¢ €d(A2) and unordered pairs of vertices {y1,y2} C Ue(Az).

Now we shall obtain the sums A; to A4, separately.

(2! +ey?) () +ep?)
A A A
(A2) 2ez) + (6y12 + €y22)

LI IO VDY

21€0e(A1) y1y2¢ €0

1 ™Y Ko Aay\ A1 Az As
T ——— Z Z [(emll)2 + ()2 + ep2)ent + egfey;}
A TR g ee(AT) yiyagea(R)

1 JUC "N AN/ A - —~
- m [m2E1 (A1) + 7(A1)Enr (A2) + nlgMQ(AQ)} '

Y

4 _ _
y1¢Ve(A2) z122¢E0(A1)

A A

A 1 3 3 (ep! + ep) (e + ep?)
2 A Ao
€x; + €xy + 26y,

By symmetry of the sum A;, we get

Ay !

8(pi; +rx;)

v

[nT'1 E1(A2) + 7(A2) Ear, (M) + 11 Eary (A7) ]

(el +ep?)eal Tepd) (el + ) +e?)

(en) +ep?) + (bt +en?)  (ebl +en?) + (en! +eh?)

1
4 =7 > X
r122€€0(A2) y1y2¢ €0 (A2)
S tr) ~1+ 5 Z Z {2656@4-262}6%—l—(eﬁ-ﬁ-e%)(eé}—i—e%)]
PR T PR T172€€0(A2) y1y2¢E0(A2)
1 — — _ —~ —_ _ —
= | 2mi2 & (A1) + 2ma S (A2) + Eary (A1) Ear (A2) ]
So ) 27 € )+ 2ms G (R2) + a0 (1) Eon ()

Similarly, we compute

T EDVED Y

2122¢€d(A1) {y1,y2} CVe
s |2 () S+ 2 7 (6 (82) + Gy + o ) (6 () + 6o )|
8(px +P5;) 2
]iidding the sums A; to A4, we get the inequalities which is our required result. The equality holds in
(14.2)

. if and only if for each edge (z1,y1)(z2,y2) ¢ (’ED(A~1 X ANQ), M = 6%21 and e;\f = 6222. If A; and Ao are

(bt + ep2)(en) + €52)

A1, Ao A1, Ao
(A2) (ezi +€y) + (€xi + €y5)

1
s — ¢ graph and PR, = PRy then the equality in 1} holds trivially.
Let the equality in 1) holds. Then for each z1 € Q]e(]\:),ylyg ¢ @D(Z\\;), eg = ;}} = g}g and for each

vertex y; € %e(K;), T1xo € E‘ED(KI) et = 1 = 6922 This gives that both Kl and /~X2 are s — ¢ graphs and

[ z1

PR = PRy O

2
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