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Abstract

Essential and widely studied topological indices, including the well-known Zagreb indices (M1 and M2),
and the newly proposed Inverse Sum Indeg Eccentricity Index (ξISI), To ensure the contributions of all
edges within a graph are effectively considered. By emphasizing on the total eccentricity of non-adjacent
vertices, Hua et al. introduced the eccentric connectivity coindex (ξc). Inspired by their contributions, we
introduce the inverse sum indeg eccentric coindex (ξISI), which is defined as the ratio of the product of
the eccentricities to the sum of the eccentricities for all isolated pair of vertex in a connected graph. This
study primarily aims to establish various bounds for ξISI in finite simple graphs and derives the values of
the proposed indices for two specific graph constructions. Additionally, we present a comprehensive set of
relationships for ξISI using several graph products.

Keywords: Topological index, Eccentricity of a vertex, Graph products

1. Introduction

A graph invariant, often referred to as a topological index, is a numerical parameter obtained directly
from the structural properties of a molecule graph. These indices are widely used in theoretical chemistry
to model various molecular properties, including physico-chemical, biological, and pharmaceutical charac-
teristics. Numerous graph invariants linked to the graph-theoretic notion of eccentricity has been previously
proposed also utilized in QSAR/QSPR studies. Many of these indices have proven to be effective tools for
predicting pharmaceutical properties.
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In this study, we concentrate on the properties of simple connected graphs. Consider such a graph be Λ̃,
the set of vertices and edges, are denoted by Ve(Λ̃) and Ed(Λ̃) correspondingly. The graph Λ̃ has n vertices
and m edges. An edge connecting two vertices x and y is denoted as xy. The complement of Λ̃, denoted by

Λ̃, is a graph with the same vertex set Ve(Λ̃), where two vertices are adjacent if and only if they are not
adjacent in Λ̃. The degree of a vertex x, denoted by d(x), is the number of vertices directly connected to x
in Λ̃. The first and second Zagreb indices are defined as

M1(Λ̃) =
∑

x∈Ve(Λ̃)

d(x)2 =
∑

xy∈Ed(Λ̃)
(d(x) + d(y))

M2(Λ̃) =
∑

xy∈Ed(Λ̃)
d(x)d(y)

such a topological indices were first introduced in [11, 12]. For detailed information on their properties and
additional references, see [7, 9, 13, 6, 14, 23, 31, 33, 34]. For historical context, refer to [10].

In 2008, Doslic introduced a pair of Zagreb coindices [8], building on the earlier definitions.

M1(Λ̃) =
∑

xy/∈Ed(Λ̃)
(d(x) + d(y)) and M2(Λ̃) =

∑
xy/∈Ed(Λ̃)

d(x)d(y)

Recently studied some detail by the Zagreb coindices in [1, 2, 17, 18, 19].
The distance between the two vertices such as x and y in graph Λ̃ is denoted as

d
Λ̃
(x, y)

The eccentricity ϵx of x ∈ Ve(Λ̃) is defined as

ϵx = max{d
Λ̃
(x, y) | x, y ∈ Ve(Λ̃)}.

In all the vertices of graph Λ̃ the diameter and radius is notated as ρ(Λ̃) and r(Λ̃) correspondingly. If
ρ(Λ̃) = r(Λ̃), then Λ̃ is self-centred graph denoted as s− c graph. A vertex x ∈ Ve(Λ̃) with d(x) = n− 1 is
known as a universal vertex.

In 1997, Sharma et al. [28] recommended the eccentric connectivity index of Λ̃ as

ξc(Λ̃) =
∑

x∈Ve(Λ̃)

d(x)ϵx =
∑

xy∈Ed(Λ̃)
ϵx + ϵy

The invariants τ(Λ̃) and ξ2(Λ̃) defined as

τ(Λ̃) =
∑

x∈Ve(Λ̃)

ϵx and

ξ2(Λ̃) =
∑

x∈Ve(Λ̃)

d(x) ϵ2x =
∑

xy∈Ed(Λ̃)
(ϵ2x + ϵ2y)

are respectively called the total eccentricity and second eccentric connectivity index [3] of Λ̃.
The first and second Zagreb eccentricity indices [29, 30] of Λ̃ are respectively, defined as

ξ1(Λ̃) =
∑

x∈Ve(Λ̃)

ϵ2x and ξM2(Λ̃) =
∑

xy∈Ed(Λ̃)
ϵxϵy.

In 2019, Hua and Miao [20] proposed the eccentric connectivity coindex of Λ̃ as

ξc(Λ̃) = ξM1(Λ̃) =
∑

xy/∈Ed(Λ̃)
(ϵx + ϵy).

In 2021, Mahdieh Azari [22] proposed the second Zagreb eccentricity coindex of Λ̃ as



Pattabiraman, Journal of Prime Research in Mathematics, 20(1) (2024), 81–98 83

ξM2(Λ̃) = E2(Λ̃) =
∑

xy/∈Ed(Λ̃)
ϵxϵy

The Harmonic eccentric index and its coindex [12] of Λ̃ are respectively, defined as

ξH(Λ̃) =
∑

xy∈Ed(Λ̃)

2
ϵx+ϵy

and ξH(Λ̃) =
∑

xy/∈Ed(Λ̃)

2
ϵx+ϵy

.

The status or transmission [16] of a vertex x in the graph Λ̃ is defined as

Dx =
∑

{x,y}∈Ve(Λ̃)

d
Λ̃
(x, y)

The status connectivity indices first and second of a graph Λ̃, introduced by Ramane et al.[26] are
respectively, defined as

S1(Λ̃) =
∑

xy∈Ed(Λ̃)
(Dx +Dy) and S2(Λ̃) =

∑
xy∈Ed(Λ̃)

DxDy

In 2018, Ramane et al. introduced the concepts of the first and second status connectivity coindices [27],
which are defined respectively as follows:

S1(Λ̃) =
∑

xy/∈Ed(Λ̃)
(Dx +Dy) and S2(Λ̃) =

∑
xy/∈Ed(Λ̃)

DxDy

Ease way of recognize ISI and ISI are just the first representation of a class of topological indices and
coindex of the form

ISIgeneral(Λ̃) =
∑

xy∈Ed(Λ̃)

QxQy

Qx +Qy

and ISIgeneral(Λ̃) =
∑

xy/∈Ed(Λ̃)

QxQy

Qx +Qy
(1.1)

respectively, Here, Qx represents a specific quantity that can be uniquely and effectively associated with the
vertex x of the graph Λ̃.

In this study, we turn our focus to another member of this class, denoted by ISI3, which can provisionally
be referred to as the third inverse sum indeg coindex. This index is formulated in such a way that it is
associated with ξ

c
and ξM2 .

Based on the general formula (1.1), we define the third ISI and ISI indices as:

ξISI(Λ̃) = ISI3(Λ̃) =
∑

xy∈Ed(Λ̃)

ϵxϵy
ϵx + ϵy

and ξISI(Λ̃) = ISI3(Λ̃) =
∑

xy/∈Ed(Λ̃)

ϵxϵy
ϵx + ϵy

, respectively

Hua and Miao [20] explored several extremal problems concerning the eccentric connectivity coindex and
established various lower bounds for this invariant based on distinct graph parameters. Hayat [15] derived
precise lower bounds for the second Zagreb eccentricity index in the context of n-vertex cacti graphs. Azari
[4] examined the eccentric connectivity coindex’s properties for different graph products. Additionally,
numerous bounds on the eccentric connectivity coindex, expressed in terms of existing invariants, as well as
its values for specific graph constructions, were discussed in [5].

The following concepts are included in the paper:
In Section 2, derive significant bounds for ξISI(Λ̃) across various classes of graphs, offering a deeper un-

derstanding of the range and behavior of this coindex within different graph structures. Section 4 investigates
how ξISI(Λ̃) interacts with graph
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2. Bounds on ξISI

The Λ̃ with Ve(Λ̃) is set of all vertices is the complement of Λ̃ and any two vertices of Λ̃ are adjust if

and only if they are not adjacent in Λ̃. The number of edges of Λ̃ is denoted by m̈, that is

m̈ = |Ve(Λ̃)| (|Ve(Λ̃)|−1)
2 − |Ed(Λ̃)|.

In this section, we establish some new relation a ξISI index and other graph parameters.

Theorem 2.1. Let Λ̃ be a graph on n vertices and m edges. Then

m̈r(Λ̃)2

2 ρ(Λ̃)
≤ ξISI(Λ̃) ≤

m̈ρ(Λ̃)2

2 r(Λ̃)
. (2.1)

The equality on the left-hand side of (2.1) is satisfied if and only if Λ̃ is self-centered, while the equality
on the right-hand side holds if and only if Λ̃ is self-centered or r(Λ̃) = 1 and ρ(Λ̃) = 2.

Proof. Note that for each x ∈ Ve(Λ̃), r(Λ̃) ≤ ϵx ≤ ρ(Λ̃). Therefore,

m̈

(
r(Λ̃)2

2 ρ(Λ̃)

)
=

∑
xy/∈Ed(Λ̃)

r(Λ̃)r(Λ̃)

ρ(Λ̃) + ρ(Λ̃)
≤

∑
xy/∈Ed(Λ̃)

ϵxϵy
ϵx + ϵy

≤
∑

xy/∈Ed(Λ̃)

ρ(Λ̃)ρ(Λ̃)

r(Λ̃) + r(Λ̃)
= m̈

(
ρ(Λ̃)2

2 r(Λ̃)

)
.

The equality on the left-hand side of (2.1) holds if and only if, for every pair of vertices xy /∈ Ed(Λ̃),
ϵx = ϵy = r(Λ̃) = ρ(Λ̃). If Λ̃ is self-centered, then the left-hand side equality in (2.1) is trivially satisfied.

Now, assume that the left-hand side equality holds in (2.1). If Λ̃ ∼= Kn, then Λ̃ is a self-centered graph.
Let Λ̃ ∼= Kn, and consider x ∈ Ve(Λ̃) such that ϵx = ρ(Λ̃) ≥ 2. Then there exists a vertex y ∈ Ve(Λ̃) with
xy /∈ Ed(Λ̃). Consequently, ρ(Λ̃) = ϵx = ϵy = r(Λ̃), which implies that Λ̃ is a self-centered graph.

Similarly, the equality on the right-hand side of (2.1) holds if and only if, for every pair of vertices
xy /∈ Ed(Λ̃), ϵx = ϵy = r(Λ̃) = ρ(Λ̃). If Λ̃ is self-centered or satisfies r(Λ̃) = 1 and ρ(Λ̃) = 2, then the
right-hand side equality in (2.1) holds trivially. Let us assume the right-hand side equality holds in (2.1). If
ρ(Λ̃) = r(Λ̃) = 1, then Λ̃ ∼= Kn, which is self-centered. If r(Λ̃) = 1 and ρ(Λ̃) = 2, there is nothing further to
prove. Let r(Λ̃) ≥ 2. Consider x ∈ Ve(Λ̃) such that ϵx = r(Λ̃) ≥ 2. Then there exists a vertex y ∈ Ve(Λ̃)
such that xy /∈ Ed(Λ̃). Hence, r(Λ̃) = ϵx = ϵy = ρ(Λ̃), which confirms that Λ̃ is a self-centered graph.

Lemma 2.2. [21] For a vertex x in a connected graph Λ̃ with n vertices, ϵx ≤ n− d(x) with equality if and

only if Λ̃ ∼= P4 or Λ̃ ∼= Kn − iK2, 0 ≤ i ≤
⌊
n
2

⌋
. The graph Kn − iK2 is obtained from Kn by removing i

independent edges.

Theorem 2.3. For a graph Λ̃ with n vertices,

ξISI(Λ̃) ≤ 1

2 r(Λ̃)

[
n2(n(n− 1)− 2m)

2
− n M1(Λ̃) +M2(Λ̃)

]
. (2.2)

with equality if and only if Λ̃ ∼= P4 (or) Λ̃ ∼= Kn − iK2, 0 ≤ i ≤
⌊
n
2

⌋
Proof. By the Definition of ξISI and Lemma 2.2, we obtain

ξISI(Λ̃) ≤
∑

xy/∈Ed(Λ̃)

(n− d(x))(n− d(y))

2 r(Λ̃)

=
∑

xy/∈Ed(Λ̃)

n2 − n(d(x) + d(y)) + d(x)d(y)

2 r(Λ̃)

(2.3)
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=
n2

2 r(Λ̃)

(
n(n− 1)

2
−m

)
− n

2 r(Λ̃)
M1(Λ̃) +

M2(Λ̃)

2 r(Λ̃)

≤ 1

2 r(Λ̃)

[
n2(n(n− 1)− 2m)

2
− n M1(Λ̃) +M2(Λ̃)

]
.

The equality in (2.2) holds if and only if, for any edge xy /∈ Ed(Λ̃), ϵx = n− d(x) and ϵy = n − d(y). This

implies that for each non-trivial vertex x ∈ Ve(Λ̃), ϵx = n− d(x). The equality ϵx = n− d(x) also holds for
any universal vertex x ∈ Ve(Λ̃). Therefore, ϵx = n−d(x) holds for all x ∈ Ve(Λ̃). According to Lemma 2.2,
the equality in (2.2) holds if and only if Λ̃ ∼= P4 or Λ̃ ∼= Kn − iK2 for 0 ≤ i ≤

⌊
n
2

⌋
.

The proof of this lemma is straightforward.

Lemma 2.4. For a (n,m)−graph Λ̃

M1(Λ̃) = 2m(n− 1)−M1(Λ̃) and M2(Λ̃) = 2m2 − M1(Λ̃)
2 −M2(Λ̃).

By using Lemma 2.4 and Theorem 2.3, we obtain the following.

Corollary 2.5. For a (n,m)−graph Λ̃,

ξISI(Λ̃) ≤ 1

4 r(Λ̃)

[
n(n− 1)(n2 − 4m) + 2m(2m− n2) +M1(Λ̃)− 2M2(Λ̃)

]
.

Theorem 2.6. For a graph Λ̃ with n vertices,

ξISI(Λ̃) ≥ S2(Λ̃)

2 ρ(Λ̃)(n−1)2

with equality if and only if Λ̃ ∼= Kn.

Proof. For every vertex x ∈ Ve(Λ̃), Dx =
∑

x∈Ve(Λ̃)|{y}
d(x, y) ≤

∑
x∈Ve(Λ̃)|{y}

ϵxy = (n − 1)ϵy, with equality if

and only if for every y ∈ Ve(Λ̃)|{x}, d(x, y) = ϵy, that is ϵy = 1. Therefore,

ξISI(Λ̃) ≥
∑

xy∈Ed(Λ̃)

(
Dx
n−1

)(
Dy

n−1

)
2 ρ(Λ̃)

=
1

2 ρ(Λ̃)(n− 1)2

∑
xy/∈Ed(Λ̃)

DxDy

=
S2(Λ̃)

2 ρ(Λ̃)(n− 1)2

with equality if and only if Λ̃ ∼= Kn.

Lemma 2.7. For a graph Λ̃ with n vertices,

S2(Λ̃) = 2W (Λ̃)2 − 1
2

∑
x∈Ve(Λ̃)

D2
x − S2(Λ̃).

By using Theorem 2.6 and Lemma 2.7, we obtain the following result in terms of Weiner index and the
second status connectivity index.

Corollary 2.8. For a (n,m)−graph Λ̃,

ξISI(Λ̃) ≥

2W (Λ̃)2 − 1
2

∑
x∈Ve(Λ̃)

D2
x − S2(Λ̃)

2 ρ(Λ̃)(n− 1)2
=

1

4 ρ(Λ̃)(n− 1)2

4W (Λ̃)2 −
∑

x∈Ve(Λ̃)

D2
x − 2S2(Λ̃)


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Theorem 2.9. For a (n,m)− graph Λ̃,

ξISI(Λ̃) ≤
1

2 r(Λ̃)

(
(n− 1)ξ1(Λ̃)− ξ2(Λ̃)

)
. (2.4)

with equality if and only if Λ̃ is s− c graph.

Proof. One can easily verify that for any edge xy /∈ Ed(Λ̃), ϵ2x + ϵ2y ≥ 2ϵxϵy with equality if and only if
ϵx = ϵy. Using this fact, we obtain

2ξISI(Λ̃) ≤
∑

xy/∈Ed(Λ̃)

2ϵxϵy

2 r(Λ̃)
≤

∑
xy/∈Ed(Λ̃)

(ϵ2x + ϵ2y)

2 r(Λ̃)

=
∑

x∈Ve(Λ̃)

(n− 1− d(x))

2 r(Λ̃)
ϵ2x

=

(
n− 1

2 r(Λ̃)

) ∑
x∈Ve(Λ̃)

ϵ2x −
1

2 r(Λ̃)

∑
x∈Ve(Λ̃)

d(x)ϵ2x

=

(
n− 1

2 r(Λ̃)

)
ξ1(Λ̃)−

1

2 r(Λ̃)
ξ2(Λ̃).

=
1

2 r(Λ̃)

[
(n− 1)ξ1(Λ̃)− ξ2(Λ̃)

]
.

The equality in Equation (2.4) holds if and only if, for every pair of vertices xy /∈ Ed(Λ̃), ϵx = ϵy. It is

straightforward to verify that the equality in Equation (2.4) holds if and only if Λ̃ is self-centered or r(Λ̃) = 1
and ρ(Λ̃) = 2.

The product version of eccentricity based topological indices are defined as

ξ∗1(Λ̃) =
∏

x∈Ve(Λ̃)

ϵ2x and ξ∗2(Λ̃) =
∏

x∈Ve(Λ̃)

ϵ
d(x)
x .

Theorem 2.10. For a (n,m)-graph Λ̃,

ξISI(Λ̃) ≥
m̈

2 ρ(Λ̃)

(
ξ∗1(Λ̃)

n−1
2

ξ∗2(Λ̃)

) 1
m̈

, (2.5)

where m̈ = n(n−1)
2 −m holds with equality if and only if Λ̃ is self-centered or r(Λ̃) = 1 and ρ(Λ̃) = 2.

Proof. By arithmetic-geometric mean inequality

ξISI(Λ̃)

m̈
≥

1

2 ρ(Λ̃)

∑
xy/∈Ed(Λ̃)

ϵxϵy

m̈
.

(2.6)

ξISI(Λ̃)

m̈
≥ 1

2 ρ(Λ̃)

 ∏
xy/∈Ed(Λ̃)

ϵxϵy

 1
m̈

.
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For every vertex x ∈ Ve(Λ̃), the factor ϵx appears (n− 1− d(x)) times in
∏

xy/∈Ed(Λ̃)
ϵxϵy. Thus

ξISI(Λ̃)

m̈
≥ 1

2 ρ(Λ̃)

 ∏
x∈Ve(Λ̃)

ϵ(n−1−d(x))
x

 1
m̈

=
1

2 ρ(Λ̃)


∏

x∈Ve(Λ̃)

(ϵ2x)
n−1
2

∏
x∈Ve(Λ̃)

ϵ
d(x)
x


1
m̈

=
1

2 ρ(Λ̃)

(
(ξ∗1(Λ̃))

n−1
2

ξ∗2(Λ̃)

) 1
m̈

.

Therefore,

ξISI(Λ̃) ≥ m̈

2 ρ(Λ̃)

(
(ξ∗1(Λ̃))

n−1
2

ξ∗2(Λ̃)

) 1
m̈

.

The equality holds if and only if, for each edge xy /∈ Ed(Λ̃), ϵxϵy is constant. If Λ̃ is a self-centered graph

or r(Λ̃) = 1 and ρ(Λ̃) = 2, then the equality in (2.5) holds trivially. Suppose that the equality holds in
(2.5), and r(Λ̃) ≥ 2 with Λ̃ being non-self-centered. Since r(Λ̃) ≥ 2, there exist vertices s, t ∈ Ve(Λ̃) such
that st /∈ Ed(Λ̃) and ϵs = r(Λ̃). Given that Λ̃ is non-complete, there also exist vertices a, b ∈ Ve(Λ̃) such
that ab /∈ Ed(Λ̃) and ϵa = ϵb = ρ(Λ̃). Because Λ̃ is non-self-centered, we have r(Λ̃) < ρ(Λ̃). This leads to
ϵsϵt = r(Λ̃)ϵt < ρ(Λ̃)2 = ϵaϵb, which results in a contradiction. Therefore, equality in (2.5) holds if and only
if Λ̃ is self-centered or r(Λ̃) = 1 and ρ(Λ̃) = 2.

Theorem 2.11. For a connected graph Λ̃, ξISI(Λ̃) ≤ ρ(Λ̃)

4 r(Λ̃)
ξc(Λ̃) equality holds if and only if Λ̃ is s − c

graph.

Proof. For a vertex x ∈ Ve(Λ̃), ϵx ≤ ρ(Λ̃). Thus

ξISI(Λ̃) ≤
∑

xy/∈Ed(Λ̃)

ϵxϵy

2 r(Λ̃)
=

∑
xy/∈Ed(Λ̃)

√
ϵxϵy

√
ϵxϵy

2 r(Λ̃)

≤
∑

xy/∈Ed(Λ̃)

√
ρ(Λ̃)2

√
ϵxϵy

2 r(Λ̃)

≤ ρ(Λ̃)

2 r(Λ̃)

∑
xy/∈Ed(Λ̃)

ϵx + ϵy
2

=
ρ(Λ̃)

4 r(Λ̃)
ξc(Λ̃)

with equality if and only if, for every pair of vertices xy /∈ Ed(Λ̃), ϵx = ϵy = ρ(Λ̃). Thus, Λ̃ is self-centered.

Theorem 2.12. For any graph Λ̃ with n vertices and m edges,

ξISI(Λ̃) ≥
n(n− 1)− 2m

2
(2.7)
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Proof. One can see that for any xy /∈ Ed(Λ̃), ϵΛ̃x , ϵ
Λ̃
y ≥ 2. Hence, by the definition of ξISI ,

ξISI(Λ̃) =
∑

xy/∈Ed(Λ̃)

ϵxϵy
ϵx + ϵy

≥
∑

xy/∈Ed(Λ̃)

2(2)

2 + 2
=

n(n− 1)

2
−m.

The equality occurs in (2.7) if and only if for any xy /∈ Ed(Λ̃), ϵx = ϵy = 2, which is equivalent to

ρ(Λ̃) ≤ 2. The following results is immediately from Theorem 2.12.

Corollary 2.13. For any connected unicyclic graph Λ̃ with n ≥ 6 vertices, ξISI(Λ̃) ≥ n(n−3)
2 with equality

if and only if Λ̃ is obtained from Sn by joining two of its pendent vertices with an edge.

Corollary 2.14. Let Λ̃ be (n,m)−graph. If Λ̃ is a connected then complement of Λ̃,

ξISI(Λ̃) + ξISI(Λ̃) ≥ n(n− 1)

2
(2.8)

with equality if and only if Λ̃ and Λ̃ are s− c with r(Λ̃) = ρ(Λ̃) = 2.

Proof. Since |Ed(Λ̃)| = m. By Theorem 2.12, we get

ξISI(Λ̃) + ξISI(Λ̃) ≥ n(n− 1)

2
−m+m =

n(n− 1)

2
.

The equality in (2.8) holds if and only if ρ(Λ̃), ρ(Λ̃) ≤ 2. Since both Λ̃ and Λ̃ are connected and contain no

universal vertices, the equality in (2.8) occurs if and only if both Λ̃ and Λ̃ are self-centered graphs.

3. Inequalities between ξISI and ξH .

In this section, we establish attractive relation between ξISI and ξH of graph.

Theorem 3.1. For a (n,m)−connected graph Λ̃, then

ξISI(Λ̃) +
(r(Λ̃))2

2
ξH(Λ̃) ≥ r(Λ̃)

2
(n(n− 1)− 2m) (3.1)

and

ξISI(Λ̃) +
(ρ(Λ̃))2

2
ξH(Λ̃) ≥ ρ(Λ̃)

2
(n(n− 1)− 2m) (3.2)

Equality holds in (3.1) if and only if each case of Λ̃ is incident to atleast one vertex of eccentricity r(Λ̃) and
holds in (3.2) if and only if each edge of Λ̃ incident to atleast one vertex of eccentricity ρ(Λ̃).

Proof. Let x1, x2, ...xn be the vertices of Λ̃ and let (ϵx1 , ϵx2 , ..., ϵxn) be the sequence of vertex eccentricities
of Λ̃ satisfying

ρ(Λ̃) = ϵ1 ≥ ϵ2... ≥ ϵn = r(Λ̃).

One can see that the following relations holds for any i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ n;

(ϵxi − r(Λ̃))(ϵxj − r(Λ̃)) ≥ 0 and (ρ(Λ̃)− ϵxi)(ρ(Λ̃)− ϵxj ) ≥ 0
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That is,

ϵxiϵxj + (r(Λ̃))2 ≥ r(Λ̃)(ϵxi + ϵxj ) (3.3)

and

ϵxiϵxj + (ρ(Λ̃))2 ≥ ρ(Λ̃)(ϵxi + ϵxj ) (3.4)

Multiplied by 1
ϵxi+ϵxj

an both the equation 3.3 and 3.4, we have

ϵxiϵxj

ϵxi + ϵxj

+
r(Λ̃)2

ϵxi + ϵxj

≥ r(Λ̃) (3.5)

and

ϵxiϵxj

ϵxi + ϵxj

+
ρ(Λ̃)2

ϵxi + ϵxj

≥ ρ(Λ̃) (3.6)

The summation of (3.5) and (3.6) over all pairs of nm−adjacent vertices xi and xj in Λ̃, we obtain∑
xixj /∈Ed(Λ̃)

ϵxiϵxj

ϵxi + ϵxj

+
(r(Λ̃))2

2

∑
xixj /∈Ed(Λ̃)

2

ϵxi + ϵxj

≥ r(Λ̃)m̈

and∑
xixj /∈Ed(Λ̃)

ϵxiϵxj

ϵxi + ϵxj

+
(ρ(Λ̃))2

2

∑
xixj /∈Ed(Λ̃)

2

ϵxi + ϵxj

≥ ρ(Λ̃)m̈

Hence,

ξISI(Λ̃) +
r(Λ̃)2

2
ξH(Λ̃) ≥ r(Λ̃)

2
(n(n− 1)− 2m)

and

ξISI(Λ̃) +
ρ(Λ̃)2

2
ξH(Λ̃) ≥ ρ(Λ̃)

2
(n(n− 1)− 2m)

Theorem 3.2. For a (n,m)−connected graph Λ̃,

2ξISI(Λ̃) + r(Λ̃) ρ(Λ̃) ξH(Λ̃) ≤ r(Λ̃) + ρ(Λ̃)

2
(n(n− 1)−m). (3.7)

with inequality if and only if Λ̃ is s− c.

Proof. Let x1, x2, ...xn be the vertices of Λ̃ and let (ϵx1 , ϵx2 , ..., ϵxn) be the sequence of vertex eccentricities
of Λ̃ satisfying

ρ(Λ̃) = ϵ1 ≥ ϵ2... ≥ ϵn = r(Λ̃).

One can see that the following relations holds for any i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ n;

(ρ(Λ̃)− ϵxi) (ϵxj − r(Λ̃)) ≥ 0

and (ϵxi − r(Λ̃)) (ρ(Λ̃)− ϵxj ) ≥ 0

This implies that

ϵxiϵxj + r(Λ̃) ρ(Λ̃) ≤ r(Λ̃)ϵxi + ρ(Λ̃)ϵxj (3.8)

and ϵxiϵxj + r(Λ̃) ρ(Λ̃) ≤ r(Λ̃)ϵxj + ρ(Λ̃)ϵxi (3.9)
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By summing up the Equations in (3.8) and (3.9), we get

2ϵxiϵxj + 2 r(Λ̃) ρ(Λ̃) ≤ (r(Λ̃) + ρ(Λ̃))(ϵxi + ϵxj ) (3.10)

Divided by (ϵxi + ϵxj ) on both sides on (3.10), we have

2
ϵxiϵxj

ϵxi + ϵxj

+
2 r(Λ̃) ρ(Λ̃)

ϵxi + ϵxj

≤ r(Λ̃) + ρ(Λ̃).

Taking summation over all pairs of non-adjacent pair of vertices xi and xj in Λ̃, we have

2
∑

xixj /∈Ed(Λ̃)

ϵxiϵxj

ϵxi + ϵxj

+
∑

xixj /∈Ed(Λ̃)

2 r(Λ̃) ρ(Λ̃)

ϵxi + ϵxj

≤
∑

xixj /∈Ed(Λ̃)

(r(Λ̃) + ρ(Λ̃)).

Hence, 2ξISI(Λ̃) + r(Λ̃) ρ(Λ̃) ξH(Λ̃) ≤ (r(Λ̃) + ρ(Λ̃))

2
(n(n− 1)−m).

4. Some Graph Constructions

In this section, we calculate the inverse sum indeg eccentric coindices for various graph constructions.
These graph models are crucial for understanding how the ξISI(Λ̃) behaves in graphs with increased com-
plexity and symmetry.

4.1. Double graph

Let Λ̃ be a graph with the vertex set Ve(Λ̃) = {v1, v2, . . . , vn}. Consider two sets of vertices, X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} of Λ̃, preserving the original edge set of each version and adding
the edges xiyj and xjyi for every edge vivj ∈ Ed(Λ̃). The result is a new graph, Λ̃∗, known as the double

graph of Λ̃.

Theorem 4.1. For a double graph Λ̃∗ of Λ̃,

ξISI(Λ̃∗) = 4ξISI(Λ̃) +
τ(Λ̃)
2 .

Proof. From the definition of double graph Λ̃∗, we have

ϵ
Λ̃∗(xi) = ϵ

Λ̃∗(yi) =

{
2 if ϵ

Λ̃
(vi) = 1,

ϵ
Λ̃
(vi) if ϵ

Λ̃
(vi) ≥ 2.

Hence,

ξISI(Λ̃) =
∑

xy/∈Ed(˜̃Λ∗)

ϵΛ̃
∗

x ϵΛ̃
∗

y

ϵΛ̃∗
x + ϵΛ̃∗

y

=
∑

vivj /∈Ed(Λ̃)

 ϵΛ̃
∗

xi
ϵΛ̃

∗
xj

ϵΛ̃∗
xi

+ ϵΛ̃∗
xj

+
ϵΛ̃

∗
yi ϵ

Λ̃∗
yj

ϵΛ̃∗
yi + ϵΛ̃∗

yj

+
ϵΛ̃

∗
xi
ϵΛ̃

∗
yj

ϵΛ̃∗
xi

+ ϵΛ̃∗
yj

+
ϵΛ̃

∗
xj
ϵΛ̃

∗
yi

ϵΛ̃∗
xj

+ ϵΛ̃∗
yi

+

n∑
i=1

ϵΛ̃
∗

xi
ϵΛ̃

∗
yi

ϵΛ̃∗
xi

+ ϵΛ̃∗
yi

= 4
∑

vivj /∈Ed(Λ̃)

ϵΛviϵ
Λ
vj

ϵΛvi + ϵΛyj
+
∑
i=1

(ϵΛ̃vi)
2

2ϵvi

= 4ξISI(Λ̃) +
1

2

n∑
i=1

ϵΛ̃vi

= 4 ξISI(Λ̃) +
1

2
τ(Λ̃).
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4.2. Extended double graph

Let Λ̃ be a graph with Ve(Λ̃) = {v1, v2, . . . , vn}. Consider a bipartite graph Λ̃∗∗ with bipartition (X,Y )
where X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. In this graph, an edge xi is adjacent to yj if and only

if i = j or vivj ∈ Ed(Λ̃). This graph is known as the extended double graph of Λ̃. It is clear from the above
definition that for each 1 ≤ i ≤ n,

ϵ
Λ̃∗∗(yi) = ϵ

Λ̃
(vi) + 1.

Theorem 4.2. For a extended double graph Λ̃∗∗ of Λ̃,

ξISI(Λ̃
∗∗) ≤ 1

2

[
ξISI(Λ̃) + ξH(Λ̃) +

ξM1(Λ̃)

2
+

ξM2(Λ̃)

2

]
+

n(n− 1)

2
− 4m

+
1

r(Λ̃) + 1

[
1

2
(τ(Λ̃)2 − E1(Λ̃)) + (n− 1)τ(Λ̃) +

n(n− 1)

2

]
.

Proof. By the definition of ξISI , we obtain

ξISI(Λ̃
∗∗) =

∑
xy/∈Ed(Λ̃∗∗)

ϵΛ̃
∗∗

x ϵΛ̃
∗∗

y

ϵΛ̃∗∗
x + ϵΛ̃∗∗

y

=
∑

vivj /∈Ed(Λ̃)

 ϵΛ̃
∗∗

xi
ϵΛ̃

∗∗
yj

ϵΛ̃∗∗
xi

+ ϵΛ̃∗∗
yj

+
ϵΛ̃

∗∗
xj

ϵΛ̃
∗∗

yi

ϵΛ̃∗∗
xj

+ ϵΛ̃∗∗
yj

+
∑

1≤i<j≤n

 ϵΛ̃
∗∗

xi
ϵΛ̃

∗∗
xj

ϵΛ̃∗∗
xi

+ ϵΛ̃∗∗
xj

+
ϵΛ̃

∗∗
yi ϵΛ̃

∗∗
yj

ϵΛ̃∗∗
yi + ϵΛ̃∗∗

yj


= 2

∑
vivj /∈Ed(Λ̃)

(ϵΛ̃vj + 1)(ϵΛ̃vj + 1)

ϵΛ̃vi + 1 + ϵΛ̃vj + 1
+ 2

∑
1≤i<j≤n

(ϵΛ̃vj + 1)(ϵΛ̃vj + 1)

ϵΛ̃vi + 1 + ϵΛ̃vj + 1

= A1 +A2,

where,

A1 = 2
∑

vivj /∈Ed(Λ̃)

ϵΛ̃viϵΛ̃vj + (ϵΛ̃vi + ϵΛ̃vj ) + 2

(ϵΛ̃vi + ϵΛ̃vj ) + 2

 .

By Jenson’s inequality, we obtain 1
ϵvi+ϵvj+2 ≤ 1

4(ϵvi+ϵvj )
+ 1

8 with equality if and only if ϵΛ̃vi + ϵΛ̃vj = 2, for

every n− a (non-adjacent) pair of vertices vivj /∈ Ed(Λ̃). Hence,

A1 ≤ 1

2

∑
vivj /∈Ed(Λ̃)

ϵΛ̃viϵΛ̃vj + (ϵΛ̃vi + ϵΛ̃vj ) + 2

(ϵΛ̃vi + ϵΛ̃vj )
+

ϵΛ̃viϵ
Λ̃
vj + (ϵΛ̃vi + ϵΛ̃vj ) + 2

2


=

1

2

[
ξISI(Λ̃) + m̈+ ξH(Λ̃) +

ξM2(Λ̃)

2
+

ξM1(Λ̃)

2
+ m̈

]

=
1

2

[
ξISI(Λ̃) + ξH(Λ̃) +

ξM2(Λ̃)

2
+

ξM1(Λ̃)

2
+ n(n− 1)− 2m

]
.
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Similarly, we can prove

A2 = 2
∑

1≤i<j≤n

(ϵΛ̃vi + 1)(ϵΛ̃vj + 1)

ϵΛ̃vi + ϵΛ̃vj + 2

≤ 1

r(Λ̃) + 1

[
(τ(Λ̃)2 − E1(Λ̃))

2
+ (n− 1)τ(Λ̃) +

(
n

2

)]
.

Hence,

ξISI(Λ̃
∗∗) ≤ 1

2

[
ξISI(Λ̃) + ξH(Λ̃) +

ξM1(Λ̃)

2
+

ξM2(Λ̃)

2

]
+

n(n− 1)

2
− 4m

+
1

r(Λ̃) + 1

[
1

2
(τ(Λ̃)2 − E1(Λ̃)) + (n− 1)τ(Λ̃) +

n(n− 1)

2

]
.

4.3. Generalized hierarchical product

Let ϕ ̸= Y ⊆ Ve(Λ̃1). The generalized hierarchical product Λ̃1(Y) ⊓ Λ̃2 of graphs Λ̃1 and Λ̃2 is a

graph with vertex set Ve(Λ̃1)×Ve(Λ̃2). Two vertices (u1, u2) and (v1, v2) are adjacent if and only if either

[u1 = v1 ∈ Y and u2v2 ∈ Ed(Λ̃2)] or [u2 = v2 ∈ Ve(Λ̃2) and u1v1 ∈ Ed(Λ̃1)].
For ϕ ̸= Y ⊆ Ve(Λ̃), a path between vertices u, v ∈ Ve(Λ̃) through Y is a uv-path in Λ̃ containing

some vertex z ∈ Y (where z could be either u or v). The distance between u and v through Y, denoted by
d
Λ̃(Y)(u, v), is the length of any shortest path between u and v that belongs to Y. Thus, d

Λ̃(Y)(u, v) = d
Λ̃
(u, v).

For u ∈ Ve(Λ̃), we define ϵ
Λ̃(Y)(u) = max

v∈Ve(Λ̃)
d
Λ̃(Y)(u, v). The following invariants related to Y are defined

for the convenience.

τ(Y) =
∑
u∈Y

ϵ
Λ̃(Y)(u) =

∑
u∈Y

ϵ
Λ̃
(u);

E1(Y) =
∑
u∈Y

ϵ
Λ̃(Y)(u)

2 =
∑
u∈Y

ϵ
Λ̃
(u)2;

τ(Λ̃(Y)) =
∑

u∈Ve(Λ̃)

ϵ
Λ̃(Y)(u);

E1(Λ̃(Y)) =
∑
u∈Λ̃

ϵ
Λ̃(Y)(u)

2;

ξc(Λ̃(Y)) =
∑

uv/∈Ed(Λ̃)

(ϵ
Λ̃(Y)(u) + ϵ

Λ̃(Y)(v));

E2(Λ̃(Y)) =
∑

uv/∈Ed(Λ̃)

ϵ
Λ̃(Y)(u)ϵΛ̃(Y)(v).

The eccentricity of a vertex (u1, u2) in Λ̃1(Y) ⊓ Λ̃2as follows.

ϵ
Λ̃1(Y)∪Λ̃2

(u1, u2) = ϵ
Λ̃1(Y)

(u1) + ϵ
Λ̃2
(u2).

Λ̃1□Λ̃2 is the cartesian product of graphs Λ̃1 and Λ̃2 is a graph with set of all vertices Ve(Λ̃1)×Ve(Λ̃2).

Two vertices (u1, u2) and (v1, v2) are adjacent if and only if either [u1 = v1 ∈ Ve(Λ̃1) and u2v2 ∈ Ed(Λ̃2)]

or [u2 = v2 ∈ Ve(Λ̃2) and u1v1 ∈ Ed(Λ̃1)].
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Theorem 4.3. For a graph Λ̃1(u) ⊓ Λ̃2,

ξISI(Λ̃1(Y) ⊓ Λ̃2) ≤ 1

2(r
Λ̃1

+ r
Λ̃2
)

(
m̈2ξ(Y) + ξM1(Λ̃2)τ(Y) + |Y|ξM2(Λ̃2)

+
[
m̈2ξ1(Λ̃2) + ξM1(Λ̃1(Y))τ(Λ̃2) + n2ξM2(Λ̃1(Y))

]
+

[(
n2

2

)
(ξ1(Λ̃1(Y))− ξ1(Y)) + (τ(Λ̃1(Y))− τ(Y))(n2 − 1)τ(Λ̃2) +

1

2
(n1 − |Y|)(τ(Λ̃2)

2 − ξ1(Λ̃2))

]

+

[(
n2

2

) (
τ(Λ̃1(Y))2 − ξ1(Λ̃1(Y))

)
+

(
n1

2

)(
τ(Λ̃2)

2 − ξ1(Λ̃2)
)
+ (n1 − 1)(n2 − 1)τ(Λ̃1(Y))τ(Λ̃2)

])
.

Proof. By the definition of ξISI , we obtain

ξISI(Λ̃1(Y) ⊓ Λ̃2) =
∑

(x1,y1)(x2,y2)/∈Ed(Λ̃1(Y)⊓Λ̃2)

ϵ
Λ̃1(Y)⊓Λ̃2

(x1,y1)
ϵ
Λ̃1(Y)⊓Λ̃2

(x2,y2)

ϵ
Λ̃1(Y)⊓Λ̃2

(x1,y1)
+ ϵ

Λ̃1(Y)⊓Λ̃2

(x2,y2)

By analyzing the structure of Λ̃1(Y) ⊓ Λ̃2, we obtain the following edge partition with respect to the eccen-
tricity of the end vertices of the edges.

First, calculate the sum A1 over all vertices x1 ∈ Y and n− a vertex pairs y1y2 /∈ Ed(Λ̃2).

A1 =
∑
x1∈Y

∑
y1y2 /∈Ed(Λ̃2)

(ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y1 ) (ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y2 )

(ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y1 ) + (ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y2 )

≤
∑
x1∈Y

∑
y1y2 /∈Ed(Λ̃2)

(ϵ
Λ̃1(Y)
x1 )2 + ϵ

Λ̃1(Y)
x1 (ϵΛ̃2

y1 + ϵΛ̃2
y2 ) + ϵΛ̃2

y1 ϵ
Λ̃2
y2

2r
Λ̃1

+ 2r
Λ̃2

=
1

2(r
Λ̃1

+ r
Λ̃2
)

m̈2

∑
x1∈Y

(ϵΛ̃1(Y)
x1

)2 +
∑
x1∈Y

ϵΛ̃1(Y)
x1

∑
y1y2 /∈Ed(Λ̃2)

(ϵΛ̃2
y1 + ϵΛ̃1

y2 ) + |Y|
∑

y1y2 /∈Ed(Λ̃2)

ϵΛ̃2
y1 ϵ

Λ̃2
y2


=

1

2(r
Λ̃1

+ r
Λ̃2
)

[
m̈2ξ(Y) + ξM1(Λ̃2)τ(Y) + |Y|ξM2(Λ̃2)

]
.

Next, we consider A2 which is taken over all vertices y1 ∈ Ve(Λ̃2) and n− a vertex pairs x1x2 /∈ Ed(Λ̃1).

A2 =
∑

y1∈Ve(Λ̃2)

∑
x1x2 /∈Ed(Λ̃1)

(ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y1 ) (ϵ
Λ̃2(Y)
x2 + ϵΛ̃2

y1 )

(ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y1 ) + (ϵ
Λ̃2(Y)
x2 + ϵΛ̃2

y1 )

≤
∑

y1∈Ve(Λ̃2)

∑
x1x2 /∈Ed(Λ̃1)

(ϵΛ̃2
y1 )

2 + ϵΛ̃2
y1 (ϵ

Λ̃1(Y)
x1 + ϵ

Λ̃1(Y)
x2 ) + ϵ

Λ̃1(Y)
x1 ϵ

Λ̃1(Y)
x2

2(r
Λ̃1

+ r
Λ̃2
)

=
1

2(r
Λ̃1

+ r
Λ̃2
)

[
m̈2ξ1(Λ̃2) + ξM1(Λ̃1(Y))τ(Λ̃2) + n2ξM2(Λ̃1(Y))

]
.
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The third sum A3 is taken over all vertices x1 ∈ Ve(Λ̃1)|Y and unordered vertex pairs {y1, y2} ⊆ Ve(Λ̃2).

A3 =
∑

x1∈Ve(Λ̃1)|Y

∑
y1y2⊆Ve(Λ̃2)

(ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y1 ) (ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y2 )

(ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y1 ) + (ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y2 )

≤
∑

x1∈Ve(Λ̃1)|Y

∑
y1y2⊆Ve(Λ̃2)

(ϵ
Λ̃1(Y)
x1 )2 + ϵ

Λ̃1(Y)
x1 (ϵΛ̃2

y1 + ϵΛ̃2
y2 ) + ϵΛ̃2

y1 ϵ
Λ̃2
y2

2(r
Λ̃1

+ r
Λ̃2
)

=
1

2(r
Λ̃1

+ r
Λ̃2
)

[(
n2

2

)
(ξ1(Λ̃1(Y))

−ξ1(Y)) + (τ(Λ̃1(Y))− τ(Y))(n2 − 1)τ(Λ̃2) +
1

2
(n1 − |Y|)(τ(Λ̃2)

2 − ξ1(Λ̃2))

]
.

The final sum A4 is taken over all unordered vertex pairs {x1, x2} ⊆ Ve(Λ̃1) and {y1, y2} ⊆ Ve(Λ̃2).

A4 =
∑

{x1,x2}⊆Ve(Λ̃1)

∑
{y1y2}⊆Ve(Λ̃2)

 (ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y1 ) (ϵ
Λ̃1(Y)
x2 + ϵΛ̃2

y2 )

(ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y1 ) + (ϵ
Λ̃1(Y)
x2 + ϵΛ̃2

y2 )
+

(ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y2 ) (ϵ
Λ̃1(Y)
x2 + ϵΛ̃2

y1 )

(ϵ
Λ̃1(Y)
x1 + ϵΛ̃2

y2 ) + (ϵ
Λ̃1(Y)
x2 + ϵΛ̃2

y1 )


≤

∑
{x1,x2}⊆Ve(Λ̃1)

∑
{y1y2}⊆Ve(Λ̃2)

2ϵΛ̃1(Y)
x1 ϵ

Λ̃1(Y)
x2 + 2ϵΛ̃2

y1 ϵ
Λ̃2
y2 + (ϵ

Λ̃1(Y)
x1 + ϵ

Λ̃1(Y)
x2 )(ϵΛ̃2

y1 + ϵΛ̃1
y1 )

2(r
Λ̃1

+ r
Λ̃2
)


=

1

2(r
Λ̃1

+ r
Λ̃2
)

[(
n2

2

) (
τ(Λ̃1(Y))2 − ξ1(Λ̃1(Y))

)
+

(
n1

2

)(
τ(Λ̃2)

2 − ξ1(Λ̃2)
)

+(n1 − 1)(n2 − 1)τ(Λ̃1(Y))τ(Λ̃2)

]
.

By adding A1 to A4 and simplifying we get the required result.

4.4. Composition

Λ̃1[Λ̃2] is the composition of Λ̃1 and Λ̃2 is a graph with vertex set Ve(Λ̃1)×Ve(Λ̃2). Two vertices (x1, y1)

and (x2, y2) are adjacent if and only if either x1x2 ∈ Ed(Λ̃1) or [x1 = x2 ∈ Ve(Λ̃) and y1y2 ∈ Ed(Λ̃2)]. The
composition of two graphs is also known as their lexicographic product or wreath product.

The eccentricity of a vertex (x1, y1) ∈ Λ̃1[Λ̃2] is given by

ϵ
ϵ1[Λ̃2]
(x1,y1)

=


1 if ϵΛ̃1

x1
= ϵΛ̃2

y1 = 1,

2 if ϵΛ̃1
x1

= ϵΛ̃2
y1 ≥ 2,

ϵΛ̃1
x1

if ϵΛ̃1
x1

≥ 2.

The number of universal vertices of Λ̃ is denoted by C(Λ̃).

Theorem 4.4. The inverse sum indeg eccentric coindex of Λ̃1[Λ̃2] is given by

ξISI(Λ̃1[Λ̃2]) =
m̈
2 (τ(Λ̃1) + C(Λ̃1)) + n2

2 ξISI(Λ̃1)
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Proof. By the definition of ξISI of Λ̃1[Λ̃2], we have

ξISI(Λ̃1[Λ̃2]) =
∑

(x1,y1)(x2,y2)/∈Ed(Λ̃1[Λ̃2])

ϵ
Λ̃1[Λ̃2]
(x1,y1)

ϵ
Λ̃1[Λ̃2]
(x2,y2)

ϵ
Λ̃1[Λ̃2]
(x1,y1)

+ ϵ
Λ̃1[Λ̃2]
(x2,y2)

=
∑

x1∈Ve(Λ̃1)

ϵΛ̃1
x1

∑
y1y2 /∈Ed(Λ̃2)

(
2(2)

2 + 2

)
+

∑
x1∈Ve(Λ̃1)

ϵ
Λ̃1
x1

≥2

∑
y1y2 /∈Ed(Λ̃2)

(ϵΛ̃1
x1
)2

2ϵΛ̃1
x1

+
∑

y1∈Ve(Λ̃2)

∑
x1x2 /∈Ed(Λ̃1)

ϵΛ̃1
x1
ϵΛ̃1
x2

ϵΛ̃1
x1 + ϵΛ̃1

x2

+ 2
∑

x1x2 /∈Ed(Λ̃1)

∑
{y1y2}⊆Ve(Λ̃2)

ϵΛ̃1
x1
ϵΛ̃1
x2

ϵΛ̃1
x1 + ϵΛ̃2

x2

=
∑

y1y2 /∈Ed(Λ̃2)

C(Λ̃1) +
∑

y1y2 /∈Ed(Λ̃2)

∑
x1∈Ve(Λ̃1)

ϵ
Λ̃1
x1

≥2

(
ϵΛ̃1
x1

2

)
+

(
n2 + 2

(
n2

2

)) ∑
x1x2 /∈Ed(Λ̃1)

ϵΛ̃1
x1

ϵΛ̃1
x1

ϵΛ̃1
x1 + ϵΛ̃1

x1

= m̈2 C(Λ̃1) +
m̈2

2
(τ(Λ̃1)− C(Λ̃1)) +

(
n2 + 2

(
n2

2

))
ξISI(Λ̃)

= m̈2 C(Λ̃1) + n2
2 ξISI(Λ̃1) +

m̈

2
C(Λ̃1)

=
m̈

2

(
τ(Λ̃1) + C(Λ̃1)

)
+ n2

2 ξISI(Λ̃1).

The following Corollary we obtain by Theorem 4.4.

Corollary 4.5. If Λ̃1 has no universal vertices, then ξISI(Λ̃1[Λ̃2]) =
m̈
2 τ(Λ̃1) + n2

2 ξISI(Λ̃1).

4.5. Strong Product

The strong product of two graphs Λ̃1 and Λ̃2 is a graph with vertex set Ve(Λ̃1⊠ Λ̃2) = Ve(Λ̃1)⊠Ve(Λ̃2).
Two vertices (x1, y1) and (x2, y2) are adjacent in the strong product if x1 = x2 and x1x2 ∈ E.

Theorem 4.6. If r
Λ̃1

≥ ρ
Λ̃2
, then ξISI(Λ̃1 ⊠ Λ̃2) =

m̈2
2 τ(Λ̃1) + 2m̈2 ξISI(Λ̃) + n2

2 ξISI(Λ̃).

Proof. Based on the condition r
Λ̃1

≥ ρ
Λ̃2

for every vertex x1 ∈ Ve(Λ̃2), y1 ∈ Ve(Λ̃2), ϵ
Λ̃1
x1

≥ ϵΛ̃2
y1 , we have

ϵΛ̃1⊠Λ̃2

(x1,y1)
= ϵΛ̃1

x1

Hence,

ξISI(Λ̃1 ⊠ Λ̃2) =
∑

(x1,y1)(x2,y2)/∈Ed(Λ̃1⊠Λ̃2)

ϵ
(x1,y1)Λ̃1⊠Λ̃2

ϵ
(x2,y2)Λ̃1⊠Λ̃2

ϵ
(x1,y1)Λ̃1⊠Λ̃2

+ ϵ
(x2,y2)Λ̃1⊠Λ̃2

=
∑

x1∈Ve(Λ̃1)

∑
y1y2 /∈Ed(Λ̃2)

(ϵΛ̃1
x1
)2

2ϵΛ̃1
x1

+
∑

y1∈Ve(Λ̃1)

∑
x1x2 /∈Ed(Λ̃1)

ϵΛ̃1
x1
ϵΛ̃1
x2

ϵΛ̃1
x1 + ϵΛ̃1

x2

+2
∑

x1x2∈Ed(Λ̃1)

∑
y1y2 /∈Ed(Λ̃1)

ϵΛ̃1
x1
ϵΛ̃2
x2

ϵΛ̃1
x1 + ϵΛ̃2

x2

+ 2
∑

x1x2 /∈Ed(Λ̃1)

∑
y1y2 /∈Ed(Λ̃2)

ϵΛ̃1
x1
ϵΛ̃1
x2

ϵΛ̃1
x1 + ϵΛ̃1

x2

(4.1)
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=
m̈2

2
τ(Λ̃1) + n2ξISI(Λ̃1) + 2m̈2ξISI(Λ̃1) + 2

(
n2

2

)
ξISI(Λ̃1)

=
m̈2

2
τ(Λ̃1) + 2m̈2ξISI(Λ̃1) + n2

2 ξISI(Λ̃1).

Theorem 4.7. The inverse sum indeg coindex of Λ̃1 ⊠ Λ̃2 is given by

ξISI(Λ̃1 ⊠ Λ̃2) ≥ 1

8(ρ
Λ̃1

+ ρ
Λ̃2
)

([
m̈2E1(Λ̃1) + τ(Λ̃1)ξM1(Λ̃2) + n1ξM2(Λ̃2)

]
+
[
m̈1 E1(Λ̃2) + τ(Λ̃2) ξM1(Λ̃1) + n1 ξM2(Λ̃1)

]
+
[
2m̈2 ξM2(Λ̃1) + 2m1 ξM2(Λ̃2) + ξM1(Λ̃1) ξM1(Λ̃2)

]
+

[
2

(
n2

2

)
ξM2(Λ̃1) + 2 m̈1

(
ξM2(Λ̃2) + ξM2(Λ̃2)

)
+ ξM1(Λ̃2)

(
ξM1(Λ̃2) + ξM1(Λ̃2)

)])
.

The equality in Equation (4.2) holds if and only if Λ̃1 and Λ̃2 are s− c and ρ
Λ̃1

= ρ
Λ̃2
.

Proof. The eccentricity of a vertex (x1, y1) ∈ Ve(Λ̃1 ⊠ Λ̃2) is

ϵΛ̃1⊠Λ̃2

(x1,y1)
= max{ϵΛ̃1

x1
, ϵΛ̃2

y1 }.

We know that for any real numbers a, b, we have max{a, b} ≥ a+b
2 with equality if and only if a = b.

Therefore,

ξISI(Λ̃1 ⊠ Λ̃2) =
∑

(x1,y1)(x2,y2)/∈Ed(Λ̃1⊠Λ̃2)

ϵΛ̃1⊠Λ̃2

(x1,y1)
ϵΛ̃1⊠Λ̃2

(x2,y2)

ϵΛ̃1⊠Λ̃2

(x1,y1)
+ ϵΛ̃1⊠Λ̃2

(x2,y2)

=
∑

(x1,y1)(x2,y2)/∈Ed(Λ̃1⊠Λ̃2)

max{ϵΛ̃1
x1
, ϵΛ̃2

y1 } max{ϵΛ̃1
x2
, ϵΛ̃2

y2 }

max{ϵΛ̃1
x1 , ϵ

Λ̃2
y1 }+max{ϵΛ̃1

x2 , ϵ
Λ̃2
y2 }

≥
∑

(x1,y1)(x2,y2)/∈Ed(Λ̃1⊠Λ̃2)

(
ϵ
Λ̃1
x1

+ϵ
Λ̃2
y1

2

)(
ϵ
Λ̃1
x2

+ϵ
Λ̃2
y2

2

)
(

ϵ
Λ̃1
x1

+ϵ
Λ̃2
y1

2

)
+

(
ϵ
Λ̃1
x2

+ϵ
Λ̃2
y2

2

)
=

∑
(x1,y1)(x2,y2)/∈Ed(Λ̃1⊠Λ̃2)

(ϵΛ̃1
x1

+ ϵΛ̃2
y1 )(ϵ

Λ̃1
x2

+ ϵΛ̃2
y2 )

4(ϵΛ̃1
x1 + ϵΛ̃2

y1 + ϵΛ̃1
x2 + ϵΛ̃2

y2 )
(4.2)

= A1 +A2 +A3 +A4,

where A1= The sum of Equation (4.2) which in taken overall vertices x1 ∈ Ve(Λ̃1) and n − a vertex pairs

y1y2 /∈ Ed(Λ̃2).

A2= The sum of Equation (4.2) which in taken overall vertices y1 ∈ Ve(Λ̃2) and n − a vertex pairs

x1x2 /∈ Ed(Λ̃2).

A3= The sum of Equation (4.2) which in taken overall edges x1x2 ∈ Ed(Λ̃1) and n − a vertex pairs

y1y2 /∈ Ed(Λ̃2).
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and
A4= The sum of Equation (4.2) which in taken overall n − a vertices pairs x1x2 /∈ Ed(Λ̃1) and n − a

vertex pairs x1x2 /∈ Ed(Λ̃2) and unordered pairs of vertices {y1, y2} ⊆ Ve(Λ̃2).
Now we shall obtain the sums A1 to A4, separately.

A1 =
1

4

∑
x1∈Ve(Λ̃1)

∑
y1y2 /∈Ed(Λ̃2)

(ϵΛ̃1
x1

+ ϵΛ̃2
y1 )(ϵ

Λ̃1
x1

+ ϵΛ̃2
y2 )

2ϵΛ̃1
x1 + (ϵΛ̃2

y1 + ϵΛ̃2
y2 )

≥ 1

8(ρ
Λ̃1

+ ρ
Λ̃2
)

∑
x1∈Ve(Λ̃1)

∑
y1y2 /∈Ed(Λ̃2)

[
(ϵΛ̃1

x1
)2 + (ϵΛ̃2

y1 + ϵΛ̃2
y2 )ϵ

Λ̃1
x1

+ ϵΛ̃2
y1 ϵ

Λ̃2
y2

]
=

1

8(ρ
Λ̃1

+ ρ
Λ̃2
)

[
m̈2E1(Λ̃1) + τ(Λ̃1)ξM1(Λ̃2) + n1ξM2(Λ̃2)

]
.

A2 =
1

4

∑
y1 /∈Ve(Λ̃2)

∑
x1x2 /∈Ed(Λ̃1)

(ϵΛ̃1
x1

+ ϵΛ̃2
y1 )(ϵ

Λ̃1
x2

+ ϵΛ̃2
y1 )

ϵΛ̃1
x1 + ϵΛ̃1

x2 + 2ϵΛ̃2
y1

By symmetry of the sum A1, we get

A2 ≥ 1

8(ρ
Λ̃1

+ ρ
Λ̃2
)

[
m̈1 E1(Λ̃2) + τ(Λ̃2) ξM1(Λ̃1) + n1 ξM2(Λ̃1)

]
.

A3 =
1

4

∑
x1x2∈Ed(Λ̃2)

∑
y1y2 /∈Ed(Λ̃2)

[
(ϵΛ̃1

x1
+ ϵΛ̃2

y1 )(ϵ
Λ̃1
x1

+ ϵΛ̃2
y2 )

(ϵΛ̃1
x1 + ϵΛ̃2

y1 ) + (ϵΛ̃1
x1 + ϵΛ̃2

y2 )
+

(ϵΛ̃1
x1

+ ϵΛ̃2
y2 )(ϵ

Λ̃1
x1

+ ϵΛ̃2
y1 )

(ϵΛ̃1
x1 + ϵΛ̃2

y2 ) + (ϵΛ̃1
x1 + ϵΛ̃2

y1 )

]

≥ 1

8(ρ
Λ̃1

+ ρ
Λ̃2
)

∑
x1x2∈Ed(Λ̃2)

∑
y1y2 /∈Ed(Λ̃2)

[
2ϵΛ̃1

x1
ϵΛ̃1
x2

+ 2ϵΛ̃2
y1 ϵ

Λ̃2
y2 + (ϵΛ̃1

x1
+ ϵΛ̃1

x2
)(ϵΛ̃2

y1 + ϵΛ̃2
y2 )
]

=
1

8(ρ
Λ̃1

+ ρ
Λ̃2
)

[
2m̈2 ξM2(Λ̃1) + 2m1 ξM2(Λ̃2) + ξM1(Λ̃1) ξM1(Λ̃2)

]
.

Similarly, we compute

A4 =
1

4

∑
x1x2 /∈Ed(Λ̃1)

∑
{y1,y2}⊆Ve(Λ̃2)

(ϵΛ̃1
x1

+ ϵΛ̃2
y1 )(ϵ

Λ̃1
x1

+ ϵΛ̃2
y2 )

(ϵΛ̃1
x1 + ϵΛ̃2

y1 ) + (ϵΛ̃1
x1 + ϵΛ̃2

y2 )

≥ 1

8(ρ
Λ̃1

+ ρ
Λ̃2
)

[
2

(
n2

2

)
ξM2(Λ̃1) + 2 m̈1

(
ξM2(Λ̃2) + ξM2(Λ̃2)

)
+ ξM1(Λ̃2)

(
ξM1(Λ̃2) + ξM1(Λ̃2)

)]
By adding the sums A1 to A4, we get the inequalities which is our required result. The equality holds in

(4.2) if and only if for each edge (x1, y1)(x2, y2) /∈ Ed(Λ̃1 ⊠ Λ̃2), ϵ
Λ̃1
x1

= ϵΛ̃1
x2

and ϵΛ̃2
y1 = ϵΛ̃2

y2 . If Λ̃1 and Λ̃2 are
s− c graph and ρ

Λ̃1
= ρ

Λ̃2
, then the equality in (4.2) holds trivially.

Let the equality in (4.2) holds. Then for each x1 ∈ Ve(Λ̃1), y1y2 /∈ Ed(Λ̃2), ϵ
Λ̃1
x1

= ϵΛ̃2
y1 = ϵΛ̃2

y2 and for each

vertex y1 ∈ Ve(Λ̃2), x1x2 ∈ Ed(Λ̃1), ϵ
Λ̃2
y1 = ϵΛ̃1

x1
= ϵΛ̃2

x2
. This gives that both Λ̃1 and Λ̃2 are s− c graphs and

ρ
Λ̃1

= ρ
Λ̃2
.
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